1
|
Agyemang E, Gonneville AN, Tiruvadi-Krishnan S, Lamichhane R. Exploring GPCR conformational dynamics using single-molecule fluorescence. Methods 2024; 226:35-48. [PMID: 38604413 PMCID: PMC11098685 DOI: 10.1016/j.ymeth.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are membrane proteins that transmit specific external stimuli into cells by changing their conformation. This conformational change allows them to couple and activate G-proteins to initiate signal transduction. A critical challenge in studying and inferring these structural dynamics arises from the complexity of the cellular environment, including the presence of various endogenous factors. Due to the recent advances in cell-expression systems, membrane-protein purification techniques, and labeling approaches, it is now possible to study the structural dynamics of GPCRs at a single-molecule level both in vitro and in live cells. In this review, we discuss state-of-the-art techniques and strategies for expressing, purifying, and labeling GPCRs in the context of single-molecule research. We also highlight four recent studies that demonstrate the applications of single-molecule microscopy in revealing the dynamics of GPCRs. These techniques are also useful as complementary methods to verify the results obtained from other structural biology tools like cryo-electron microscopy and x-ray crystallography.
Collapse
Affiliation(s)
- Eugene Agyemang
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA
| | - Alyssa N Gonneville
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sriram Tiruvadi-Krishnan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rajan Lamichhane
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
2
|
Seldeslachts A, Peigneur S, Tytgat J. Histamine Receptors: Ex Vivo Functional Studies Enabling the Discovery of Hits and Pathways. MEMBRANES 2023; 13:897. [PMID: 38132901 PMCID: PMC10744718 DOI: 10.3390/membranes13120897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Histamine receptors (HRs) are G-protein-coupled receptors involved in diverse responses triggered by histamine release during inflammation or by encounters with venomous creatures. Four histamine receptors (H1R-H4R) have been cloned and extensively characterized. These receptors are distributed throughout the body and their activation is associated with clinical manifestations such as urticaria (H1R), gastric acid stimulation (H2R), regulation of neurotransmitters in neuronal diseases (H3R), and immune responses (H4R). Despite significant homologous overlap between H3R and H4R, much remains unknown about their precise roles. Even though some drugs have been developed for H1R, H2R, and H3R, not a single H4R antagonist has been approved for clinical use. To enhance our understanding and advance innovative therapeutic targeting of H1R, H2R, H3R, and H4R, we established a robust ex vivo functional platform. This platform features the successful heterologous expression of H1R-H4R in Xenopus laevis oocytes, utilizing an electrophysiological readout. Our findings contribute to a deeper understanding of the function and pharmacological properties of the histamine receptors. Researchers can benefit from the utility of this platform when investigating the effects of histamine receptors and exploring potential therapeutic targets. In doing so, it broadens the horizon of drug discovery, offering new perspectives for therapeutic interventions.
Collapse
Affiliation(s)
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| |
Collapse
|
3
|
Karki R, Rimal S, Rieth MD. Predicted N-terminal N-linked glycosylation sites may underlie membrane protein expression patterns in Saccharomyces cerevisiae. Yeast 2021; 38:497-506. [PMID: 34182612 DOI: 10.1002/yea.3657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
N-linked glycosylation is one type of posttranslational modification that proteins undergo during expression. The following describes the effects of N-linked glycosylation on high-level membrane protein expression in yeast with an emphasis on Saccharomyces cerevisiae. N-linked glycosylation is highlighted here as an important consideration when preparing membrane protein gene constructs for expression in S. cerevisiae, which continues to be used as a workhorse in both research and industrial applications. Non-native N-linked glycosylation commonly occurs during the heterologous expression of mammalian proteins in many yeast species which can have important immunological consequences when used in the production of biotherapeutic proteins or peptides. Further, non-native N-linked glycosylation can lead to improper protein folding and premature degradation, which can impede high-level expression yields and hinder downstream analysis. Multiple strategies are presented in this article, which suggest different methods that can be implemented to circumvent the unwanted consequences of N-linked glycosylation during the expression process. These considerations may have long-term benefits for high-level protein production in S. cerevisiae across a broad spectrum of expression targets with special emphasis placed on G-protein coupled receptors, one of the largest families of membrane proteins.
