1
|
Martinho M, Allegro D, Etienne E, Lohberger C, Bonucci A, Belle V, Barbier P. Structural Flexibility of Tau in Its Interaction with Microtubules as Viewed by Site-Directed Spin Labeling EPR Spectroscopy. Methods Mol Biol 2024; 2754:55-75. [PMID: 38512660 DOI: 10.1007/978-1-0716-3629-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Tau is a microtubule-associated protein that belongs to the Intrinsically Disordered Proteins (IDPs) family. IDPs or Intrinsically Disordered Regions (IDRs) play key roles in protein interaction networks and their dysfunctions are often related to severe diseases. Defined by their lack of stable secondary and tertiary structures in physiological conditions while being functional, these proteins use their inherent structural flexibility to adapt to and interact with various binding partners. Knowledges on the structural dynamics of IDPs and their different conformers are crucial to finely decipher fundamental biological processes controlled by mechanisms such as conformational adaptations or switches, induced fit, or conformational selection events. Different mechanisms of binding have been proposed: among them, the so-called folding-upon-binding in which the IDP adopts a certain conformation upon interacting with a partner protein, or the formation of a "fuzzy" complex in which the IDP partly keeps its dynamical character at the surface of its partner. The dynamical nature and physicochemical properties of unbound as well as bound IDPs make this class of proteins particularly difficult to characterize by classical bio-structural techniques and require specific approaches for the fine description of their inherent dynamics.Among other techniques, Site-Directed Spin Labeling combined with Electron Paramagnetic Resonance (SDSL-EPR) spectroscopy has gained much interest in this last decade for the study of IDPs. SDSL-EPR consists in grafting a paramagnetic label (mainly a nitroxide radical) at selected site(s) of the macromolecule under interest followed by its observation using and/or combining different EPR strategies. These nitroxide spin labels detected by continuous wave (cw) EPR spectroscopy are used as perfect reporters or "spy spins" of their local environment, being able to reveal structural transitions, folding/unfolding events, etc. Another approach is based on the measurement of inter-label distance distributions in the 1.5-8.0 nm range using pulsed dipolar EPR experiments, such as Double Electron-Electron Resonance (DEER) spectroscopy. The technique is then particularly well suited to study the behavior of Tau in its interaction with its physiological partner: microtubules (MTs). In this chapter we provide a detailed experimental protocol for the labeling of Tau protein and its EPR study while interacting with preformed (Paclitaxel-stabilized) MTs, or using Tau as MT inducer. We show how the choice of nitroxide label can be crucial to obtain functional information on Tau/tubulin complexes.
Collapse
Affiliation(s)
| | - Diane Allegro
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | - Cynthia Lohberger
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | | | | | - Pascale Barbier
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.
| |
Collapse
|
2
|
Zhang Y, Deng S, Zhong H, Liu M, Ding J, Geng R, Tu Q. Exploration and Clinical Verification of the Blood Co-Expression Genes of Type 2 Diabetes Mellitus and Mild Cognitive Dysfunction in the Elderly. Biomedicines 2023; 11:biomedicines11040993. [PMID: 37189611 DOI: 10.3390/biomedicines11040993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 05/17/2023] Open
Abstract
