1
|
Gauger M, Duchardt-Ferner E, Halbritter ALJ, Hetzke T, Sigurdsson ST, Wöhnert J, Prisner TF. Investigating the Conformational Diversity of the TMR-3 Aptamer. J Am Chem Soc 2025. [PMID: 40356230 DOI: 10.1021/jacs.5c04576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Aptamers are a class of in vitro selected small RNA motifs that bind a small-molecule ligand with high affinity and specificity. They are promising candidates for the regulation of gene expression in vivo and can aid in further understanding the interaction of RNA with small molecules and conformational changes that may occur upon ligand binding. The TMR-3 aptamer was selected via systematic evolution of ligands by exponential enrichment (SELEX) and binds the fluorophores tetramethylrhodamine (TMR) and 5-carboxy-tetramethylrhodamine (5-TAMRA) with nanomolar affinity. The three-dimensional structure of the TMR-3 aptamer complex with 5-TAMRA was previously determined using liquid-state NMR. By combining the existing NMR restraints with long-range PELDOR distance and orientation information, a broad structural ensemble was generated. From this broad ensemble, a subset of structures was selected by globally fitting orientation-selective PELDOR data from multiple frequency bands. The subensemble represents the conformational variety resulting from the dynamics of the complex. The overall structure of the three-way junction, previously reported by NMR experiments, is retained in the ensemble of the bound state and we were additionally able to characterize the fluctuation of the different stems of the aptamer. Furthermore, in addition to the ligand-bound state we could access the unbound state of the TMR-3 aptamer which was previously uncharacterized. The unbound state of the aptamer is much more structurally diverse, compared to the ligand-bound state. A significant fraction of the ensemble of the unbound state strongly resembles the ligand-bound state, indicating that the ligand-bound state is preformed, which further suggests a conformational-capture ligand-binding mechanism. Apart from the conformations that resemble the ligand-bound state, distinct conformational states which are not present in the presence of the ligand, were successfully identified.
Collapse
Affiliation(s)
- Maximilian Gauger
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7, Frankfurt am Main 60438, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Germany and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt 60438, Germany
| | | | - Thilo Hetzke
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7, Frankfurt am Main 60438, Germany
| | | | - Jens Wöhnert
- Institute for Molecular Biosciences, Germany and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt 60438, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7, Frankfurt am Main 60438, Germany
| |
Collapse
|
2
|
Dörrenhaus R, Wagner PK, Kath-Schorr S. Two are not enough: synthetic strategies and applications of unnatural base pairs. Biol Chem 2023; 404:883-896. [PMID: 37354104 DOI: 10.1515/hsz-2023-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
Nucleic acid chemistry is a rapidly evolving field, and the need for novel nucleotide modifications and artificial nucleotide building blocks for diagnostic and therapeutic use, material science or for studying cellular processes continues unabated. This review focusses on the development and application of unnatural base pairs as part of an expanded genetic alphabet. Not only recent developments in "nature-like" artificial base pairs are presented, but also current synthetic methods to get access to C-glycosidic nucleotides. Wide-ranging viability in synthesis is a prerequisite for the successful use of unnatural base pairs in a broader spectrum and will be discussed.
Collapse
|
3
|
Kaiser F, Endeward B, Collauto A, Scheffer U, Prisner TF, Göbel MW. Spin-Labeled Riboswitch Synthesized from a Protected TPA Phosphoramidite Building Block. Chemistry 2022; 28:e202201822. [PMID: 35903916 PMCID: PMC9804336 DOI: 10.1002/chem.202201822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
The nitroxide TPA (2,2,5,5-tetramethyl-pyrrolin-1-oxyl-3-acetylene) is an excellent spin label for EPR studies of RNA. Previous synthetic methods, however, are complicated and require special equipment. Herein, we describe a uridine derived phosphoramidite with a photocaged TPA unit attached. The light sensitive 2-nitrobenzyloxymethyl group can be removed in high yield by short irradiation at 365 nm. Based on this approach, a doubly spin-labeled 27mer neomycin sensing riboswitch was synthesized and studied by PELDOR. The overall thermal stability of the fold is not much reduced by TPA. In-line probing nevertheless detected changes in local mobility.
