1
|
Septin barriers protect mammalian host cells against Pseudomonas aeruginosa invasion. Cell Rep 2022; 41:111510. [DOI: 10.1016/j.celrep.2022.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
|
2
|
Lobato‐Márquez D, Krokowski S, Sirianni A, Larrouy‐Maumus G, Mostowy S. A requirement for septins and the autophagy receptor p62 in the proliferation of intracellular Shigella. Cytoskeleton (Hoboken) 2019; 76:163-172. [PMID: 29752866 PMCID: PMC6519264 DOI: 10.1002/cm.21453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Shigella flexneri, a Gram-negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. During infection of epithelial cells, Shigella escape from the phagosome to the cytosol, where they reroute host cell glycolysis to obtain nutrients for proliferation. Septins, a poorly understood component of the cytoskeleton, can entrap cytosolic Shigella targeted to autophagy in cage-like structures to restrict bacterial proliferation. Although bacterial entrapment by septin caging has been the subject of intense investigation, the role of septins and the autophagy machinery in the proliferation of noncaged Shigella is mostly unknown. Here, we found that intracellular Shigella fail to efficiently proliferate in SEPT2-, SEPT7-, or p62/SQSTM1-depleted cells. Consistent with a failure to proliferate, single cell analysis of bacteria not entrapped in septin cages showed that the number of metabolically active Shigella in septin- or p62-depleted cells is reduced. Targeted metabolomic analysis revealed that host cell glycolysis is dysregulated in septin-depleted cells, suggesting a key role for septins in modulation of glycolysis. Together, these results suggest that septins and the autophagy machinery may regulate metabolic pathways that promote the proliferation of intracellular Shigella not entrapped in septin cages.
Collapse
Affiliation(s)
- Damián Lobato‐Márquez
- MRC Centre for Molecular Bacteriology and Infection, Department of MedicineSection of Microbiology, Imperial College LondonLondonUnited Kingdom
- Department of Immunology and InfectionLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUnited Kingdom
| | - Sina Krokowski
- MRC Centre for Molecular Bacteriology and Infection, Department of MedicineSection of Microbiology, Imperial College LondonLondonUnited Kingdom
- Department of Immunology and InfectionLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUnited Kingdom
| | - Andrea Sirianni
- MRC Centre for Molecular Bacteriology and Infection, Department of MedicineSection of Microbiology, Imperial College LondonLondonUnited Kingdom
| | - Gerald Larrouy‐Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural SciencesImperial College LondonLondonUnited Kingdom
| | - Serge Mostowy
- MRC Centre for Molecular Bacteriology and Infection, Department of MedicineSection of Microbiology, Imperial College LondonLondonUnited Kingdom
- Department of Immunology and InfectionLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUnited Kingdom
| |
Collapse
|
3
|
Krokowski S, Lobato-Márquez D, Chastanet A, Pereira PM, Angelis D, Galea D, Larrouy-Maumus G, Henriques R, Spiliotis ET, Carballido-López R, Mostowy S. Septins Recognize and Entrap Dividing Bacterial Cells for Delivery to Lysosomes. Cell Host Microbe 2018; 24:866-874.e4. [PMID: 30543779 PMCID: PMC6299245 DOI: 10.1016/j.chom.2018.11.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/14/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Abstract
The cytoskeleton occupies a central role in cellular immunity by promoting bacterial sensing and antibacterial functions. Septins are cytoskeletal proteins implicated in various cellular processes, including cell division. Septins also assemble into cage-like structures that entrap cytosolic Shigella, yet how septins recognize bacteria is poorly understood. Here, we discover that septins are recruited to regions of micron-scale membrane curvature upon invasion and division by a variety of bacterial species. Cardiolipin, a curvature-specific phospholipid, promotes septin recruitment to highly curved membranes of Shigella, and bacterial mutants lacking cardiolipin exhibit less septin cage entrapment. Chemically inhibiting cell separation to prolong membrane curvature or reducing Shigella cell growth respectively increases and decreases septin cage formation. Once formed, septin cages inhibit Shigella cell division upon recruitment of autophagic and lysosomal machinery. Thus, recognition of dividing bacterial cells by the septin cytoskeleton is a powerful mechanism to restrict the proliferation of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Sina Krokowski
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Damián Lobato-Márquez
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Arnaud Chastanet
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Pedro Matos Pereira
- Quantitative Imaging and NanoBiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Dimitrios Angelis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Dieter Galea
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Gerald Larrouy-Maumus
- Faculty of Natural Sciences, Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Ricardo Henriques
- Quantitative Imaging and NanoBiophysics Group, MRC Laboratory for Molecular Cell Biology and Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Rut Carballido-López
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK; Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK.
| |
Collapse
|
4
|
Torraca V, Mostowy S. Septins and Bacterial Infection. Front Cell Dev Biol 2016; 4:127. [PMID: 27891501 PMCID: PMC5104955 DOI: 10.3389/fcell.2016.00127] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/26/2016] [Indexed: 12/04/2022] Open
Abstract
Septins, a unique cytoskeletal component associated with cellular membranes, are increasingly recognized as having important roles in host defense against bacterial infection. A role for septins during invasion of Listeria monocytogenes into host cells was first proposed in 2002. Since then, work has shown that septins assemble in response to a wide variety of invasive bacterial pathogens, and septin assemblies can have different roles during the bacterial infection process. Here we review the interplay between septins and bacterial pathogens, highlighting septins as a structural determinant of host defense. We also discuss how investigation of septin assembly in response to bacterial infection can yield insight into basic cellular processes including phagocytosis, autophagy, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Department of Medicine, MRC Centre of Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Serge Mostowy
- Department of Medicine, MRC Centre of Molecular Bacteriology and Infection, Imperial College London London, UK
| |
Collapse
|