With the development of society, the incidence of dementia and type 2 diabetes (T2DM) in the elderly has been increasing. Although the correlation between T2DM and mild cognitive impairment (MCI) has been confirmed in the previous literature, the interaction mechanism remains to be clarified. To explore the co-pathogenic genes in the blood of MCI and T2DM patients, clarify the correlation between T2DM and MCI, achieve the purpose of early disease prediction, and provide new ideas for the prevention and treatment of dementia. We downloaded T2DM and MCI microarray data from GEO databases and identified the differentially expressed genes associated with MCI and T2DM. We obtained co-expressed genes by intersecting differentially expressed genes. Then, we performed GO and KEGG enrichment analysis of co-DEGs. Next, we constructed the PPI network and found the hub genes in the network. By constructing the ROC curve of hub genes, the most valuable genes for diagnosis were obtained. Finally, the correlation between MCI and T2DM was clinically verified by means of a current situation investigation, and the hub gene was verified by qRT-PCR. A total of 214 co-DEGs were selected, 28 co-DEGs were up-regulated, and 90 co-DEGs were down-regulated. Functional enrichment analysis showed that co-DEGs were mainly enriched in metabolic diseases and some signaling pathways. The construction of the PPI network identified the hub genes in MCI and T2DM co-expression genes. We identified nine hub genes of co-DEGs, namely LNX2, BIRC6, ANKRD46, IRS1, TGFB1, APOA1, PSEN1, NPY, and ALDH2. Logistic regression analysis and person correlation analysis showed that T2DM was correlated with MCI, and T2DM increased the risk of cognitive impairment. The qRT-PCR results showed that the expressions of LNX2, BIRC6, ANKRD46, TGFB1, PSEN1, and ALDH2 were consistent with the results of bioinformatic analysis. This study screened the co-expressed genes of MCI and T2DM, which may provide new therapeutic targets for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Shengfeng Deng
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Hongfei Zhong
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Miao Liu
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Jingwen Ding
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Rulin Geng
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Qiuyun Tu
- Department of Geriatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
3
|
Zhang Y, Geng R, Liu M, Deng S, Ding J, Zhong H, Tu Q. Shared peripheral blood biomarkers for Alzheimer’s disease, major depressive disorder, and type 2 diabetes and cognitive risk factor analysis. Heliyon 2023; 9:e14653. [PMID: 36994393 PMCID: PMC10040717 DOI: 10.1016/j.heliyon.2023.e14653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Background Alzheimer's disease (AD), type 2 diabetes mellitus (T2DM), and Major Depressive Disorder (MDD) have a higher incidence rate in modern society. Although increasing evidence supports close associations between the three, the mechanisms underlying their interrelationships remain elucidated. Objective The primary purpose is to explore the shared pathogenesis and the potential peripheral blood biomarkers for AD, MDD, and T2DM. Methods We downloaded the microarray data of AD, MDD, and T2DM from the Gene Expression Omnibus database and constructed co-expression networks by Weighted Gene Co-Expression Network Analysis to identify differentially expressed genes. We took the intersection of differentially expressed genes to obtain co-DEGs. Then, we performed GO and KEGG enrichment analysis on the common genes in the AD, MDD, and T2DM-related modules. Next, we utilized the STRING database to find the hub genes in the protein-protein interaction network. ROC curves were constructed for co-DEGs to obtain the most diagnostic valuable genes and to make drug predictions against the target genes. Finally, we conducted a present condition survey to verify the correlation between T2DM, MDD and AD. Results Our findings indicated 127 diff co-DEGs, 19 upregulated co-DEGs, and 25 down-regulated co-DEGs. Functional enrichment analysis showed co-DEGs were mainly enriched in signaling pathways such as metabolic diseases and some neurodegeneration. Protein-protein interaction network construction identified hub genes in AD, MDD and T2DM shared genes. We identified seven hub genes of co-DEGs, namely, SMC4, CDC27, HNF1A, RHOD, CUX1, PDLIM5, and TTR. The current survey results suggest a correlation between T2DM, MDD and dementia. Moreover, logistic regression analysis showed that T2DM and depression increased the risk of dementia. Conclusion Our work identified common pathogenesis of AD, T2DM, and MDD. These shared pathways might provide novel ideas for further mechanistic studies and hub genes that may serve as novel therapeutic targets for diagnosing and treating.