Collapse
Affiliation(s)
- Frank Kaiser
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Burkhard Endeward
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Alberto Collauto
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Ute Scheffer
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Thomas F. Prisner
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Michael W. Göbel
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| |
Collapse
|
4
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
5
|
Bornewasser L, Kath-Schorr S. Preparation of Site-Specifically Spin-Labeled RNA by in Vitro Transcription Using an Expanded Genetic Alphabet. Methods Mol Biol 2022; 2439:223-240. [PMID: 35226325 DOI: 10.1007/978-1-0716-2047-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent advances in pulsed electron paramagnetic resonance (EPR) spectroscopy enable studying structure and folding of nucleic acids. An efficient introduction of spin labels at specific positions within the oligonucleotide sequence is a prerequisite. We here present a step-by-step guide to synthesize long RNA oligonucleotides bearing spin labels at specific positions within the sequence. RNA preparation is achieved enzymatically via in vitro transcription using an expanded genetic alphabet. Highly structured, several hundred nucleotides long RNAs with two nitroxide spin labels at specific positions can be prepared by this method.
Collapse
|
6
|
A Simple Method of Synthesis of 3-Carboxy-2,2,5,5-Tetraethylpyrrolidine-1-oxyl and Preparation of Reduction-Resistant Spin Labels and Probes of Pyrrolidine Series. Molecules 2021; 26:molecules26195761. [PMID: 34641310 PMCID: PMC8510269 DOI: 10.3390/molecules26195761] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/31/2023] Open
Abstract
Stable free radicals are widely used as molecular probes and labels in various biophysical and biomedical research applications of magnetic resonance spectroscopy and imaging. Among these radicals, sterically shielded nitroxides of pyrrolidine series demonstrate the highest stability in biological systems. Here, we suggest new convenient procedure for preparation of 3-carboxy-2,2,5,5-tetraethylpyrrolidine-1-oxyl, a reduction-resistant analog of widely used carboxy-Proxyl, from cheap commercially available reagents with the yield exceeding the most optimistic literature data. Several new spin labels and probes of 2,2,5,5-tetraethylpyrrolidine-1-oxyl series were prepared and reduction of these radicals in ascorbate solutions, mice blood and tissue homogenates was studied.
Collapse
|
7
|
Segler ALJ, Sigurdsson ST. A Carbazole-Derived Nitroxide That Is an Analogue of Cytidine: A Rigid Spin Label for DNA and RNA. J Org Chem 2021; 86:11647-11659. [PMID: 34410721 DOI: 10.1021/acs.joc.1c01176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A variety of semirigid and rigid spin labels comprise a valuable arsenal for measurements of biomolecular structures and dynamics by electron paramagnetic resonance (EPR) spectroscopy. Here, we report the synthesis and characterization of rigid spin labels Ċ and Ċm for DNA and RNA, respectively, that are carbazole-derived nitroxides and analogues of cytidine. Ċ and Ċm were converted to their phosphoramidites and used for their incorporation into oligonucleotides by solid-phase synthesis. Analysis of Ċ and Ċm by single-crystal X-ray crystallography verified their identity and showed little deviation from planarity of the nucleobase. Analysis of the continuous-wave (CW) EPR spectra of the spin-labeled DNA and RNA duplexes confirmed their incorporation into the nucleic acids and the line-shape was characteristic of rigid spin labels. Circular dichroism (CD) and thermal denaturation studies of the Ċ-labeled DNAs and Ċm-labeled RNAs indicated that the labels are nonperturbing of duplex structure.
