1
|
Roesch A, Hiemenz C, Findley T, Goldberg I, Windisch R, Wichmann C, Kersten G, Menzen T. Stability of Jurkat cells during short-term liquid storage analyzed by flow imaging microscopy. Eur J Pharm Biopharm 2025; 211:114703. [PMID: 40154892 DOI: 10.1016/j.ejpb.2025.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The viability of cell-based medicinal products (CBMPs) is a critical quality attribute and must be assessed throughout the product lifecycle to contribute to a safe and potent drug product. In this study, we investigated the impact of short-term liquid storage conditions, encountered during manufacturing of CBMPs, such as holding times outside cell culture conditions and medium composition, on cell viability. As a model for T cells Jurkat cells were used and stored in different storage media for up to 24 h outside a freezer and outside of cell culture conditions. The effect of storage in different storage media, i.e., cell culture medium or phosphate buffered saline (PBS), dimethyl sulfoxide (DMSO) at different storage temperatures as well as the impact of pH on the cell viability was assessed. The viability of the cells was assessed by (i) flow cytometry with an Annexin V and CalceinAM staining or (ii) machine learning tools, leveraging the morphological information of flow imaging microscopy images. Cell images obtained by flow imaging microscopy were analyzed with both the ParticleSentryAI imaging software and a convolutional neural network (CNN) for fast and semi-automated viability assessment. Throughout storage conditions similar to those during processing of CBMPs, a decrease in cell viability was observed over time for all conditions based on Annexin V and CalceinAM staining. Additionally, we observed a damaging effect of DMSO over time, whereas this effect was more pronounced at room temperature compared to refrigerated temperatures. The ParticleSentryAI software was useful to detect qualitative differences in the cell viability as a shift towards non-viable cells could be observed throughout storage based on flow imaging microscopy images without prior sample preparation. Viability determination based on the CNN underestimated cell viability when compared to the flow cytometry assays, however the same trends were determined. In summary, non-frozen storage of CBMPs should be kept to a minimum. However, standing times throughout the manufacturing of CBMPs as well as during in-use cannot be completely avoided and therefore, the optimal storage conditions have to be carefully evaluated. Additionally, further analytical development is needed to implement machine learning tools suitable for reliable viability quantification without additional sample preparation such as staining.
Collapse
Affiliation(s)
- Alexandra Roesch
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany; Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA, Leiden, the Netherlands
| | - Cornelia Hiemenz
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Teresa Findley
- ViQi Inc., 315 Meigs Road, Suite A261, Santa Barbara, CA 93109, United States
| | - Ilya Goldberg
- ViQi Inc., 315 Meigs Road, Suite A261, Santa Barbara, CA 93109, United States
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Gideon Kersten
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany; Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300 RA, Leiden, the Netherlands
| | - Tim Menzen
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| |
Collapse
|
2
|
Roesch A, Windisch R, Wichmann C, Wolkers WF, Kersten G, Menzen T. Reducing dimethyl sulfoxide content in Jurkat cell formulations suitable for cryopreservation. Cryobiology 2025; 119:105238. [PMID: 40184770 DOI: 10.1016/j.cryobiol.2025.105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025]
Abstract
Cell-based medicinal products (CBMPs) are usually cryopreserved in formulations containing up to 10 % dimethyl sulfoxide (Me2SO) at temperatures below -145 °C. Although Me2SO effectively protects cells during the freezing process, it can be damaging to cells at ambient temperatures and lead to side effects in patients. The aim of this study was to reduce the amount of Me2SO in cryopreservation formulations for an immortalized T cell line (Jurkat cells). A design of experiment (DoE) approach was applied for formulation development using seven different excipients, i.e., Me2SO, trehalose, sorbitol, proline, ectoine, poloxamer 188 (P188) and poly vinyl pyrrolidone 40 (PVP). A DoE model was generated to predict optimal formulations resulting in a high post-thaw viability and a high glass transition temperature of the formulation to allow for frozen storage without the use of liquid nitrogen. Subsequently a stability study was performed with promising lead candidates over three months at storage temperatures of -145 °C, -80 °C, -40 °C. Three benchmark solutions were used, i.e., Cryostor CS10, CryoSOfree as well as 10 % Me2SO in Roswell Park Memorial Institute Medium (RPMI). The excipient affecting the post-thaw viability of Jurkat cells the most was, as expected, Me2SO, which led to increased viabilities at higher concentrations. Most formulations resulted in similar viabilities for cells stored at -145 °C and -80 °C, whereas samples stored at -40 °C did not survive. In general, benchmark formulations resulted in slightly higher viabilities than the tested formulations. Furthermore, cell samples stored at -80 °C were recultivated in cell culture and the viability was assessed after 24h. The cell viability after 24h was much lower compared to the cells analyzed directly post-thaw, indicating that freeze-thaw damages continue to unfold after thawing. In summary, several promising excipients and combinations thereof, e.g., trehalose and PVP, were identified for the cryopreservation of Jurkat cells with reduced concentrations of Me2SO or Me2SO-free cryopreservation. Additionally, storage at -80 °C is possible for the developed formulations.