Collapse
|
4
|
Lin Y, Fichou Y, Rauch JN, Zhang X, Kosik KS, Han S. Mapping Phase Diagram of Tau-RNA LLPS Under Live Cell Coculturing Conditions. Methods Mol Biol 2023; 2551:269-284. [PMID: 36310209 DOI: 10.1007/978-1-0716-2597-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein liquid-liquid phase separation (LLPS) has been associated with biological functions and pathological aggregation. Mapping the phase separation conditions is the first step to identify and quantify the driving forces of LLPS. Here, we describe the protocols to draw the phase diagram of tau-RNA LLPS and use the mapped diagram to guide experimental conditions for LLPS-cell coculturing, electron resonance spectroscopy in particular double electron-electron resonance spectroscopy, crosslinking immunoprecipitation, and isothermal titration calorimetry.
Collapse
Affiliation(s)
- Yanxian Lin
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA, USA
| | - Yann Fichou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Jennifer N Rauch
- Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Xuemei Zhang
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Kenneth S Kosik
- Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA.
- Department of Chemical Engineering, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
5
|
Han ZZ, Kang SG, Arce L, Westaway D. Prion-like strain effects in tauopathies. Cell Tissue Res 2022; 392:179-199. [PMID: 35460367 PMCID: PMC9034081 DOI: 10.1007/s00441-022-03620-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Tau is a microtubule-associated protein that plays crucial roles in physiology and pathophysiology. In the realm of dementia, tau protein misfolding is associated with a wide spectrum of clinicopathologically diverse neurodegenerative diseases, collectively known as tauopathies. As proposed by the tau strain hypothesis, the intrinsic heterogeneity of tauopathies may be explained by the existence of structurally distinct tau conformers, “strains”. Tau strains can differ in their associated clinical features, neuropathological profiles, and biochemical signatures. Although prior research into infectious prion proteins offers valuable lessons for studying how a protein-only pathogen can encompass strain diversity, the underlying mechanism by which tau subtypes are generated remains poorly understood. Here we summarize recent advances in understanding different tau conformers through in vivo and in vitro experimental paradigms, and the implications of heterogeneity of pathological tau species for drug development.
Collapse
Affiliation(s)
- Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Luis Arce
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada. .,Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
6
|
González A, Calfío C, Churruca M, Maccioni RB. Glucose metabolism and AD: evidence for a potential diabetes type 3. Alzheimers Res Ther 2022; 14:56. [PMID: 35443732 PMCID: PMC9022265 DOI: 10.1186/s13195-022-00996-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/27/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Alzheimer's disease is the most prevalent cause of dementia in the elderly. Neuronal death and synaptic dysfunctions are considered the main hallmarks of this disease. The latter could be directly associated to an impaired metabolism. In particular, glucose metabolism impairment has demonstrated to be a key regulatory element in the onset and progression of AD, which is why nowadays AD is considered the type 3 diabetes. METHODS We provide a thread regarding the influence of glucose metabolism in AD from three different perspectives: (i) as a regulator of the energy source, (ii) through several metabolic alterations, such as insulin resistance, that modify peripheral signaling pathways that influence activation of the immune system (e.g., insulin resistance, diabetes, etc.), and (iii) as modulators of various key post-translational modifications for protein aggregation, for example, influence on tau hyperphosphorylation and other important modifications, which determine its self-aggregating behavior and hence Alzheimer's pathogenesis. CONCLUSIONS In this revision, we observed a 3 edge-action in which glucose metabolism impairment is acting in the progression of AD: as blockade of energy source (e.g., mitochondrial dysfunction), through metabolic dysregulation and post-translational modifications in key proteins, such as tau. Therefore, the latter would sustain the current hypothesis that AD is, in fact, the novel diabetes type 3.
Collapse
Affiliation(s)
- Andrea González
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC), Avda. Vitacura 3568, D 511-512, Vitacura, Santiago, Chile
- Faculty of Sciences, University of Chile, Las Encinas 3370, Ñuñoa, Santiago, Chile
| | - Camila Calfío
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC), Avda. Vitacura 3568, D 511-512, Vitacura, Santiago, Chile
- Faculty of Sciences, University of Chile, Las Encinas 3370, Ñuñoa, Santiago, Chile
| | - Macarena Churruca
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC), Avda. Vitacura 3568, D 511-512, Vitacura, Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC), Avda. Vitacura 3568, D 511-512, Vitacura, Santiago, Chile.