Collapse
Affiliation(s)
- Anna-Lena Johanna Segler
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| |
Collapse
|
8
|
Gamble Jarvi A, Bogetti X, Singewald K, Ghosh S, Saxena S. Going the dHis-tance: Site-Directed Cu 2+ Labeling of Proteins and Nucleic Acids. Acc Chem Res 2021; 54:1481-1491. [PMID: 33476119 DOI: 10.1021/acs.accounts.0c00761] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this Account, we showcase site-directed Cu2+ labeling in proteins and DNA, which has opened new avenues for the measurement of the structure and dynamics of biomolecules using electron paramagnetic resonance (EPR) spectroscopy. In proteins, the spin label is assembled in situ from natural amino acid residues and a metal complex and requires no post-expression synthetic modification or purification procedures. The labeling scheme exploits a double histidine (dHis) motif, which utilizes endogenous or site-specifically mutated histidine residues to coordinate a Cu2+ complex. Pulsed EPR measurements on such Cu2+-labeled proteins potentially yield distance distributions that are up to 5 times narrower than the common protein spin label-the approach, thus, overcomes the inherent limitation of the current technology, which relies on a spin label with a highly flexible side chain. This labeling scheme provides a straightforward method that elucidates biophysical information that is costly, complicated, or simply inaccessible by traditional EPR labels. Examples include the direct measurement of protein backbone dynamics at β-sheet sites, which are largely inaccessible through traditional spin labels, and rigid Cu2+-Cu2+ distance measurements that enable higher precision in the analysis of protein conformations, conformational changes, interactions with other biomolecules, and the relative orientations of two labeled protein subunits. Likewise, a Cu2+ label has been developed for use in DNA, which is small, is nucleotide independent, and is positioned within the DNA helix. The placement of the Cu2+ label directly reports on the biologically relevant backbone distance. Additionally, for both of these labeling techniques, we have developed models for interpretation of the EPR distance information, primarily utilizing molecular dynamics (MD) simulations. Initial results using force fields developed for both protein and DNA labels have agreed with experimental results, which has been a major bottleneck for traditional spin labels. Looking ahead, we anticipate new combinations of MD and EPR to further our understanding of protein and DNA conformational changes, as well as working synergistically to investigate protein-DNA interactions.
Collapse
Affiliation(s)
- Austin Gamble Jarvi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Shreya Ghosh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
9
|
Domnick C, Eggert F, Wuebben C, Bornewasser L, Hagelueken G, Schiemann O, Kath‐Schorr S. EPR Distance Measurements on Long Non-coding RNAs Empowered by Genetic Alphabet Expansion Transcription. Angew Chem Int Ed Engl 2020; 59:7891-7896. [PMID: 31981397 PMCID: PMC7318606 DOI: 10.1002/anie.201916447] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/22/2020] [Indexed: 11/26/2022]
Abstract
We present herein a novel nitroxide spin label-containing RNA triphosphate TPT3NO and its application for site-specific spin-labeling of RNA through in vitro transcription using an expanded genetic alphabet. Our strategy allows the facile preparation of spin-labeled RNAs with sizes ranging from short RNA oligonucleotides to large, complex RNA molecules with over 370 nucleotides by standard in vitro transcription. As a proof of concept, inter-spin distance distributions are measured by pulsed electron paramagnetic resonance (EPR) spectroscopy in short self-complementary RNA sequences and in a well-studied 185 nucleotide non-coding RNA, the B. subtilis glmS ribozyme. The approach is then applied to probe for the first time the folding of the 377 nucleotide A-region of the long non-coding RNA Xist, by PELDOR.
Collapse
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Frank Eggert
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Christine Wuebben
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Lisa Bornewasser
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Olav Schiemann
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Stephanie Kath‐Schorr
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| |
Collapse
|
10
|
Hardwick JS, Haugland MM, El-Sagheer AH, Ptchelkine D, Beierlein FR, Lane AN, Brown T, Lovett JE, Anderson EA. 2'-Alkynyl spin-labelling is a minimally perturbing tool for DNA structural analysis. Nucleic Acids Res 2020; 48:2830-2840. [PMID: 32052020 PMCID: PMC7102949 DOI: 10.1093/nar/gkaa086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
The determination of distances between specific points in nucleic acids is essential to understanding their behaviour at the molecular level. The ability to measure distances of 2-10 nm is particularly important: deformations arising from protein binding commonly fall within this range, but the reliable measurement of such distances for a conformational ensemble remains a significant challenge. Using several techniques, we show that electron paramagnetic resonance (EPR) spectroscopy of oligonucleotides spin-labelled with triazole-appended nitroxides at the 2' position offers a robust and minimally perturbing tool for obtaining such measurements. For two nitroxides, we present results from EPR spectroscopy, X-ray crystal structures of B-form spin-labelled DNA duplexes, molecular dynamics simulations and nuclear magnetic resonance spectroscopy. These four methods are mutually supportive, and pinpoint the locations of the spin labels on the duplexes. In doing so, this work establishes 2'-alkynyl nitroxide spin-labelling as a minimally perturbing method for probing DNA conformation.
