1
|
Keefe AJ, Gabrych DR, Zhu Y, Vocadlo DJ, Silverman MA. Axonal Transport of Lysosomes Is Unaffected in Glucocerebrosidase-Inhibited iPSC-Derived Forebrain Neurons. eNeuro 2023; 10:ENEURO.0079-23.2023. [PMID: 37816595 PMCID: PMC10576257 DOI: 10.1523/eneuro.0079-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Lysosomes are acidic organelles that traffic throughout neurons delivering catabolic enzymes to distal regions of the cell and maintaining degradative demands. Loss of function mutations in the gene GBA encoding the lysosomal enzyme glucocerebrosidase (GCase) cause the lysosomal storage disorder Gaucher's disease (GD) and are the most common genetic risk factor for synucleinopathies like Parkinson's disease (PD) and dementia with Lewy bodies (DLB). GCase degrades the membrane lipid glucosylceramide (GlcCer) and mutations in GBA, or inhibiting its activity, results in the accumulation of GlcCer and disturbs the composition of the lysosomal membrane. The lysosomal membrane serves as the platform to which intracellular trafficking complexes are recruited and activated. Here, we investigated whether lysosomal trafficking in axons was altered by inhibition of GCase with the pharmacological agent Conduritol B Epoxide (CBE). Using live cell imaging in human male induced pluripotent human stem cell (iPSC)-derived forebrain neurons, we demonstrated that lysosomal transport was similar in both control and CBE-treated neurons. Furthermore, we tested whether lysosomal rupture, a process implicated in various neurodegenerative disorders, was affected by inhibition of GCase. Using L-leucyl-L-leucine methyl ester (LLoME) to induce lysosomal membrane damage and immunocytochemical staining for markers of lysosomal rupture, we found no difference in susceptibility to rupture between control and CBE-treated neurons. These results suggest the loss of GCase activity does not contribute to neurodegenerative disease by disrupting either lysosomal transport or rupture.
Collapse
Affiliation(s)
- A J Keefe
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - D R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Y Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - D J Vocadlo
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - M A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
2
|
Cross DJ, Huber BR, Silverman MA, Cline MM, Gill TB, Cross CG, Cook DG, Minoshima S. Intranasal Paclitaxel Alters Alzheimer's Disease Phenotypic Features in 3xTg-AD Mice. J Alzheimers Dis 2021; 83:379-394. [PMID: 34308901 DOI: 10.3233/jad-210109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Microtubule stabilizing drugs, commonly used as anti-cancer therapeutics, have been proposed for treatment of Alzheimer's disease (AD); however, many do not cross the blood-brain barrier. OBJECTIVE This research investigated if paclitaxel (PTX) delivered via the intranasal (IN) route could alter the phenotypic progression of AD in 3xTg-AD mice. METHODS We administered intranasal PTX in 3XTg-AD mice (3xTg-AD n = 15, 10 weeks and n = 10, 44 weeks, PTX: 0.6 mg/kg or 0.9%saline (SAL)) at 2-week intervals. After treatment, 3XTg-AD mice underwent manganese-enhanced magnetic resonance imaging to measure in vivo axonal transport. In a separate 3XTg-AD cohort, PTX-treated mice were tested in a radial water tread maze at 52 weeks of age after four treatments, and at 72 weeks of age, anxiety was assessed by an elevated-plus maze after 14 total treatments. RESULTS PTX increased axonal transport rates in treated 3XTg-AD compared to controls (p≤0.003). Further investigation using an in vitro neuron model of Aβ-induced axonal transport disruption confirmed PTX prevented axonal transport deficits. Confocal microscopy after treatment found fewer phospho-tau containing neurons (5.25±3.8 versus 8.33±2.5, p < 0.04) in the CA1, altered microglia, and reduced reactive astrocytes. PTX improved performance of 3xTg-AD on the water tread maze compared to controls and not significantly different from WT (Day 5, 143.8±43 versus 91.5±77s and Day 12, 138.3±52 versus 107.7±75s for SAL versus PTX). Elevated plus maze revealed that PTX-treated 3xTg-AD mice spent more time exploring open arms (Open arm 129.1±80 versus 20.9±31s for PTX versus SAL, p≤0.05). CONCLUSION Taken collectively, these findings indicate that intranasal-administered microtubule-stabilizing drugs may offer a potential therapeutic option for treating AD.
Collapse
Affiliation(s)
- Donna J Cross
- Department of Radiology and Imaging Sciences>, University of Utah, Salt Lake City, UT, USA
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA.,Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Marcella M Cline
- The Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Departments of Medicine, Pharmacology, Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Trevor B Gill
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Chloe G Cross
- Department of Radiology and Imaging Sciences>, University of Utah, Salt Lake City, UT, USA
| | - David G Cook
- The Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.,Departments of Medicine, Pharmacology, Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences>, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Fabbretti E, Antognolli G, Tongiorgi E. Amyloid-β Impairs Dendritic Trafficking of Golgi-Like Organelles in the Early Phase Preceding Neurite Atrophy: Rescue by Mirtazapine. Front Mol Neurosci 2021; 14:661728. [PMID: 34149353 PMCID: PMC8209480 DOI: 10.3389/fnmol.2021.661728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Neurite atrophy with loss of neuronal polarity is a pathological hallmark of Alzheimer's disease (AD) and other neurological disorders. While there is substantial agreement that disruption of intracellular vesicle trafficking is associated with axonal pathology in AD, comparatively less is known regarding its role in dendritic atrophy. This is a significant gap of knowledge because, unlike axons, dendrites are endowed with the complete endomembrane system comprising endoplasmic reticulum (ER), ER-Golgi intermediate compartment (ERGIC), Golgi apparatus, post-Golgi vesicles, and a recycling-degradative route. In this study, using live-imaging of pGOLT-expressing vesicles, indicative of Golgi outposts and satellites, we investigate how amyloid-β (Aβ) oligomers affect the trafficking of Golgi-like organelles in the different dendritic compartments of cultured rat hippocampal neurons. We found that short-term (4 h) treatment with Aβ led to a decrease in anterograde trafficking of Golgi vesicles in dendrites of both resting and stimulated (with 50 mM KCl) neurons. We also characterized the ability of mirtazapine, a noradrenergic and specific serotonergic tetracyclic antidepressant (NaSSA), to rescue Golgi dynamics in dendrites. Mirtazapine treatment (10 μM) increased the number and both anterograde and retrograde motility, reducing the percentage of static Golgi vesicles. Finally, mirtazapine reverted the neurite atrophy induced by 24 h treatment with Aβ oligomers, suggesting that this drug is able to counteract the effects of Aβ by improving the dendritic trafficking of Golgi-related vesicles.