- Faculty of Sciences, University of Chile, Las Encinas 3370, Ñuñoa, Santiago, Chile.
- Department of Neurology, Faculty of Medicine East Campus Hospital Salvador, University of Chile, Salvador 486, Providencia, Santiago, Chile.
| |
Collapse
|
7
|
Chinnathambi S, Gorantla NV. Implications of Valosin-containing Protein in Promoting Autophagy to Prevent Tau Aggregation. Neuroscience 2021; 476:125-134. [PMID: 34509548 DOI: 10.1016/j.neuroscience.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Chaperones and cellular degradative mechanisms modulate Tau aggregation. During aging and neurodegenerative disorders, the cellular proteostasis is disturbed due to impaired protective mechanisms. This results in accumulation of aberrant Tau aggregates in the neuron that leads to microtubule destabilization and neuronal degeneration. The intricate mechanisms to prevent Tau aggregation involve chaperones, autophagy, and proteasomal system have gained main focus about concerning to therapeutic intervention. However, the thorough understanding of other key proteins, such as Valosin-containing protein (VCP), is limited. In various neurodegenerative diseases, the chaperone-like activity of VCP is involved in preventing protein aggregation and mediating the degradation of aberrant proteins by proteasome and autophagy. In the case of Tau aggregation associated with Alzheimer's disease, the importance of VCP is poorly understood. VCP is known to co-localize with Tau, and alterations in VCP cause aberrant accumulation of Tau. Nevertheless, the direct mechanism of VCP in altering Tau aggregation is not known. Hence, we speculate that VCP might be one of the key modulators in preventing Tau aggregation and can disintegrate Tau aggregates by directing its clearance by autophagy.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Nalini Vijay Gorantla
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Fichou Y, Oberholtzer ZR, Ngo H, Cheng CY, Keller TJ, Eschmann NA, Han S. Tau-Cofactor Complexes as Building Blocks of Tau Fibrils. Front Neurosci 2019; 13:1339. [PMID: 31920504 PMCID: PMC6923735 DOI: 10.3389/fnins.2019.01339] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/27/2019] [Indexed: 12/30/2022] Open
Abstract
The aggregation of the human tau protein into neurofibrillary tangles is directly diagnostic of many neurodegenerative conditions termed tauopathies. The species, factors and events that are responsible for the initiation and propagation of tau aggregation are not clearly established, even in a simplified and artificial in vitro system. This motivates the mechanistic study of in vitro aggregation of recombinant tau from soluble to fibrillar forms, for which polyanionic cofactors are the most commonly used external inducer. In this study, we performed biophysical characterizations to unravel the mechanisms by which cofactors induce fibrillization. We first reinforce the idea that cofactors are the limiting factor to generate ThT-active tau fibrils, and establish that they act as templating reactant that trigger tau conformational rearrangement. We show that heparin has superior potency for recruiting monomeric tau into aggregation-competent species compared to any constituent intermediate or aggregate "seeds." We show that tau and cofactors form intermediate complexes whose evolution toward ThT-active fibrils is tightly regulated by tau-cofactor interactions. Remarkably, it is possible to find mild cofactors that complex with tau without forming ThT-active species, except when an external catalyst (e.g., a seed) is provided to overcome the energy barrier. In a cellular context, we propose the idea that tau could associate with cofactors to form a metastable complex that remains "inert" and reversible, until encountering a relevant seed that can trigger an irreversible transition to β-sheet containing species.