Collapse
Affiliation(s)
- Jack S Hardwick
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Marius M Haugland
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Denis Ptchelkine
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Frank R Beierlein
- Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry and Department of Toxicology & Cancer Biology, The University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Janet E Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
| | - Edward A Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
11
|
Domnick C, Eggert F, Wuebben C, Bornewasser L, Hagelueken G, Schiemann O, Kath‐Schorr S. EPR Distance Measurements on Long Non‐coding RNAs Empowered by Genetic Alphabet Expansion Transcription. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Frank Eggert
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Christine Wuebben
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Lisa Bornewasser
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Stephanie Kath‐Schorr
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
12
|
2-Butyl-2-tert-butyl-5,5-diethylpyrrolidine-1-oxyls: Synthesis and Properties. Molecules 2020; 25:molecules25040845. [PMID: 32075085 PMCID: PMC7070904 DOI: 10.3390/molecules25040845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 12/04/2022] Open
Abstract
Nitroxides are broadly used as molecular probes and labels in biophysics, structural biology, and biomedical research. Resistance of a nitroxide group bearing an unpaired electron to chemical reduction with low-molecular-weight antioxidants and enzymatic systems is of critical importance for these applications. The redox properties of nitroxides are known to depend on the ring size (for cyclic nitroxides) and electronic and steric effects of the substituents. Here, two highly strained nitroxides, 5-(tert-butyl)-5-butyl-2,2-diethyl-3-hydroxypyrrolidin-1-oxyl (4) and 2-(tert-butyl)-2-butyl-5,5-diethyl-3,4-bis(hydroxymethyl)pyrrolidin-1-oxyl (5), were prepared via a reaction of the corresponding 2-tert-butyl-1-pyrroline 1-oxides with butyllithium. Thermal stability and kinetics of reduction of the new nitroxides by ascorbic acid were studied. Nitroxide 5 showed the highest resistance to reduction.
Collapse
|
13
|
Kamble N, Wolfrum M, Halbritter T, Sigurdsson ST, Richert C. Noncovalent Spin-Labeling of DNA and RNA Triplexes. Chem Biodivers 2019; 17:e1900676. [PMID: 31872549 DOI: 10.1002/cbdv.201900676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 11/07/2022]
Abstract
Studying nucleic acids often requires labeling. Many labeling approaches require covalent bonds between the nucleic acid and the label, which complicates experimental procedures. Noncovalent labeling avoids the need for highly specific reagents and reaction conditions, and the effort of purifying bioconjugates. Among the least invasive techniques for studying biomacromolecules are NMR and EPR. Here, we report noncovalent labeling of DNA and RNA triplexes with spin labels that are nucleobase derivatives. Spectroscopic signals indicating strong binding were detected in EPR experiments in the cold, and filtration assays showed micromolar dissociation constants for complexes between a guanine-derived label and triplex motifs containing a single-nucleotide gap in the oligopurine strand. The advantages and challenges of noncovalent labeling via this approach that complements techniques relying on covalent links are discussed.
Collapse
Affiliation(s)
- Nilesh Kamble
- Science Institute, University of Iceland, Dunhaga 3, 107 R, eykjavik, Iceland
| | - Manpreet Wolfrum
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Thomas Halbritter
- Science Institute, University of Iceland, Dunhaga 3, 107 R, eykjavik, Iceland
| | - Snorri T Sigurdsson
- Science Institute, University of Iceland, Dunhaga 3, 107 R, eykjavik, Iceland
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
14
|
Domnick C, Hagelueken G, Eggert F, Schiemann O, Kath-Schorr S. Posttranscriptional spin labeling of RNA by tetrazine-based cycloaddition. Org Biomol Chem 2019; 17:1805-1808. [DOI: 10.1039/c8ob02597e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Spin labeling of in vitro transcribed RNA by iEDDA click chemistry is demonstrated. This allows the determination of distance distributions between two nitroxide spin labels by PELDOR in a self-complementary RNA duplex.
