1
|
Moya-Alvarado G, Valero-Peña X, Aguirre-Soto A, Bustos FJ, Lazo OM, Bronfman FC. PLC-γ-Ca 2+ pathway regulates axonal TrkB endocytosis and is required for long-distance propagation of BDNF signaling. Front Mol Neurosci 2024; 17:1009404. [PMID: 38660384 PMCID: PMC11040097 DOI: 10.3389/fnmol.2024.1009404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its tropomyosin receptor kinase B (TrkB) are important signaling proteins that regulate dendritic growth and maintenance in the central nervous system (CNS). After binding of BDNF, TrkB is endocytosed into endosomes and continues signaling within the cell soma, dendrites, and axon. In previous studies, we showed that BDNF signaling initiated in axons triggers long-distance signaling, inducing dendritic arborization in a CREB-dependent manner in cell bodies, processes that depend on axonal dynein and TrkB activities. The binding of BDNF to TrkB triggers the activation of different signaling pathways, including the ERK, PLC-γ and PI3K-mTOR pathways, to induce dendritic growth and synaptic plasticity. How TrkB downstream pathways regulate long-distance signaling is unclear. Here, we studied the role of PLC-γ-Ca2+ in BDNF-induced long-distance signaling using compartmentalized microfluidic cultures. We found that dendritic branching and CREB phosphorylation induced by axonal BDNF stimulation require the activation of PLC-γ in the axons of cortical neurons. Locally, in axons, BDNF increases PLC-γ phosphorylation and induces intracellular Ca2+ waves in a PLC-γ-dependent manner. In parallel, we observed that BDNF-containing signaling endosomes transport to the cell body was dependent on PLC-γ activity and intracellular Ca2+ stores. Furthermore, the activity of PLC-γ is required for BDNF-dependent TrkB endocytosis, suggesting a role for the TrkB/PLC-γ signaling pathway in axonal signaling endosome formation.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile (UC), Santiago, Chile
| | - Xavier Valero-Peña
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Aguirre-Soto
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Fernando J. Bustos
- Constantin-Paton Research Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Oscar M. Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Francisca C. Bronfman
- NeuroSignaling Laboratory, Institute of Biomedical Sciences (ICB), Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
2
|
Moya-Alvarado G, Aguirre-Soto A, Bronfman FC. Multiple Labeling of Compartmentalized Cortical Neurons in Microfluidic Chambers. Bio Protoc 2024; 14:e4911. [PMID: 38213323 PMCID: PMC10777054 DOI: 10.21769/bioprotoc.4911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
Neurons are complex cells with two distinct compartments: the somatodendritic and the axonal domains. Because of their polarized morphology, it is challenging to study the differential cellular and molecular mechanisms that occur in axons and impact the soma and dendrites using conventional in vitro culture systems. Compartmentalized cultures offer a solution by physically and chemically separating the axonal from the somatodendritic domain of neurons. The microfluidic chamber model presented in this work is valuable for studying these mechanisms in primary cortical cultures derived from rat and mouse. In addition, this chamber model is compatible with various microscopy methods, such as phase contrast, and fluorescence imaging of living and fixed cells. Key features • Preparation and attachment of PDMS microfluidic chambers to glass coverslips. • Primary culture of cortical neurons and plating cortical neurons in microfluidic chamber. • Confirmation of compartmentalization using the retrograde transport of the fluorescently labeled form of cholera toxin subunit B (f-Ctb). • Immunofluorescence and multilabeling of compartmentalized cortical neurons. • Retrograde transport of fluorescently labeled BDNF.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- Department of Physiology, Faculty of Biological Sciences and Center for Aging and Regeneration (CARE), Pontificia Universidad Catolica de Chile, Av. Libertador Bernardo O´Higgins 340, Santiago, 8970117, Chile
| | - Alejandro Aguirre-Soto
- NeuroSignaling Lab (NESLab), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370146, Santiago, Chile
| | - Francisca C. Bronfman
- NeuroSignaling Lab (NESLab), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370146, Santiago, Chile
| |
Collapse
|
3
|