Collapse
Affiliation(s)
- Yann Fichou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Zachary R. Oberholtzer
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Hoang Ngo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Chi-Yuan Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Timothy J. Keller
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Neil A. Eschmann
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
9
|
Dułak D, Gadzała M, Banach M, Ptak M, Wiśniowski Z, Konieczny L, Roterman I. Filamentous Aggregates of Tau Proteins Fulfil Standard Amyloid Criteria Provided by the Fuzzy Oil Drop (FOD) Model. Int J Mol Sci 2018; 19:E2910. [PMID: 30257460 PMCID: PMC6213535 DOI: 10.3390/ijms19102910] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 01/02/2023] Open
Abstract
Abnormal filamentous aggregates that are formed by tangled tau protein turn out to be classic amyloid fibrils, meeting all the criteria defined under the fuzzy oil drop model in the context of amyloid characterization. The model recognizes amyloids as linear structures where local hydrophobicity minima and maxima propagate in an alternating manner along the fibril's long axis. This distribution of hydrophobicity differs greatly from the classic monocentric hydrophobic core observed in globular proteins. Rather than becoming a globule, the amyloid instead forms a ribbonlike (or cylindrical) structure.
Collapse
Affiliation(s)
- Dawid Dułak
- ABB Business Services Sp. z o.o. ul. Żegańska 1, 04-713 Warszawa, Poland.
| | | | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland.
| | - Magdalena Ptak
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland.
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Zdzisław Wiśniowski
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland.
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, Kopernika 7, 31-034 Kraków, Poland.
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland.
| |
Collapse
|
10
|
Al-Hilaly YK, Pollack SJ, Rickard JE, Simpson M, Raulin AC, Baddeley T, Schellenberger P, Storey JMD, Harrington CR, Wischik CM, Serpell LC. Cysteine-Independent Inhibition of Alzheimer's Disease-like Paired Helical Filament Assembly by Leuco-Methylthioninium (LMT). J Mol Biol 2018; 430:4119-4131. [PMID: 30121297 DOI: 10.1016/j.jmb.2018.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/12/2018] [Accepted: 08/09/2018] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease is a tauopathy characterized by pathological fibrillization of tau protein to form the paired helical filaments (PHFs), which constitute neurofibrillary tangles. The methylthioninium (MT) moiety reverses the proteolytic stability of the PHF core and is in clinical development for treatment of Alzheimer's disease in a stable reduced form as leuco-MT. It has been hypothesized that MT acts via oxidation of cysteine residues, which is incompatible with activity in the predominantly reducing environment of living cells. We have shown recently that the PHF-core tau unit assembles spontaneously in vitro to form PHF-like filaments. Here we describe studies using circular dichroism, SDS-PAGE, transmission electron microscopy and site-directed mutagenesis to elucidate the mechanism of action of the MT moiety. We show that MT inhibitory activity is optimal in reducing conditions, that the active moiety is the reduced leuco-MT form of the molecule and that its mechanism of action is cysteine independent.
Collapse
Affiliation(s)
- Youssra K Al-Hilaly
- Dementia Research Group, School of Life Sciences, University of Sussex, Falmer, E Sussex, BN1 9QG, United Kingdom; Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Saskia J Pollack
- Dementia Research Group, School of Life Sciences, University of Sussex, Falmer, E Sussex, BN1 9QG, United Kingdom
| | - Janet E Rickard
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZP, United Kingdom
| | - Michael Simpson
- TauRx Therapeutics Ltd., Aberdeen, AB25 2ZP, United Kingdom; Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom
| | - Ana-Caroline Raulin
- Dementia Research Group, School of Life Sciences, University of Sussex, Falmer, E Sussex, BN1 9QG, United Kingdom
| | - Thomas Baddeley
- TauRx Therapeutics Ltd., Aberdeen, AB25 2ZP, United Kingdom; Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom
| | - Pascale Schellenberger
- Dementia Research Group, School of Life Sciences, University of Sussex, Falmer, E Sussex, BN1 9QG, United Kingdom
| | - John M D Storey
- TauRx Therapeutics Ltd., Aberdeen, AB25 2ZP, United Kingdom; Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom
| | - Charles R Harrington
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZP, United Kingdom; Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom
| | - Claude M Wischik
- Institute of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZP, United Kingdom; Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom.