Collapse
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences Institute
- Chemical Biology & Medicinal Chemistry Unit
- University of Bonn
- 53121 Bonn
- Germany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| | - Frank Eggert
- Life & Medical Sciences Institute
- Chemical Biology & Medicinal Chemistry Unit
- University of Bonn
- 53121 Bonn
- Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry
- University of Bonn
- 53115 Bonn
- Germany
| | - Stephanie Kath-Schorr
- Life & Medical Sciences Institute
- Chemical Biology & Medicinal Chemistry Unit
- University of Bonn
- 53121 Bonn
- Germany
| |
Collapse
|
15
|
Rein S, Lewe P, Andrade SL, Kacprzak S, Weber S. Global analysis of complex PELDOR time traces. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 295:17-26. [PMID: 30092553 DOI: 10.1016/j.jmr.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 05/24/2023]
Abstract
Pulsed electron-electron double resonance (PELDOR, alternatively called DEER for double electron-electron resonance) pulse sequences allow for the detection of echo decay curves that are modulated by dipole-dipole-coupling frequencies of interacting electron spins. With increasing distance between them, the echo decay needs to be monitored over a progressively extended time period. However, since the echo intensity typically falls off exponentially with increasing time, this might be problematic with respect to the minimum signal-to-noise ratio required for a sound data analysis. In this contribution we present the new PELDOR analysis tool GloPel (Global analysis of PELDOR data), an open-source Python-based application, that allows to extract improved-quality distance distributions from PELDOR data for which no ideal signal-to-noise ratio can be achieved for a very long observation window. By using Tikhonov regularization, GloPel allows for the simultaneous analysis of two time traces acquired for a sample in two different observation time windows, thus taking advantage of both, the typically high signal-to-noise ratio of the time trace acquired at early times of the echo decay, and the best possible background function fitted for the decay at later times, which is in most cases superimposed with considerable noise. In this way, short distances are not overseen in the higher noise of the longer time traces while long distances are not artificially shortened by limiting the observation time window of the experiment. Following our suggested data acquisition procedure, a significant reduction of the measurement time may also be achieved.
Collapse
Affiliation(s)
- Stephan Rein
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Philipp Lewe
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Susana L Andrade
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Sylwia Kacprzak
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany.
| |
Collapse
|
16
|
Weinrich T, Jaumann EA, Scheffer UM, Prisner TF, Göbel MW. Phosphoramidite building blocks with protected nitroxides for the synthesis of spin-labeled DNA and RNA. Beilstein J Org Chem 2018; 14:1563-1569. [PMID: 30013683 PMCID: PMC6036967 DOI: 10.3762/bjoc.14.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
TEMPO spin labels protected with 2-nitrobenzyloxymethyl groups were attached to the amino residues of three different nucleosides: deoxycytidine, deoxyadenosine, and adenosine. The corresponding phosphoramidites could be incorporated by unmodified standard procedures into four different self-complementary DNA and two RNA oligonucleotides. After photochemical removal of the protective group, elimination of formic aldehyde and spontaneous air oxidation, the nitroxide radicals were regenerated in high yield. The resulting spin-labeled palindromic duplexes could be directly investigated by PELDOR spectroscopy without further purification steps. Spin–spin distances measured by PELDOR correspond well to the values obtained from molecular models.
Collapse
Affiliation(s)
- Timo Weinrich
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Eva A Jaumann
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Ute M Scheffer
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Michael W Göbel
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Glasbrenner M, Vogler S, Ochsenfeld C. Gauge-origin dependence in electronic g-tensor calculations. J Chem Phys 2018; 148:214101. [DOI: 10.1063/1.5028454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Glasbrenner
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, 81377 Munich, Germany
| | - Sigurd Vogler
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, 81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, 81377 Munich, Germany
| |
Collapse
|
18
|
Weinrich T, Jaumann EA, Scheffer U, Prisner TF, Göbel MW. A Cytidine Phosphoramidite with Protected Nitroxide Spin Label: Synthesis of a Full-Length TAR RNA and Investigation by In-Line Probing and EPR Spectroscopy. Chemistry 2018; 24:6202-6207. [PMID: 29485736 DOI: 10.1002/chem.201800167] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Indexed: 01/20/2023]
Abstract
EPR studies on RNA are complicated by three major obstacles related to the chemical nature of nitroxide spin labels: Decomposition while oligonucleotides are chemically synthesized, further decay during enzymatic strand ligation, and undetected changes in conformational equilibria due to the steric demand of the label. Herein possible solutions for all three problems are presented: A 2-nitrobenzyloxymethyl protective group for nitroxides that is stable under all conditions of chemical RNA synthesis and can be removed photochemically. By careful selection of ligation sites and splint oligonucleotides, high yields were achieved in the assembly of a full-length HIV-1 TAR RNA labeled with two protected nitroxide groups. PELDOR measurements on spin-labeled TAR in the absence and presence of arginine amide indicated arrest of interhelical motions on ligand binding. Finally, even minor changes in conformation due to the presence of spin labels are detected with high sensitivity by in-line probing.