Moya-Alvarado G, Tiburcio-Felix R, Ibáñez MR, Aguirre-Soto AA, Guerra MV, Wu C, Mobley WC, Perlson E, Bronfman FC. BDNF/TrkB signaling endosomes in axons coordinate CREB/mTOR activation and protein synthesis in the cell body to induce dendritic growth in cortical neurons. eLife 2023; 12:77455. [PMID: 36826992 PMCID: PMC9977295 DOI: 10.7554/elife.77455] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptors tropomyosin kinase receptor B (TrkB) and the p75 neurotrophin receptor (p75) are the primary regulators of dendritic growth in the CNS. After being bound by BDNF, TrkB and p75 are endocytosed into endosomes and continue signaling within the cell soma, dendrites, and axons. We studied the functional role of BDNF axonal signaling in cortical neurons derived from different transgenic mice using compartmentalized cultures in microfluidic devices. We found that axonal BDNF increased dendritic growth from the neuronal cell body in a cAMP response element-binding protein (CREB)-dependent manner. These effects were dependent on axonal TrkB but not p75 activity. Dynein-dependent BDNF-TrkB-containing endosome transport was required for long-distance induction of dendritic growth. Axonal signaling endosomes increased CREB and mTOR kinase activity in the cell body, and this increase in the activity of both proteins was required for general protein translation and the expression of Arc, a plasticity-associated gene, indicating a role for BDNF-TrkB axonal signaling endosomes in coordinating the transcription and translation of genes whose products contribute to learning and memory regulation.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- Department of Physiology, Faculty of Biological Sciences and Center for Aging and Regeneration), Pontificia Universidad Católica de Chile. Av. Libertador Bernardo O´HigginsSantiagoChile
| | - Reynaldo Tiburcio-Felix
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - María Raquel Ibáñez
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Alejandro A Aguirre-Soto
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Miguel V Guerra
- Department of Physiology, Faculty of Biological Sciences and Center for Aging and Regeneration), Pontificia Universidad Católica de Chile. Av. Libertador Bernardo O´HigginsSantiagoChile,NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - William C Mobley
- Department of Neurosciences, University of California, San DiegoSan DiegoUnited States
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine; Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Francisca C Bronfman
- NeuroSignaling Lab (NESLab), Center for Aging and Regeneration (CARE-UC), Institute of Biomedical Sciences (ICB), Faculty of Medicine, and Faculty of Life Sciences, Universidad Andrés BelloSantiagoChile
| |
Collapse
|
4
|
Ionescu A, Perlson E. Microfluidic Neuromuscular Co-culture System for Tracking Cell-to-Cell Transfer and Axonal Transport of Labeled Proteins. Methods Mol Biol 2022; 2431:145-161. [PMID: 35412275 DOI: 10.1007/978-1-0716-1990-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The molecular communication mechanisms within the Motor Neurons (MN) distant axon and its soma, as well as between MN and their neighboring cells and extracellular environment are of keen interest for our understanding of neurodevelopment and neurodegenerative diseases. One tool that has significantly improved our ability to study such processes with high spatiotemporal resolution is microfluidic devices. Here we describe a step-by-step guide to the neuromuscular co-culturing procedure and demonstrate how to track trophic factors transmission from muscle-to-neuron and their transport along the axons.
Collapse
Affiliation(s)
- Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Altman T, Ionescu A, Ibraheem A, Priesmann D, Gradus-Pery T, Farberov L, Alexandra G, Shelestovich N, Dafinca R, Shomron N, Rage F, Talbot K, Ward ME, Dori A, Krüger M, Perlson E. Axonal TDP-43 condensates drive neuromuscular junction disruption through inhibition of local synthesis of nuclear encoded mitochondrial proteins. Nat Commun 2021; 12:6914. [PMID: 34824257 PMCID: PMC8617040 DOI: 10.1038/s41467-021-27221-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023] Open
Abstract
Mislocalization of the predominantly nuclear RNA/DNA binding protein, TDP-43, occurs in motor neurons of ~95% of amyotrophic lateral sclerosis (ALS) patients, but the contribution of axonal TDP-43 to this neurodegenerative disease is unclear. Here, we show TDP-43 accumulation in intra-muscular nerves from ALS patients and in axons of human iPSC-derived motor neurons of ALS patient, as well as in motor neurons and neuromuscular junctions (NMJs) of a TDP-43 mislocalization mouse model. In axons, TDP-43 is hyper-phosphorylated and promotes G3BP1-positive ribonucleoprotein (RNP) condensate assembly, consequently inhibiting local protein synthesis in distal axons and NMJs. Specifically, the axonal and synaptic levels of nuclear-encoded mitochondrial proteins are reduced. Clearance of axonal TDP-43 or dissociation of G3BP1 condensates restored local translation and resolved TDP-43-derived toxicity in both axons and NMJs. These findings support an axonal gain of function of TDP-43 in ALS, which can be targeted for therapeutic development.