Collapse
Affiliation(s)
- Alexandra Roesch
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152, Martinsried, Germany; Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300, RA, Leiden, the Netherlands
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Willem F Wolkers
- Unit for Reproductive Medicine - Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization Laboratory - Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gideon Kersten
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152, Martinsried, Germany; Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300, RA, Leiden, the Netherlands
| | - Tim Menzen
- Coriolis Pharma, Fraunhoferstr. 18 b, 82152, Martinsried, Germany.
| |
Collapse
|
3
|
Wattanasuntorn P, Poapolathep S, Phuektes P, Alassane-Kpembi I, Fink-Gremmels J, Oswald IP, Poapolathep A. Apoptotic Effect of Combinations of T-2, HT-2, and Diacetoxyscirpenol on Human Jurkat T Cells. Toxins (Basel) 2025; 17:203. [PMID: 40278701 PMCID: PMC12030997 DOI: 10.3390/toxins17040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Trichothecene type A mycotoxins, such as T-2, HT-2, and diacetoxyscirpenol (DAS), are known to induce cytotoxicity and apoptosis in different cell types. As all three Fusarium toxins may occur concomitantly in a given food or feed commodity, there is growing interest in the effect of such mycotoxin mixtures. This study aimed to identify the toxic interactions among T-2, HT-2, and DAS in a human Jurkat cell model. As a first step, an MTT assay was used to assess cytotoxicity after 24 h of cell exposure to individual mycotoxins and their mixtures. The results were used to calculate the combination index (CI), which indicates the nature of the mycotoxin interactions. In Jurkat T cells, the toxicity ranking for the individual mycotoxins was T-2 > HT-2 > DAS. The CI values of the dual and triple mycotoxin combinations calculated from the results of the MTT and reactive oxygen species assays showed synergistic effects at low concentrations and an apparent antagonism at very high concentrations for all combinations. The additional cytometric analyses confirmed the synergistic effects, as expected, following co-exposure to the three tested trichothecenes. As the lower toxin concentrations investigated reflect natural contamination levels in food and feeds, the synergistic effects identified should be considered in risk characterization for trichothecene exposure in humans and animals.