Collapse
Affiliation(s)
- Elsa Fabbretti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
4
|
GSK3β Impairs KIF1A Transport in a Cellular Model of Alzheimer's Disease but Does Not Regulate Motor Motility at S402. eNeuro 2020; 7:ENEURO.0176-20.2020. [PMID: 33067366 PMCID: PMC7768277 DOI: 10.1523/eneuro.0176-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Impairment of axonal transport is an early pathologic event that precedes neurotoxicity in Alzheimer’s disease (AD). Soluble amyloid-β oligomers (AβOs), a causative agent of AD, activate intracellular signaling cascades that trigger phosphorylation of many target proteins, including tau, resulting in microtubule destabilization and transport impairment. Here, we investigated how KIF1A, a kinesin-3 family motor protein required for the transport of neurotrophic factors, is impaired in mouse hippocampal neurons treated with AβOs. By live cell imaging, we observed that AβOs inhibit transport of KIF1A-GFP similarly in wild-type and tau knock-out neurons, indicating that tau is not required for this effect. Pharmacological inhibition of glycogen synthase kinase 3β (GSK3β), a kinase overactivated in AD, prevented the transport defects. By mass spectrometry on KIF1A immunoprecipitated from transgenic AD mouse brain, we detected phosphorylation at S402, which conforms to a highly conserved GSK3β consensus site. We confirmed that this site is phosphorylated by GSK3β in vitro. Finally, we tested whether a phosphomimic of S402 could modulate KIF1A motility in control and AβO-treated mouse neurons and in a Golgi dispersion assay devoid of endogenous KIF1A. In both systems, transport driven by mutant motors was similar to that of WT motors. In conclusion, GSK3β impairs KIF1A transport but does not regulate motor motility at S402. Further studies are required to determine the specific phosphorylation sites on KIF1A that regulate its cargo binding and/or motility in physiological and disease states.
Collapse
|
5
|
Frank M, Citarella CG, Quinones GB, Bentley M. A novel labeling strategy reveals that myosin Va and myosin Vb bind the same dendritically polarized vesicle population. Traffic 2020; 21:689-701. [PMID: 32959500 DOI: 10.1111/tra.12764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
Neurons are specialized cells with a polarized geometry and several distinct subdomains that require specific complements of proteins. Delivery of transmembrane proteins requires vesicle transport, which is mediated by molecular motor proteins. The myosin V family of motor proteins mediates transport to the barbed end of actin filaments, and little is known about the vesicles bound by myosin V in neurons. We developed a novel strategy to visualize myosin V-labeled vesicles in cultured hippocampal neurons and systematically characterized the vesicle populations labeled by myosin Va and Vb. We find that both myosins bind vesicles that are polarized to the somatodendritic domain where they undergo bidirectional long-range transport. A series of two-color imaging experiments showed that myosin V specifically colocalized with two different vesicle populations: vesicles labeled with the transferrin receptor and vesicles labeled by low-density lipoprotein receptor. Finally, coexpression with Kinesin-3 family members found that myosin V binds vesicles concurrently with KIF13A or KIF13B, supporting the hypothesis that coregulation of kinesins and myosin V on vesicles is likely to play an important role in neuronal vesicle transport. We anticipate that this new assay will be applicable in a broad range of cell types to determine the function of myosin V motor proteins.
Collapse
Affiliation(s)
- Madeline Frank
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Clara G Citarella
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Geraldine B Quinones
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Marvin Bentley
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
6
|
Son T, Lee D, Lee C, Moon G, Ha GE, Lee H, Kwak H, Cheong E, Kim D. Superlocalized Three-Dimensional Live Imaging of Mitochondrial Dynamics in Neurons Using Plasmonic Nanohole Arrays. ACS NANO 2019; 13:3063-3074. [PMID: 30802028 DOI: 10.1021/acsnano.8b08178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We investigated the transport of neuronal mitochondria using superlocalized near-fields with plasmonic nanohole arrays (PNAs). Compared to traditional imaging techniques, PNAs create a massive array of superlocalized light beams and allow 3D mitochondrial dynamics to be sampled and extracted almost in real time. In this work, mitochondrial fluorescence excited by the PNAs was captured by an optical microscope using dual objective lenses, which produced superlocalized dynamics while minimizing light scattering by the plasmonic substrate. It was found that mitochondria move with an average velocity 0.33 ± 0.26 μm/s, a significant part of which, by almost 50%, was contributed by the movement along the depth axis ( z-axis). Mitochondrial positions were acquired with superlocalized precision (σ x = 5.7 nm and σ y = 11.8 nm) in the lateral plane and σ z = 78.7 nm in the z-axis, which presents an enhancement by 12.7-fold in resolution compared to confocal fluorescence microscopy. The approach is expected to serve as a way to provide 3D information on molecular dynamics in real time.
Collapse
|