Collapse
Affiliation(s)
- Topaz Altman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ariel Ionescu
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Amjad Ibraheem
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dominik Priesmann
- CECAD Research Center and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tal Gradus-Pery
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Luba Farberov
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gayster Alexandra
- Pathology Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | | | - Ruxandra Dafinca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Florence Rage
- Institut de Génétique Moléculaire de Montpellier, IGMM UMR535, Montpellier, France
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Amir Dori
- Department of Neurology, Sheba Medical Center, Tel Hashomer and Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Marcus Krüger
- CECAD Research Center and Center for Molecular Medicine (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Eran Perlson
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
6
|
ATP-citrate lyase promotes axonal transport across species. Nat Commun 2021; 12:5878. [PMID: 34620845 PMCID: PMC8497606 DOI: 10.1038/s41467-021-25786-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Microtubule (MT)-based transport is an evolutionary conserved process finely tuned by posttranslational modifications. Among them, α-tubulin acetylation, primarily catalyzed by a vesicular pool of α-tubulin N-acetyltransferase 1 (Atat1), promotes the recruitment and processivity of molecular motors along MT tracks. However, the mechanism that controls Atat1 activity remains poorly understood. Here, we show that ATP-citrate lyase (Acly) is enriched in vesicles and provide Acetyl-Coenzyme-A (Acetyl-CoA) to Atat1. In addition, we showed that Acly expression is reduced upon loss of Elongator activity, further connecting Elongator to Atat1 in a pathway regulating α-tubulin acetylation and MT-dependent transport in projection neurons, across species. Remarkably, comparable defects occur in fibroblasts from Familial Dysautonomia (FD) patients bearing an autosomal recessive mutation in the gene coding for the Elongator subunit ELP1. Our data may thus shine light on the pathophysiological mechanisms underlying FD. Microtubule tracks are important for the transport of molecules within axons. Here, the authors show that ATAT1, the enzyme responsible for acetylating a-tubulin, receives acetyl groups from ATP citrate lyase whose stability is regulated by Elongator, a protein mutated in the neuronal disease Familial dysautonomia.
Collapse
|
7
|
Jeffet J, Ionescu A, Michaeli Y, Torchinsky D, Perlson E, Craggs TD, Ebenstein Y. Multimodal single-molecule microscopy with continuously controlled spectral resolution. BIOPHYSICAL REPORTS 2021; 1:100013. [PMID: 36425313 PMCID: PMC9680784 DOI: 10.1016/j.bpr.2021.100013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023]
Abstract
Color is a fundamental contrast mechanism in fluorescence microscopy, providing the basis for numerous imaging and spectroscopy techniques. Building on spectral imaging schemes that encode color into a fixed spatial intensity distribution, here, we introduce continuously controlled spectral-resolution (CoCoS) microscopy, which allows the spectral resolution of the system to be adjusted in real-time. By optimizing the spectral resolution for each experiment, we achieve maximal sensitivity and throughput, allowing for single-frame acquisition of multiple color channels with single-molecule sensitivity and 140-fold larger fields of view compared with previous super-resolution spectral imaging techniques. Here, we demonstrate the utility of CoCoS in three experimental formats, single-molecule spectroscopy, single-molecule Förster resonance energy transfer, and multicolor single-particle tracking in live neurons, using a range of samples and 12 distinct fluorescent markers. A simple add-on allows CoCoS to be integrated into existing fluorescence microscopes, rendering spectral imaging accessible to the wider scientific community.