Collapse
Affiliation(s)
- Phattarawadee Wattanasuntorn
- Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Patchara Phuektes
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Imourana Alassane-Kpembi
- Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2R 0A8, Canada;
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, The Netherlands;
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpon, UPS, 31000 Toulouse, France;
| | - Amnart Poapolathep
- Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
4
|
Qi Z, Cheng Y, Wang K, Cai S, Ni X, Wang T, Zhang K, Jiang S, Xiao Y, Zhang X. Discovery, Synthesis, and Activity Evaluation of Novel Small-Molecule Inhibitors Targeting VISTA for Cancer Immunotherapy. J Med Chem 2025; 68:5222-5237. [PMID: 40014385 DOI: 10.1021/acs.jmedchem.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have been potent therapeutic options for the treatment of multiple types of cancer. However, not all patients experience benefits from ICIs, and discovering inhibitors targeting novel immune checkpoints is necessary. V-domain Ig suppressor of T-cell activation (VISTA) is a novel immune checkpoint. Blockade of the VISTA pathway enhances antitumor immunity in multiple tumor types. Herein, a series of VISTA inhibitors based on the benzimidazole scaffold were discovered. B3 showed the strongest binding affinity to the VISTA protein with a KD value of 0.452 ± 0.12 μM. In vitro, B3 could effectively activate VISTA-mediated immunosuppression and induce effective VISTA degradation in HepG2 cells. In vivo, B3 improved pharmacokinetics compared to the lead compound 4. Moreover, compound B3 significantly inhibited tumor growth in a CT26 colon cancer model. These results suggest that compound B3 is a promising VISTA small molecule inhibitor and degrader worthy of further development as an antitumor agent.
Collapse
Affiliation(s)
- Zhihao Qi
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yao Cheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi Cai
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- Department of Biomedical Engineering and Diagnostic Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Li C, Liu C, Ma H, Zhang Z, Zhang J. Lymphocytes-Associated Extracellular Vesicles Activate Natural Killer Cells in HNSCC. Cancer Sci 2025; 116:633-642. [PMID: 39749376 PMCID: PMC11875761 DOI: 10.1111/cas.16440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Small extracellular vesicles (sEVs) facilitate intercellular communication and play a pivotal role in tumor progression. Accumulated evidence has indicated the diversity of sEVs but with limited results revealing the landscape of heterogeneity of sEVs. The heterogeneity of cargo RNA in sEVs presents the different cell origins and indicates different functions. Here, we analyzed the heterogeneity of sEVs at droplet levels from single-cell RNA sequencing results of head and neck squamous cell carcinoma (HNSCC) with the previously reported algorithm SEVtras. With the sEVs secretion activity calculated by SEVtras, we also found that the T cells held the major role of sEVs secretion. In addition, we found these sEVs secreted by T cells increased the cytotoxic ability of natural killer cells (NK cells), which illustrated an indirect manner for the anti-tumor function of T cells. These results revealed the heterogeneity of cargo RNA of sEVs in HNSCC and underlined a sEVs-dependent manner in which T cells act on NK cells and anti-tumor immunity.
Collapse
Affiliation(s)
- Chuwen Li
- Department of Oral and Maxillofacial‐Head and Neck Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- College of StomatologyShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- National Center for StomatologyShanghaiPeople's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghai Center of Head and Neck Oncology Clinical and Translational ScienceShanghaiPeople's Republic of China
| | - Chun Liu
- Department of Oral and Maxillofacial‐Head and Neck Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- College of StomatologyShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- National Center for StomatologyShanghaiPeople's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghai Center of Head and Neck Oncology Clinical and Translational ScienceShanghaiPeople's Republic of China
| | - Hailong Ma
- Department of Oral and Maxillofacial‐Head and Neck Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- College of StomatologyShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- National Center for StomatologyShanghaiPeople's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghai Center of Head and Neck Oncology Clinical and Translational ScienceShanghaiPeople's Republic of China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial‐Head and Neck Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- College of StomatologyShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- National Center for StomatologyShanghaiPeople's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghai Center of Head and Neck Oncology Clinical and Translational ScienceShanghaiPeople's Republic of China
- Research Unit of Oral and Maxillofacial Regenerative MedicineChinese Academy of Medical SciencesShanghaiPeople's Republic of China
| | - Jianjun Zhang
- Department of Oral and Maxillofacial‐Head and Neck Oncology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- College of StomatologyShanghai Jiao Tong UniversityShanghaiPeople's Republic of China
- National Center for StomatologyShanghaiPeople's Republic of China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of StomatologyShanghai Center of Head and Neck Oncology Clinical and Translational ScienceShanghaiPeople's Republic of China