Collapse
Affiliation(s)
- Timo Weinrich
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Eva A Jaumann
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Ute Scheffer
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Michael W Göbel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Kamble NR, Sigurdsson ST. Purine-Derived Nitroxides for Noncovalent Spin-Labeling of Abasic Sites in Duplex Nucleic Acids. Chemistry 2018; 24:4157-4164. [DOI: 10.1002/chem.201705410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Nilesh R. Kamble
- University of Iceland; Department of Chemistry; Science Institute; Dunhaga 3 107 Reykjavik Iceland
| | - Snorri Th. Sigurdsson
- University of Iceland; Department of Chemistry; Science Institute; Dunhaga 3 107 Reykjavik Iceland
| |
Collapse
|
20
|
Grytz CM, Kazemi S, Marko A, Cekan P, Güntert P, Sigurdsson ST, Prisner TF. Determination of helix orientations in a flexible DNA by multi-frequency EPR spectroscopy. Phys Chem Chem Phys 2018; 19:29801-29811. [PMID: 29090294 DOI: 10.1039/c7cp04997h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Distance measurements are performed between a pair of spin labels attached to nucleic acids using Pulsed Electron-Electron Double Resonance (PELDOR, also called DEER) spectroscopy which is a complementary tool to other structure determination methods in structural biology. The rigid spin label Ç, when incorporated pairwise into two helical parts of a nucleic acid molecule, allows the determination of both the mutual orientation and the distance between those labels, since Ç moves rigidly with the helix to which it is attached. We have developed a two-step protocol to investigate the conformational flexibility of flexible nucleic acid molecules by multi-frequency PELDOR. In the first step, a library with a broad collection of conformers, which are in agreement with topological constraints, NMR restraints and distances derived from PELDOR, was created. In the second step, a weighted structural ensemble of these conformers was chosen, such that it fits the multi-frequency PELDOR time traces of all doubly Ç-labelled samples simultaneously. This ensemble reflects the global structure and the conformational flexibility of the two-way DNA junction. We demonstrate this approach on a flexible bent DNA molecule, consisting of two short helical parts with a five adenine bulge at the center. The kink and twist motions between both helical parts were quantitatively determined and showed high flexibility, in agreement with a Förster Resonance Energy Transfer (FRET) study on a similar bent DNA motif. The approach presented here should be useful to describe the relative orientation of helical motifs and the conformational flexibility of nucleic acid structures, both alone and in complexes with proteins and other molecules.
Collapse
Affiliation(s)
- C M Grytz
- Institute of Physical and Theoretical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Gmeiner C, Klose D, Mileo E, Belle V, Marque SRA, Dorn G, Allain FHT, Guigliarelli B, Jeschke G, Yulikov M. Orthogonal Tyrosine and Cysteine Site-Directed Spin Labeling for Dipolar Pulse EPR Spectroscopy on Proteins. J Phys Chem Lett 2017; 8:4852-4857. [PMID: 28933855 DOI: 10.1021/acs.jpclett.7b02220] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Site-directed spin labeling of native tyrosine residues in isolated domains of the protein PTBP1, using a Mannich-type reaction, was combined with conventional spin labeling of cysteine residues. Double electron-electron resonance (DEER) EPR measurements were performed for both the nitroxide-nitroxide and Gd(III)-nitroxide label combinations within the same protein molecule. For the prediction of distance distributions from a structure model, rotamer libraries were generated for the two linker forms of the tyrosine-reactive isoindoline-based nitroxide radical Nox. Only moderate differences exist between the spatial spin distributions for the two linker forms of Nox. This strongly simplifies DEER data analysis, in particular, if only mean distances need to be predicted.