Collapse
Affiliation(s)
- Jonathan Jeffet
- Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Center for Light Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yael Michaeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Dmitry Torchinsky
- Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Center for Light Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Timothy D. Craggs
- Sheffield Institute for Nucleic Acids, Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Yuval Ebenstein
- Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Center for Light Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Shlomy I, Divald S, Tadmor K, Leichtmann-Bardoogo Y, Arami A, Maoz BM. Restoring Tactile Sensation Using a Triboelectric Nanogenerator. ACS NANO 2021; 15:11087-11098. [PMID: 34137606 PMCID: PMC8320237 DOI: 10.1021/acsnano.0c10141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/08/2021] [Indexed: 05/28/2023]
Abstract
Loss of tactile sensation is a common occurrence in patients with traumatic peripheral nerve injury or soft tissue loss, but as yet, solutions for restoring such sensation are limited. Implanted neuro-prosthetics are a promising direction for tactile sensory restoration, but available technologies have substantial shortcomings, including complexity of use and of production and the need for an external power supply. In this work, we propose, fabricate, and demonstrate the use of a triboelectric nanogenerator (TENG) as a relatively simple, self-powered, biocompatible, sensitive, and flexible device for restoring tactile sensation. This integrated tactile TENG (TENG-IT) device is implanted under the skin and translates tactile pressure into electrical potential, which it relays via cuff electrodes to healthy sensory nerves, thereby stimulating them, to mimic tactile sensation. We show that the device elicits electrical activity in sensory neurons in vitro, and that the extent of this activity is dependent on the level of tactile pressure applied to the device. We subsequently demonstrate the TENG-IT in vivo, showing that it provides tactile sensation capabilities (as measured by a von Frey test) to rats in which sensation in the hindfoot was blocked through transection of the distal tibial nerve. These findings point to the substantial potential of self-powered TENG-based implanted devices as a means of restoring tactile sensation.
Collapse
Affiliation(s)
- Iftach Shlomy
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shay Divald
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Keshet Tadmor
- Sagol
School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | - Amir Arami
- Hand
Surgery Department, Microsurgery and Peripheral Nerve Surgery Unit, Sheba Medical Center, Tel Hashomer, 52621, Israel
- Sackler
School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ben M. Maoz
- Department
of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol
School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
9
|
Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn-Ng I, Le Bail R, Shilian M, Freeman S, Magiera MM, Jijumon AS, Krusy N, Malgrange B, Brone B, Dietrich P, Dragatsis I, Janke C, Saudou F, Weil M, Nguyen L. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. SCIENCE ADVANCES 2019; 5:eaax2705. [PMID: 31897425 PMCID: PMC6920029 DOI: 10.1126/sciadv.aax2705] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/28/2019] [Indexed: 05/13/2023]
Abstract
Microtubules are polymerized dimers of α- and β-tubulin that underlie a broad range of cellular activities. Acetylation of α-tubulin by the acetyltransferase ATAT1 modulates microtubule dynamics and functions in neurons. However, it remains unclear how this enzyme acetylates microtubules over long distances in axons. Here, we show that loss of ATAT1 impairs axonal transport in neurons in vivo, and cell-free motility assays confirm a requirement of α-tubulin acetylation for proper bidirectional vesicular transport. Moreover, we demonstrate that the main cellular pool of ATAT1 is transported at the cytosolic side of neuronal vesicles that are moving along axons. Together, our data suggest that axonal transport of ATAT1-enriched vesicles is the predominant driver of α-tubulin acetylation in axons.