| | - Louise C Serpell
- Dementia Research Group, School of Life Sciences, University of Sussex, Falmer, E Sussex, BN1 9QG, United Kingdom.
| |
Collapse
|
11
|
Fichou Y, Vigers M, Goring AK, Eschmann NA, Han S. Heparin-induced tau filaments are structurally heterogeneous and differ from Alzheimer's disease filaments. Chem Commun (Camb) 2018; 54:4573-4576. [PMID: 29664486 DOI: 10.1039/c8cc01355a] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of tau filaments in the brain whose structure was recently solved. The formation of AD filaments is routinely modeled in vitro by mixing tau with heparin. This study shows that heparin-induced tau filaments are markedly different from the AD filaments and are highly heterogeneous.
Collapse
Affiliation(s)
- Yann Fichou
- Department of chemistry, University of California Santa Babara, Santa Barbara, California 93106, USA.
| | | | | | | | | |
Collapse
|
12
|
Lucke-Wold B, Seidel K, Udo R, Omalu B, Ornstein M, Nolan R, Rosen C, Ross J. Role of Tau Acetylation in Alzheimer's Disease and Chronic Traumatic Encephalopathy: The Way Forward for Successful Treatment. JOURNAL OF NEUROLOGY AND NEUROSURGERY 2017; 4. [PMID: 29276758 PMCID: PMC5738035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Progressive neurodegenerative diseases plague millions of individuals both in the United States and across the world. The current pathology of progressive neurodegenerative tauopathies, such as Alzheimer's disease (AD), Pick's disease, frontotemporal dementia (FTD), and progressive supranuclear palsy, primarily revolves around phosphorylation and hyperphosphorylation of the tau protein. However, more recent evidence suggests acetylation of tau protein at lysine 280 may be a critical step in molecular pathology of these neurodegenerative diseases prior to the tau hyperphosphorylation. Secondary injury cascades such as oxidative stress, endoplasmic reticulum stress, and neuroinflammation contribute to lasting damage within the brain and can be induced by a number of different risk factors. These injury cascades funnel into a common pathway of early tau acetylation, which may serve as the catalyst for progressive degeneration. The post translational modification of tau can result in production of toxic oligomers, contributing to reduced solubility as well as aggregation and formation of neurofibrillary tangles, the hallmark of AD pathology. Chronic Traumatic Encephalopathy (CTE), caused by repetitive brain trauma is also associated with a hyperphosphorylation of tau. We postulated acetylation of tau at lysine 280 in CTE disease could be present prior to the hyperphosphorylation and tested this hypothesis in CTE pathologic specimens. We also tested for ac-tau 280 in early stage Alzheimer's disease (Braak stage 1). Histopathological examination using the ac tau 280 antibody was performed in three Alzheimer's cases and three CTE patients. Presence of ac-tau 280 was confirmed in all cases at early sites of disease manifestation. These findings suggest that tau acetylation may precede tau phosphorylation and could be the first "triggering" event leading to neuronal loss. To the best of our knowledge, this is the first study to identify acetylation of the tau protein in CTE. Prevention of tau acetylation could possibly serve as a novel target for stopping neurodegeneration before it fully begins. In this study, we highlight what is known about tau acetylation and neurodegeneration.
Collapse
Affiliation(s)
- Brandon Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV
| | - Kay Seidel
- Dr. Senckenberg Chronomedical Institute, J. W. Goethe University, Frankfurt am Main, Germany
| | - Rub Udo
- Dr. Senckenberg Chronomedical Institute, J. W. Goethe University, Frankfurt am Main, Germany
| | - Bennet Omalu
- Department of Pathology, University of California Davis Medical Center, Davis, CA
| | | | - Richard Nolan
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV
| | - Charles Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV
| | - Joel Ross
- Cogwellin LLC 4 Industrial Way W, Eatontown NJ, USA
| |
Collapse
|