Collapse
Affiliation(s)
- Christoph Gmeiner
- Laboratory of Physical Chemistry, ETH Zurich , Zurich 8093, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zurich , Zurich 8093, Switzerland
| | - Elisabetta Mileo
- Aix Marseille Univ , CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille 13402, France
| | - Valérie Belle
- Aix Marseille Univ , CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille 13402, France
| | - Sylvain R A Marque
- Aix Marseille Univ , CNRS, ICR, Institut de Chimie Radicalaire, Marseille 13397, France
- N. N. Vorozhtsov Novosibirsk Insititute of Organic Chemistry , 630090 Novosibirsk, Russia
| | - Georg Dorn
- Institute of Molecular Biology and Biophysics, ETH Zurich , Zurich 8093, Switzerland
| | - Frédéric H T Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich , Zurich 8093, Switzerland
| | - Bruno Guigliarelli
- Aix Marseille Univ , CNRS, BIP, Laboratoire de Bioénergétique et Ingénierie des Protéines, Marseille 13402, France
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich , Zurich 8093, Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich , Zurich 8093, Switzerland
| |
Collapse
|
22
|
Lawless MJ, Shimshi A, Cunningham TF, Kinde MN, Tang P, Saxena S. Analysis of Nitroxide-Based Distance Measurements in Cell Extracts and in Cells by Pulsed ESR Spectroscopy. Chemphyschem 2017; 18:1653-1660. [PMID: 28295910 DOI: 10.1002/cphc.201700115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Indexed: 11/10/2022]
Abstract
Measurements of distances in cells by pulsed ESR spectroscopy afford tremendous opportunities to study proteins in native environments that are irreproducible in vitro. However, the in-cell environment is harsh towards the typical nitroxide radicals used in double electron-electron resonance (DEER) experiments. A systematic examination is performed on the loss of the DEER signal, including contributions from nitroxide decay and nitroxide side-chain cleavage. In addition, the possibility of extending the lifetime of the nitroxide radical by use of an oxidizing agent is investigated. Using this oxidizing agent, DEER distance measurements are performed on doubly nitroxide-labeled GB1, the immunoglobulin-binding domain of protein G, at varying incubation times in the cellular environment. It is found that, by comparison of the loss of DEER signal to the loss of the CW spectrum, cleavage of the nitroxide side chain contributes to the loss of DEER signal, which is significantly greater in cells than in cell extracts. Finally, local spin concentrations are monitored at varying incubation times to show the time required for molecular diffusion of a small globular protein within the cellular milieu.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Amit Shimshi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Timothy F Cunningham
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA.,Current address: Department of Chemistry, Hanover College, 484 Ball Dr, Hanover, IN, 47243, USA
| | - Monica N Kinde
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA.,Current address: Division of Basic Sciences, Kansas City University of Medicine and Biosciences, 2901 St. John's Blvd., Joplin, MO, 64804, USA
| | - Pei Tang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, 3501 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
23
|
Lawless MJ, Sarver JL, Saxena S. Nucleotide-Independent Copper(II)-Based Distance Measurements in DNA by Pulsed ESR Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew J. Lawless
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Jessica L. Sarver
- Division of Biological, Chemical, and Environmental Sciences; Westminster College; 319 S Market St. New Wilmington PA 16172 USA
| | - Sunil Saxena
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| |
Collapse
|
24
|
Lawless MJ, Sarver JL, Saxena S. Nucleotide-Independent Copper(II)-Based Distance Measurements in DNA by Pulsed ESR Spectroscopy. Angew Chem Int Ed Engl 2017; 56:2115-2117. [PMID: 28090713 DOI: 10.1002/anie.201611197] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/14/2016] [Indexed: 01/05/2023]
Abstract
A site-specific Cu2+ binding motif within a DNA duplex for distance measurements by ESR spectroscopy is reported. This motif utilizes a commercially available 2,2'-dipicolylamine (DPA) phosphormadite easily incorporated into any DNA oligonucleotide during initial DNA synthesis. The method only requires the simple post-synthetic addition of Cu2+ without the need for further chemical modification. Notably, the label is positioned within the DNA duplex, as opposed to outside the helical perimeter, for an accurate measurement of duplex distance. A distance of 2.7 nm was measured on a doubly Cu2+ -labeled DNA sequence, which is in exact agreement with the expected distance from both DNA modeling and molecular dynamic simulations. This result suggests that with this labeling strategy the ESR measured distance directly reports on backbone DNA distance, without the need for further modeling. Furthermore, the labeling strategy is structure- and nucleotide-independent.