Collapse
Affiliation(s)
- Aviel Even
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Giovanni Morelli
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
- BIOMED Research Institute, University of Hasselt, Hasselt 3500, Belgium
| | - Loïc Broix
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Chiara Scaramuzzino
- Grenoble Institut des Neurosciences, GIN, Univ. Grenoble Alpes, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
| | - Silvia Turchetto
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Ivan Gladwyn-Ng
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Romain Le Bail
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Michal Shilian
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Stephen Freeman
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Maria M. Magiera
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Université Paris-Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - A. S. Jijumon
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Université Paris-Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Nathalie Krusy
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Brigitte Malgrange
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | - Bert Brone
- BIOMED Research Institute, University of Hasselt, Hasselt 3500, Belgium
| | - Paula Dietrich
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ioannis Dragatsis
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Université Paris-Sud, Université Paris-Saclay, CNRS UMR3348, F-91405 Orsay, France
| | - Frédéric Saudou
- Grenoble Institut des Neurosciences, GIN, Univ. Grenoble Alpes, F-38000 Grenoble, France
- Inserm, U1216, F-38000 Grenoble, France
- CHU Grenoble Alpes, F-38000 Grenoble, France
| | - Miguel Weil
- Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Laurent Nguyen
- GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| |
Collapse
|
10
|
Ionescu A, Gradus T, Altman T, Maimon R, Saraf Avraham N, Geva M, Hayden M, Perlson E. Targeting the Sigma-1 Receptor via Pridopidine Ameliorates Central Features of ALS Pathology in a SOD1 G93A Model. Cell Death Dis 2019; 10:210. [PMID: 30824685 PMCID: PMC6397200 DOI: 10.1038/s41419-019-1451-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/16/2018] [Accepted: 02/12/2019] [Indexed: 12/29/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease affecting both the upper and lower motor neurons (MNs), with no effective treatment currently available. Early pathological events in ALS include perturbations in axonal transport (AT), formation of toxic protein aggregates and Neuromuscular Junction (NMJ) disruption, which all lead to axonal degeneration and motor neuron death. Pridopidine is a small molecule that has been clinically developed for Huntington disease. Here we tested the efficacy of pridopidine for ALS using in vitro and in vivo models. Pridopidine beneficially modulates AT deficits and diminishes NMJ disruption, as well as motor neuron death in SOD1G93A MNs and in neuromuscular co-cultures. Furthermore, we demonstrate that pridopidine activates the ERK pathway and mediates its beneficial effects through the sigma-1 receptor (S1R). Strikingly, in vivo evaluation of pridopidine in SOD1G93A mice reveals a profound reduction in mutant SOD1 aggregation in the spinal cord, and attenuation of NMJ disruption, as well as subsequent muscle wasting. Taken together, we demonstrate for the first time that pridopidine improves several cellular and histological hallmark pathologies of ALS through the S1R.
Collapse
Affiliation(s)
- Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tal Gradus
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Topaz Altman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Roy Maimon
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Noi Saraf Avraham
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Michal Geva
- Teva Pharmaceuticals Ltd, Petah Tikva, Israel
- Prilenia Therapeutics, Herzliya, Israel
| | - Michael Hayden
- Teva Pharmaceuticals Ltd, Petah Tikva, Israel
- Prilenia Therapeutics, Herzliya, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
11
|
Silva CG, Peyre E, Adhikari MH, Tielens S, Tanco S, Van Damme P, Magno L, Krusy N, Agirman G, Magiera MM, Kessaris N, Malgrange B, Andrieux A, Janke C, Nguyen L. Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis. Cell 2019; 172:1063-1078.e19. [PMID: 29474907 PMCID: PMC5847171 DOI: 10.1016/j.cell.2018.01.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/17/2017] [Accepted: 01/24/2018] [Indexed: 11/16/2022]
Abstract
Interneurons navigate along multiple tangential paths to settle into appropriate cortical layers. They undergo a saltatory migration paced by intermittent nuclear jumps whose regulation relies on interplay between extracellular cues and genetic-encoded information. It remains unclear how cycles of pause and movement are coordinated at the molecular level. Post-translational modification of proteins contributes to cell migration regulation. The present study uncovers that carboxypeptidase 1, which promotes post-translational protein deglutamylation, controls the pausing of migrating cortical interneurons. Moreover, we demonstrate that pausing during migration attenuates movement simultaneity at the population level, thereby controlling the flow of interneurons invading the cortex. Interfering with the regulation of pausing not only affects the size of the cortical interneuron cohort but also impairs the generation of age-matched projection neurons of the upper layers. CCP1 controls MLCK activity by processing its polyglutamate carboxy-terminal CCP1 controls the stereotypic two-stroke cycle of cortical interneuron migration Asynchronous pausing during interneuron migration controls cortical invasion Interneuron cortical invasion modulates generation of age-matched projection neurons
Collapse
Affiliation(s)
- Carla G Silva
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Elise Peyre
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Mohit H Adhikari
- Center for Brain and Cognition, Department of Information and Technology, Universitat Pompeu Fabra, Calle Ramon Trias Fargas 25-27, Barcelona 08005, Spain
| | - Sylvia Tielens
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Sebastian Tanco
- VIB-UGent Center for Medical Biotechnologie, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Petra Van Damme
- VIB-UGent Center for Medical Biotechnologie, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Lorenza Magno
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Nathalie Krusy
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Gulistan Agirman
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Maria M Magiera
- Institut Curie, CNRS UMR3348, PSL Research University, Centre Universitaire, 91400 Orsay, France
| | - Nicoletta Kessaris
- Wolfson Institute for Biomedical Research and Department of Cell and Developmental Biology, University College London, London, UK
| | - Brigitte Malgrange
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Annie Andrieux
- Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Inserm, U1216, 38000 Grenoble, France
| | - Carsten Janke
- Institut Curie, CNRS UMR3348, PSL Research University, Centre Universitaire, 91400 Orsay, France
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium.