| |
Collapse
|
6
|
Zheng Y, Cai J, Ji Q, Liu L, Liao K, Dong L, Gao J, Huang Y. Tumor-Activated Neutrophils Promote Lung Cancer Progression through the IL-8/PD-L1 Pathway. Curr Cancer Drug Targets 2025; 25:294-305. [PMID: 39354766 PMCID: PMC11851149 DOI: 10.2174/0115680096337237240909101904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Lung cancer remains a major global health threat due to its complex microenvironment, particularly the role of neutrophils, which are crucial for tumor development and immune evasion mechanisms. This study aimed to delve into the impact of lung cancer cell-conditioned media on neutrophil functions and their potential implications for lung cancer progression. METHODS Employing in vitro experimental models, this study has analyzed the effects of lung cancer cell-conditioned media on neutrophil IL-8 and IFN-γ secretion, apoptosis, PD-L1 expression, and T-cell proliferation by using techniques, such as ELISA, flow cytometry, immunofluorescence, and CFSE proliferation assay. The roles of IL-8/PD-L1 in regulating neutrophil functions were further explored using inhibitors for IL-8 and PD-L1. RESULTS Lung cancer cell lines were found to secrete higher levels of IL-8 compared to normal lung epithelial cells. The conditioned media from lung cancer cells significantly reduced apoptosis in neutrophils, increased PD-L1 expression, and suppressed T-cell proliferation and IFN-γ secretion. These effects were partially reversed in the presence of IL-8 inhibitors in Tumor Tissue Culture Supernatants (TTCS), while being further enhanced by IL-8. Both apoptosis and PD-L1 expression in neutrophils demonstrated dose-dependency to TTCS. Additionally, CFSE proliferation assay results further confirmed the inhibitory effect of lung cancer cell-conditioned media on T-- cell proliferation. CONCLUSION This study has revealed lung cancer cell-conditioned media to modulate neutrophil functions through regulating factors, such as IL-8, thereby affecting immune regulation and tumor progression in the lung cancer microenvironment.
Collapse
Affiliation(s)
- Yiping Zheng
- Department of Respiratory and Critical Care Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Jianfeng Cai
- Department of Respiratory and Critical Care Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Qiuhong Ji
- Department of Respiratory and Critical Care Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Luanmei Liu
- Department of Clinical Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Kaijun Liao
- Department of Clinical Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Lie Dong
- Department of Respiratory and Critical Care Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Jie Gao
- Department of Gastrointestinal Surgery, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| | - Yinghui Huang
- Department of Respiratory and Critical Care Medicine, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, China
| |
Collapse
|
7
|
Gómez-Morón Á, Alegre-Gómez S, Ramirez-Muñoz R, Hernaiz-Esteban A, Carrasco-Padilla C, Scagnetti C, Aguilar-Sopeña Ó, García-Gil M, Borroto A, Torres-Ruiz R, Rodriguez-Perales S, Sánchez-Madrid F, Martín-Cófreces NB, Roda-Navarro P. Human T-cell receptor triggering requires inactivation of Lim kinase-1 by Slingshot-1 phosphatase. Commun Biol 2024; 7:918. [PMID: 39080357 PMCID: PMC11289303 DOI: 10.1038/s42003-024-06605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Actin dynamics control early T-cell receptor (TCR) signalling during T-cell activation. However, the precise regulation of initial actin rearrangements is not completely understood. Here, we have investigated the regulatory role of the phosphatase Slingshot-1 (SSH1) in this process. Our data show that SSH1 rapidly polarises to nascent cognate synaptic contacts and later relocalises to peripheral F-actin networks organised at the mature immunological synapse. Knockdown of SSH1 expression by CRISPR/Cas9-mediated genome editing or small interfering RNA reveal a regulatory role for SSH1 in CD3ε conformational change, allowing Nck binding and proper downstream signalling and immunological synapse organisation. TCR triggering induces SSH1-mediated activation of actin dynamics through a mechanism mediated by Limk-1 inactivation. These data suggest that during early TCR activation, SSH1 is required for rapid F-actin rearrangements that mediate initial conformational changes of the TCR, integrin organisation and proximal signalling events for proper synapse organisation. Therefore, the SSH1 and Limk-1 axis is a key regulatory element for full T cell activation.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Sergio Alegre-Gómez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Rocio Ramirez-Muñoz
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Alicia Hernaiz-Esteban
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Carlos Carrasco-Padilla
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
| | - Óscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Marta García-Gil
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain
| | - Aldo Borroto
- Centro de Biología Molecular Severo Ochoa, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Raul Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT); Advanced Therapies Unit, Instituto de Investigacion Sanitaria Fundacion Jiménez Díaz; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - Sandra Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, UAM, 28006, Madrid, Spain.