Collapse
Affiliation(s)
- Matthew J Lawless
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Jessica L Sarver
- Division of Biological, Chemical, and Environmental Sciences, Westminster College, 319 S Market St., New Wilmington, PA, 16172, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
25
|
Grytz CM, Marko A, Cekan P, Sigurdsson ST, Prisner TF. Flexibility and conformation of the cocaine aptamer studied by PELDOR. Phys Chem Chem Phys 2016; 18:2993-3002. [PMID: 26740459 DOI: 10.1039/c5cp06158j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cocaine aptamer is a DNA three-way junction that binds cocaine at its helical junction. We studied the global conformation and overall flexibility of the aptamer in the absence and presence of cocaine by pulsed electron-electron double resonance (PELDOR) spectroscopy, also called double electron-electron resonance (DEER). The rigid nitroxide spin label Ç was incorporated pairwise into two helices of the aptamer. Multi-frequency 2D PELDOR experiments allow the determination of the mutual orientation and the distances between two Çs. Since Ç is rigidly attached to double-stranded DNA, it directly reports on the aptamer dynamics. The cocaine-bound and the non-bound states could be differentiated by their conformational flexibility, which decreases upon binding to cocaine. We observed a small change in the width and mean value of the distance distribution between the two spin labels upon cocaine binding. Further structural insights were obtained by investigating the relative orientation between the two spin-labeled stems of the aptamer. We determined the bend angle between this two stems. By combining the orientation information with a priori knowledge about the secondary structure of the aptamer, we obtained a molecular model describing the global folding and flexibility of the cocaine aptamer.
Collapse
Affiliation(s)
- C M Grytz
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Max-von-Laue-Str. 9, Hessen, Germany.
| | - A Marko
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Max-von-Laue-Str. 9, Hessen, Germany.
| | - P Cekan
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - S Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - T F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Max-von-Laue-Str. 9, Hessen, Germany.
| |
Collapse
|
26
|
Schöps P, Plackmeyer J, Marko A. Separation of intra- and intermolecular contributions to the PELDOR signal. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 269:70-77. [PMID: 27243966 DOI: 10.1016/j.jmr.2016.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 06/05/2023]
Abstract
Pulsed Electron-electron Double Resonance (PELDOR) is commonly used to measure distances between native paramagnetic centers or spin labels attached to complex biological macromolecules. In PELDOR the energies of electron magnetic dipolar interactions are measured by analyzing the oscillation frequencies of the recorded time resolved signal. Since PELDOR is an ensemble method, the detected signal contains contributions from intramolecular, as well as intermolecular electron spin interactions. The intramolecular part of the signal contains the information about the structure of the studied molecules, thus it is very important to accurately separate intra- and intermolecular contributions to the total signal. This separation can become ambiguous, when the length of the PELDOR signal is not much longer than twice the oscillation period of the signal. In this work we suggest a modulation depth scaling method, which can use short PELDOR signals in order to extract the intermolecular contribution. Using synthetic data we demonstrate the advantages of the new approach and analyze its stability with regard to signal noise. The method was also successfully tested on experimental data of three systems measured at Q-Band frequencies, two model compounds in deuterated and protonated solvents and one biological sample, namely BetP. The application of the new method with an assigned value of the signal modulation depth enables us to determine the interspin distances in all cases. This is especially interesting for the model compound with an interspin distance of 5.2nm in the protonated solvent and the biological sample, since an accurate separation of the intra- and intermolecular PELDOR signal contributions would be difficult with the standard approach in those cases.
Collapse
Affiliation(s)
- Philipp Schöps
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Jörn Plackmeyer
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Andriy Marko
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Haugland MM, El-Sagheer AH, Porter RJ, Peña J, Brown T, Anderson EA, Lovett JE. 2'-Alkynylnucleotides: A Sequence- and Spin Label-Flexible Strategy for EPR Spectroscopy in DNA. J Am Chem Soc 2016; 138:9069-72. [PMID: 27409454 DOI: 10.1021/jacs.6b05421] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a powerful method to elucidate molecular structure through the measurement of distances between conformationally well-defined spin labels. Here we report a sequence-flexible approach to the synthesis of double spin-labeled DNA duplexes, where 2'-alkynylnucleosides are incorporated at terminal and internal positions on complementary strands. Post-DNA synthesis copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions with a variety of spin labels enable the use of double electron-electron resonance experiments to measure a number of distances on the duplex, affording a high level of detailed structural information.
Collapse
Affiliation(s)
- Marius M Haugland
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Oxford, OX1 3TA, U.K
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Oxford, OX1 3TA, U.K.,Chemistry Branch, Faculty of Petroleum and Mining Engineering, Suez University , Suez 43721, Egypt
| | - Rachel J Porter
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Oxford, OX1 3TA, U.K
| | - Javier Peña
- Departamento de Química Orgánica, Universidad de Salamanca , Plaza de los Caídos 1-5, 37008 Salamanca, Spain
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Oxford, OX1 3TA, U.K
| | - Edward A Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Oxford, OX1 3TA, U.K
| | - Janet E Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews , North Haugh, St Andrews, KY16 9SS, U.K
| |
Collapse
|