| |
Collapse
|
12
|
Lesniak A, Kilinc D, Blasiak A, Galea G, Simpson JC, Lee GU. Rapid Growth Cone Uptake and Dynein-Mediated Axonal Retrograde Transport of Negatively Charged Nanoparticles in Neurons Is Dependent on Size and Cell Type. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803758. [PMID: 30565853 DOI: 10.1002/smll.201803758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/20/2018] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) are now used in numerous technologies and serve as carriers for several new classes of therapeutics. Studies of the distribution of NPs in vivo demonstrate that they can be transported through biological barriers and are concentrated in specific tissues. Here, transport behavior, and final destination of polystyrene NPs are reported in primary mouse cortical neurons and SH-SY5Y cells, cultured in two-compartmental microfluidic devices. In both cell types, negative polystyrene NPs (PS(-)) smaller than 100 nm are taken up by the axons, undergo axonal retrograde transport, and accumulate in the somata. Examination of NP transport reveals different transport mechanisms depending on the cell type, particle charge, and particle internalization by the lysosomes. In cortical neurons, PS(-) inside lysosomes and 40 nm positive polystyrene NPs undergo slow axonal transport, whereas PS(-) outside lysosomes undergo fast axonal transport. Inhibition of dynein in cortical neurons decreases the transport velocity and cause a dose-dependent reduction in the number of accumulated PS(-), suggesting that the fast axonal transport is dynein mediated. These results show that the axonal retrograde transport of NPs depends on the endosomal pathway taken and establishes a means for screening nanoparticle-based therapeutics for diseases that involve neurons.
Collapse
Affiliation(s)
- Anna Lesniak
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Devrim Kilinc
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Agata Blasiak
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - George Galea
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jeremy C Simpson
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gil U Lee
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
13
|
Morelli G, Even A, Gladwyn-Ng I, Le Bail R, Shilian M, Godin JD, Peyre E, Hassan BA, Besson A, Rigo JM, Weil M, Brône B, Nguyen L. p27Kip1 Modulates Axonal Transport by Regulating α-Tubulin Acetyltransferase 1 Stability. Cell Rep 2018; 23:2429-2442. [DOI: 10.1016/j.celrep.2018.04.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/22/2018] [Accepted: 04/18/2018] [Indexed: 10/16/2022] Open
|
14
|
High content image analysis reveals function of miR-124 upstream of Vimentin in regulating motor neuron mitochondria. Sci Rep 2018; 8:59. [PMID: 29311649 PMCID: PMC5758812 DOI: 10.1038/s41598-017-17878-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/02/2017] [Indexed: 01/24/2023] Open
Abstract
microRNAs (miRNAs) are critical for neuronal function and their dysregulation is repeatedly observed in neurodegenerative diseases. Here, we implemented high content image analysis for investigating the impact of several miRNAs in mouse primary motor neurons. This survey directed our attention to the neuron-specific miR-124, which controls axonal morphology. By performing next generation sequencing analysis and molecular studies, we characterized novel roles for miR-124 in control of mitochondria localization and function. We further demonstrated that the intermediate filament Vimentin is a key target of miR-124 in this system. Our data establishes a new pathway for control of mitochondria function in motor neurons, revealing the value of a neuron-specific miRNA gene as a mechanism for the re-shaping of otherwise ubiquitously-expressed intermediate filament network, upstream of mitochondria activity and cellular metabolism.
Collapse
|
15
|
Terenzio M, Schiavo G, Fainzilber M. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron 2017; 96:667-679. [PMID: 29096079 DOI: 10.1016/j.neuron.2017.10.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells.