Collapse
Affiliation(s)
- Rashmi Karki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Swechha Rimal
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| | - Monica D Rieth
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois, USA
| |
Collapse
|
4
|
Errey JC, Fiez-Vandal C. Production of membrane proteins in industry: The example of GPCRs. Protein Expr Purif 2020; 169:105569. [DOI: 10.1016/j.pep.2020.105569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 01/08/2023]
|
5
|
Calmet P, Cullin C, Cortès S, Vang M, Caudy N, Baccouch R, Dessolin J, Maamar NT, Lecomte S, Tillier B, Alves ID. Cholesterol impacts chemokine CCR5 receptor ligand-binding activity. FEBS J 2019; 287:2367-2385. [PMID: 31738467 DOI: 10.1111/febs.15145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/27/2019] [Accepted: 11/16/2019] [Indexed: 01/03/2023]
Abstract
The chemokine CCR5 receptor is target of maraviroc, a negative allosteric modulator of CCR5 that blocks the HIV protein gp120 from associating with the receptor, thereby inhibiting virus cellular entry. As noted with other G-protein-coupled receptor family members, the role of the lipid environment in CCR5 signaling remains obscure and very modestly investigated. Controversial literature on the impact of cholesterol (Chol) depletion in HIV infection and CCR5 signaling, including the hypothesis that Chol depletion could inhibit HIV infection, lead us to focus on the understanding of Chol impact in the first stages of receptor activation. To address this aim, the approach chosen was to employ reconstituted model lipid systems of controlled lipid composition containing CCR5 from two distinct expression systems: Pichia pastoris and cell-free expression. The characterization of receptor/ligand interaction in terms of total binding or competition binding assays was independently performed by plasmon waveguide resonance and fluorescence anisotropy, respectively. Maraviroc, a potent receptor antagonist, was the ligand investigated. Additionally, coarse-grained molecular dynamics simulation was employed to investigate Chol impact in the receptor-conformational flexibility and dynamics. Results obtained with receptor produced by different expression systems and using different biophysical approaches clearly demonstrate a considerable impact of Chol in the binding affinity of maraviroc to the receptor and receptor-conformational dynamics. Chol considerably decreases maraviroc binding affinity to the CCR5 receptor. The mechanisms by which this effect occurs seem to involve the adoption of distinct receptor-conformational states with restrained structural dynamics and helical motions in the presence of Chol.
Collapse
Affiliation(s)
- Pierre Calmet
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | | | - Maylou Vang
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Nada Caudy
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Rim Baccouch
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | - Jean Dessolin
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | - Sophie Lecomte
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| | | | - Isabel D Alves
- CBMN, UMR 5248 CNRS, University of Bordeaux, Pessac, France
| |
Collapse
|
6
|
Agonist binding of human mu opioid receptors expressed in the yeast Pichia pastoris: Effect of cholesterol complementation. Neurochem Int 2019; 132:104588. [PMID: 31704091 DOI: 10.1016/j.neuint.2019.104588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/26/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023]
Abstract
This study compared pharmacological profiles between human mu opioid receptors (hMOR) overexpressed in the SH-SY5Y neuroblastoma cell line (SH-hMOR) and the methylotrophic yeast Pichia pastoris (Pp-hMOR). Affinity determinations were performed by direct binding with the tritiated agonist DAMGO and antagonist diprenorphine (DIP). Additionally, displacement of these drugs with agonists (morphine and DAMGO) and antagonists (β-funaltrexamine, naloxone and diprenorphine) was examined. Tritiated DAMGO could bind to membranes prepared from Pp-hMOR, although the receptor was not coupled with G-proteins. The data obtained with this yeast strain suggested that only 7.5% of receptors were in a high-affinity-state conformation. This value was markedly less than that estimated in SH-hMOR membranes, which reached 50%. Finally, to understand the pharmacological discrepancies between Pp-hMOR and SH-hMOR, the role of sterols was evaluated. The major sterol in P. pastoris is ergosterol, while hMOR naturally functions in a cholesterol-containing membrane environment. Cell membranes were sterol-depleted or cholesterol-loaded with methyl-β-cyclodextrine. The results indicated that cholesterol must be present to ensure Pp-hMOR function. The proportion of high-affinity-state conformation was reversibly increased by cholesterol complementation.