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
- 12 de Octubre Health Research Institute (imas12), 28040, Madrid, Spain.
| |
Collapse
|
8
|
Gómez-Morón Á, Tsukalov I, Scagnetti C, Pertusa C, Lozano-Prieto M, Martínez-Fleta P, Requena S, Martín P, Alfranca A, Martin-Gayo E, Martin-Cofreces NB. Cytosolic protein translation regulates cell asymmetry and function in early TCR activation of human CD8 + T lymphocytes. Front Immunol 2024; 15:1411957. [PMID: 39114656 PMCID: PMC11303187 DOI: 10.3389/fimmu.2024.1411957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction CD8+ cytotoxic T lymphocytes (CTLs) are highly effective in defending against viral infections and tumours. They are activated through the recognition of peptide-MHC-I complex by the T-cell receptor (TCR) and co-stimulation. This cognate interaction promotes the organisation of intimate cell-cell connections that involve cytoskeleton rearrangement to enable effector function and clearance of the target cell. This is key for the asymmetric transport and mobilisation of lytic granules to the cell-cell contact, promoting directed secretion of lytic mediators such as granzymes and perforin. Mitochondria play a role in regulating CTL function by controlling processes such as calcium flux, providing the necessary energy through oxidative phosphorylation, and its own protein translation on 70S ribosomes. However, the effect of acute inhibition of cytosolic translation in the rapid response after TCR has not been studied in mature CTLs. Methods Here, we investigated the importance of cytosolic protein synthesis in human CTLs after early TCR activation and CD28 co-stimulation for the dynamic reorganisation of the cytoskeleton, mitochondria, and lytic granules through short-term chemical inhibition of 80S ribosomes by cycloheximide and 80S and 70S by puromycin. Results We observed that eukaryotic ribosome function is required to allow proper asymmetric reorganisation of the tubulin cytoskeleton and mitochondria and mTOR pathway activation early upon TCR activation in human primary CTLs. Discussion Cytosolic protein translation is required to increase glucose metabolism and degranulation capacity upon TCR activation and thus to regulate the full effector function of human CTLs.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Ilya Tsukalov
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marta Lozano-Prieto
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Silvia Requena
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Martín
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Regulatory Molecules of Inflammatory Processes, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - Aranzazu Alfranca
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Martin-Gayo
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - Noa B Martin-Cofreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Tolstova T, Dotsenko E, Kozhin P, Novikova S, Zgoda V, Rusanov A, Luzgina N. The effect of TLR3 priming conditions on MSC immunosuppressive properties. Stem Cell Res Ther 2023; 14:344. [PMID: 38031182 PMCID: PMC10687850 DOI: 10.1186/s13287-023-03579-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have regenerative and immunomodulatory properties, making them suitable for cell therapy. Toll-like receptors (TLRs) in MSCs respond to viral load by secreting immunosuppressive or proinflammatory molecules. The expression of anti-inflammatory molecules in MSCs can be altered by the concentration and duration of exposure to the TLR3 ligand polyinosinic-polycytidylic acid (poly(I:C)). This study aimed to optimize the preconditioning of MSCs with poly(I:C) to increase immunosuppressive effects and to identify MSCs with activated TLR3 (prMSCs). METHODS Flow cytometry and histochemical staining were used to analyze MSCs for immunophenotype and differentiation potential. MSCs were exposed to poly(I:C) at 1 and 10 μg/mL for 1, 3, and 24 h, followed by determination of the expression of IDO1, WARS1, PD-L1, TSG-6, and PTGES2 and PGE2 secretion. MSCs and prMSCs were cocultured with intact (J-) and activated (J+) Jurkat T cells. The