Collapse
Affiliation(s)
- Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK; Discoveries Centre for Regenerative and Precision Medicine at UCL, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
16
|
Calderón-Garcidueñas L, Reynoso-Robles R, Pérez-Guillé B, Mukherjee PS, Gónzalez-Maciel A. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents. ENVIRONMENTAL RESEARCH 2017; 159:186-201. [PMID: 28803148 DOI: 10.1016/j.envres.2017.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM2.5), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT 59812, USA; Universidad del Valle de México, Mexico City 14370, Mexico.
| | | | | | | | | |
Collapse
|
17
|
Naftelberg S, Abramovitch Z, Gluska S, Yannai S, Joshi Y, Donyo M, Ben-Yaakov K, Gradus T, Zonszain J, Farhy C, Ashery-Padan R, Perlson E, Ast G. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia. PLoS Genet 2016; 12:e1006486. [PMID: 27997532 PMCID: PMC5172536 DOI: 10.1371/journal.pgen.1006486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/15/2016] [Indexed: 12/03/2022] Open
Abstract
Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration. We create a novel FD mouse model, in which exon 20 of IKBKAP was deleted in the nervous system, to study the role of IKAP in the neurodegeneration process. The lack of IKBKAP exon 20 impaired retrograde nerve growth factor (NGF) transport and axonal outgrowth. Reduction of IKAP levels resulted in elevated HDAC6 levels and thus reduced acetylated α-tubulin levels. Phosphatidylserine down-regulated HDAC6 levels, furthermore phosphatidylserine treatment facilitated axonal transport and stabilized microtubules. In brief: Naftelberg et al. identify the molecular pathway leading to neurodegeneration using a mouse model of familial dysautonomia and suggest that phosphatidylserine acts as an HDAC6 inhibitor to improve neurologic function.
Collapse
Affiliation(s)
- Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ziv Abramovitch
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shani Gluska
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Yannai
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuvraj Joshi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Donyo
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren Ben-Yaakov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Gradus
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Zonszain
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Farhy
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (EP); (GA)
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemestry. Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (EP); (GA)
| |
Collapse
|
18
|
Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW. TrackMate: An open and extensible platform for single-particle tracking. Methods 2016; 115:80-90. [PMID: 27713081 DOI: 10.1016/j.ymeth.2016.09.016] [Citation(s) in RCA: 1936] [Impact Index Per Article: 215.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/12/2023] Open
Abstract
We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells.
Collapse
Affiliation(s)
| | - Nick Perry
- Imagopole, Citech, Institut Pasteur, 75724 Paris, France
| | - Johannes Schindelin
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Genevieve M Hoopes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emmanuel Laplantine
- Laboratory of Signaling and Pathogenesis, Centre National de la Recherche Scientifique, UMR 3691, Institut Pasteur, 75724 Paris, France
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53719, USA
| |
Collapse
|
19
|
Cohrs RJ, Badani H, Baird NL, White TM, Sanford B, Gilden D. Induction of varicella zoster virus DNA replication in dissociated human trigeminal ganglia. J Neurovirol 2016; 23:152-157. [PMID: 27683235 DOI: 10.1007/s13365-016-0480-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 01/02/2023]
Abstract
Varicella zoster virus (VZV), a human neurotropic alphaherpesvirus, becomes latent after primary infection and reactivates to produce zoster. To study VZV latency and reactivation, human trigeminal ganglia removed within 24 h after death were mechanically dissociated, randomly distributed into six-well tissue culture plates and incubated with reagents to inactivate nerve growth factor (NGF) or phosphoinositide 3-kinase (PI3-kinase) pathways. At 5 days, VZV DNA increased in control and PI3-kinase inhibitor-treated cultures to the same extent, but was significantly more abundant in anti-NGF-treated cultures (p = 0.001). Overall, VZV DNA replication is regulated in part by an NGF pathway that is PI3-kinase-independent.
Collapse
Affiliation(s)
- Randall J Cohrs
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA.
| | - Hussain Badani
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA
| | - Nicholas L Baird
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA
| | - Teresa M White
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA
| | - Bridget Sanford
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA
| | - Don Gilden
- Department of Neurology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA.,Department of Immunology and Microbiology, University of Colorado School of Medicine, 12700 E. 19th Avenue, Box B-182, Aurora, CO, 80045, USA
| |
Collapse
|