Collapse
|
7
|
Boldrini-França J, Pinheiro-Junior EL, Arantes EC. Functional and biological insights of rCollinein-1, a recombinant serine protease from Crotalus durissus collilineatus. J Venom Anim Toxins Incl Trop Dis 2019; 25:e147118. [PMID: 31131001 PMCID: PMC6483414 DOI: 10.1590/1678-9199-jvatitd-1471-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The prevalent class of snake venom serine proteases (SVSP) in Viperidae venoms is the thrombin-like enzymes, which, similarly to human thrombin, convert fibrinogen into insoluble fibrin monomers. However, thrombin-like serine proteases differ from thrombin by being unable to activate factor XIII, thus leading to the formation of loose clots and fibrinogen consumption. We report the functional and biological characterization of a recombinant thrombin-like serine protease from Crotalus durissus collilineatus, named rCollinein-1. METHODS Heterologous expression of rCollinein-1 was performed in Pichia pastoris system according to a previously standardized protocol, with some modifications. rCollinein-1 was purified from the culture medium by a combination of three chromatographic steps. The recombinant toxin was tested in vitro for its thrombolytic activity and in mice for its edematogenicity, blood incoagulability and effect on plasma proteins. RESULTS When tested for the ability to induce mouse paw edema, rCollinein-1 demonstrated low edematogenic effect, indicating little involvement of this enzyme in the inflammatory processes resulting from ophidian accidents. The rCollinein-1 did not degrade blood clots in vitro, which suggests that this toxin lacks fibrinolytic activity and is not able to directly or indirectly activate the fibrinolytic system. The minimal dose of rCollinein-1 that turns the blood incoagulable in experimental mice is 7.5 mg/kg. The toxin also led to a significant increase in activated partial thromboplastin time at the dose of 1 mg/kg in the animals. Other parameters such as plasma fibrinogen concentration and prothrombin time were not significantly affected by treatment with rCollinein-1 at this dose. The toxin was also able to alter plasma proteins in mouse after 3 h of injection at a dose of 1 mg/kg, leading to a decrease in the intensity of beta zone and an increase in gamma zone in agarose gel electrophoresis. CONCLUSION These results suggest that the recombinant enzyme has no potential as a thrombolytic agent but can be applied in the prevention of thrombus formation in some pathological processes and as molecular tools in studies related to hemostasis.
Collapse
Affiliation(s)
- Johara Boldrini-França
- School of Pharmaceutical Sciences of Ribeirão Preto - FCFRP/USP,
Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Ecosystem Ecology, University of Vila Velha, Av.
Comissário José Dantas de Melo, 21, Boa Vista II, 29102-920, Vila Velha, ES,
Brazil
| | | | - Eliane Candiani Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto - FCFRP/USP,
Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Hartmann L, Kugler V, Wagner R. Expression of Eukaryotic Membrane Proteins in Pichia pastoris. Methods Mol Biol 2016; 1432:143-62. [PMID: 27485335 DOI: 10.1007/978-1-4939-3637-3_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A key point when it comes to heterologous expression of eukaryotic membrane proteins (EMPs) is the choice of the best-suited expression platform. The yeast Pichia pastoris has proven to be a very versatile system showing promising results in a growing number of cases. Indeed, its particular methylotrophic characteristics combined to the very simple handling of a eukaryotic microorganism that possesses the majority of mammalian-like machineries make it a very competitive expression system for various complex proteins, in amounts compatible with functional and structural studies. This chapter describes a set of robust methodologies routinely used for the successful expression of a variety of EMPs, going from yeast transformation with the recombinant plasmid to the analysis of the quality and quantity of the proteins produced.
Collapse
Affiliation(s)
- Lucie Hartmann
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 ESBS CNRS, University of Strasbourg, 300 Blvd S. Brant, 67412, Illkirch, France
| | - Valérie Kugler
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 ESBS CNRS, University of Strasbourg, 300 Blvd S. Brant, 67412, Illkirch, France
| | - Renaud Wagner
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 ESBS CNRS, University of Strasbourg, 300 Blvd S. Brant, 67412, Illkirch, France.
| |
Collapse
|