proportion of proliferating and apoptotic J+ and J- cells, IL-10 secretion, and IL-2 production after cocultivation with MSCs and prMSCs were measured. Liquid chromatography-mass spectrometry and bioinformatics analysis identified proteins linked to TLR3 activation in MSCs. RESULTS Poly(I:C) at 10 μg/mL during a 3-h incubation caused the highest expression of immunosuppression markers in MSCs. Activation of prMSCs caused a 18% decrease in proliferation and a one-third increase in apoptotic J+ cells compared to intact MSCs. Cocultures of prMSCs and Jurkat cells had increased IL-10 and decreased IL-2 in the conditioned medium. A proteomic study of MSCs and prMSCs identified 53 proteins with altered expression. Filtering the dataset with Gene Ontology and Reactome Pathway revealed that poly(I:C)-induced proteins activate the antiviral response. Protein‒protein interactions by String in prMSCs revealed that the antiviral response and IFN I signaling circuits were more active than in native MSCs. prMSCs expressed more cell adhesion proteins (ICAM-I and Galectin-3), PARP14, PSMB8, USP18, and GBP4, which may explain their anti-inflammatory effects on Jurkat cells. CONCLUSIONS TLR3 activation in MSCs is dependent on exposure time and poly(I:C) concentration. The maximum expression of immunosuppressive molecules was observed with 10 µg/mL poly(I:C) for 3-h preconditioning. This priming protocol for MSCs enhances the immunosuppressive effects of prMSCs on T cells.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | | | - Peter Kozhin
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Svetlana Novikova
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121.
| | - Nataliya Luzgina
- Institute of Biomedical Chemistry, Pogodinskaya, Moscow, Russia, 119121
| |
Collapse
|
10
|
Gómez-Morón Á, Requena S, Pertusa C, Lozano-Prieto M, Calzada-Fraile D, Scagnetti C, Sánchez-García I, Calero-García AA, Izquierdo M, Martín-Cófreces NB. End-binding protein 1 regulates the metabolic fate of CD4 + T lymphoblasts and Jurkat T cells and the organization of the mitochondrial network. Front Immunol 2023; 14:1197289. [PMID: 37520527 PMCID: PMC10374013 DOI: 10.3389/fimmu.2023.1197289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Immunology, Oftalmology and Otorrinolaryngology Dept., School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Silvia Requena
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Marta Lozano-Prieto
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | - Diego Calzada-Fraile
- Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III (CNIC), Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Madrid, Spain
| | - Inés Sánchez-García
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
| | | | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Noa B Martín-Cófreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa (IIS-Princesa), Madrid, Spain
- Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III (CNIC), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
11
|
Gómez-Morón A, Requena S, Roda-Navarro P, Martín-Cófreces NB. Activation kinetics of regulatory molecules during immunological synapse in T cells. Methods Cell Biol 2023. [PMID: 37516524 DOI: 10.1016/bs.mcb.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
T cell activation through TCR stimulation leads to the formation of the immunological synapse (IS), a specialized adhesion organized between T lymphocytes and antigen presenting cells (APCs) in which a dynamic interaction among signaling molecules, the cytoskeleton and intracellular organelles achieves proper antigen-mediated stimulation and effector function. The kinetics of molecular reactions at the IS is essential to determine the quality of the response to the antigen stimulation. Herein, we describe methods based on biochemistry, flow cytometry and imaging in live and fixed cells to study the activation state and dynamics of regulatory molecules at the IS in the Jurkat T cell line CH7C17 and primary human and mouse CD4+ T lymphocytes stimulated by antigen presented by Raji and HOM2 B cell lines and human and mouse dendritic cells.
Collapse
|