1
|
Wilson T, Noberini R, Moysidou E, Ojukwu I, Milan M, Jiang M, Kelly G, Howell M, Bonaldi T, Scaffidi P. Systematic genetic perturbation reveals principles underpinning robustness of the epigenetic regulatory network. Nucleic Acids Res 2025; 53:gkaf297. [PMID: 40239999 PMCID: PMC12000879 DOI: 10.1093/nar/gkaf297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
The molecular control of epigenetic information relies on hundreds of proteins of diverse function, which cooperate in defining chromatin structure and DNA methylation landscapes. While many individual pathways have been characterized, how different classes of epigenetic regulators interact to build a resilient epigenetic regulatory network (ERN) remains poorly understood. Here, we show that most individual regulators are dispensable for somatic cell fitness, and that robustness emerges from multiple layers of functional cooperation and degeneracy among network components. By disrupting 200 epigenetic regulator genes, individually or in combination, we generated network-wide maps of functional interactions for representative regulators. We found that paralogues represent only a first layer of functional compensation within the ERN, with intra- or inter-class interactions buffering the effects of perturbation in a gene-specific manner: while CREBBP cooperates with multiple acetyltransferases to form a subnetwork that ensures robust chromatin acetylation, ARID1A interacts with regulators from across all functional classes. When combined with oncogene activation, the accumulated epigenetic disorder exposes a synthetic fragility and broadly sensitizes ARID1A-deficient cells to further perturbation. Our findings reveal homeostatic mechanisms through which the ERN sustains somatic cell fitness and uncover how the network remodels as the epigenome is progressively deregulated in disease.
Collapse
Affiliation(s)
- Thomas Stuart Wilson
- Cancer Epigenetics, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Roberta Noberini
- Nuclear Proteomics, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Eirini Moysidou
- Cancer Epigenetics, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Ifeyinwa Ojukwu
- Cancer Epigenetics, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Marta Milan
- Cancer Epigenetics, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Ming Jiang
- High-throughput Screening, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Gavin Kelly
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Michael Howell
- High-throughput Screening, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Tiziana Bonaldi
- Nuclear Proteomics, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
- Department of Oncology and Haemato-Oncology, University of Milano, Milan, 20122, Italy
| | - Paola Scaffidi
- Cancer Epigenetics, The Francis Crick Institute, London, NW1 1AT, United Kingdom
- Cancer Epigenetics, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| |
Collapse
|
2
|
Cortesi A, Gandolfi F, Arco F, Di Chiaro P, Valli E, Polletti S, Noberini R, Gualdrini F, Attanasio S, Citron F, Ho IL, Shah R, Yen EY, Spinella MC, Ronzoni S, Rodighiero S, Mitro N, Bonaldi T, Ghisletti S, Monticelli S, Viale A, Diaferia GR, Natoli G. Activation of endogenous retroviruses and induction of viral mimicry by MEK1/2 inhibition in pancreatic cancer. SCIENCE ADVANCES 2024; 10:eadk5386. [PMID: 38536927 PMCID: PMC10971493 DOI: 10.1126/sciadv.adk5386] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/08/2025]
Abstract
While pancreatic ductal adenocarcinomas (PDACs) are addicted to KRAS-activating mutations, inhibitors of downstream KRAS effectors, such as the MEK1/2 kinase inhibitor trametinib, are devoid of therapeutic effects. However, the extensive rewiring of regulatory circuits driven by the attenuation of the KRAS pathway may induce vulnerabilities of therapeutic relevance. An in-depth molecular analysis of the transcriptional and epigenomic alterations occurring in PDAC cells in the initial hours after MEK1/2 inhibition by trametinib unveiled the induction of endogenous retroviruses (ERVs) escaping epigenetic silencing, leading to the production of double-stranded RNAs and the increased expression of interferon (IFN) genes. We tracked ERV activation to the early induction of the transcription factor ELF3, which extensively bound and activated nonsilenced retroelements and synergized with IRF1 (interferon regulatory factor 1) in the activation of IFNs and IFN-stimulated genes. Trametinib-induced viral mimicry in PDAC may be exploited in the rational design of combination therapies in immuno-oncology.
Collapse
Affiliation(s)
- Alice Cortesi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gandolfi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Fabiana Arco
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Emanuele Valli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sara Polletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Sergio Attanasio
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesca Citron
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - I-lin Ho
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rutvi Shah
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Er-Yen Yen
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mara Cetty Spinella
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Simona Ronzoni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Nico Mitro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti,” Università degli Studi di Milano, Milano 20133, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| |
Collapse
|
3
|
Russo M, Gualdrini F, Vallelonga V, Prosperini E, Noberini R, Pedretti S, Borriero C, Di Chiaro P, Polletti S, Imperato G, Marenda M, Ghirardi C, Bedin F, Cuomo A, Rodighiero S, Bonaldi T, Mitro N, Ghisletti S, Natoli G. Acetyl-CoA production by Mediator-bound 2-ketoacid dehydrogenases boosts de novo histone acetylation and is regulated by nitric oxide. Mol Cell 2024; 84:967-980.e10. [PMID: 38242130 PMCID: PMC7615796 DOI: 10.1016/j.molcel.2023.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Histone-modifying enzymes depend on the availability of cofactors, with acetyl-coenzyme A (CoA) being required for histone acetyltransferase (HAT) activity. The discovery that mitochondrial acyl-CoA-producing enzymes translocate to the nucleus suggests that high concentrations of locally synthesized metabolites may impact acylation of histones and other nuclear substrates, thereby controlling gene expression. Here, we show that 2-ketoacid dehydrogenases are stably associated with the Mediator complex, thus providing a local supply of acetyl-CoA and increasing the generation of hyper-acetylated histone tails. Nitric oxide (NO), which is produced in large amounts in lipopolysaccharide-stimulated macrophages, inhibited the activity of Mediator-associated 2-ketoacid dehydrogenases. Elevation of NO levels and the disruption of Mediator complex integrity both affected de novo histone acetylation within a shared set of genomic regions. Our findings indicate that the local supply of acetyl-CoA generated by 2-ketoacid dehydrogenases bound to Mediator is required to maximize acetylation of histone tails at sites of elevated HAT activity.
Collapse
Affiliation(s)
- Marta Russo
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Francesco Gualdrini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Veronica Vallelonga
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Elena Prosperini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Carolina Borriero
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Gabriele Imperato
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Mattia Marenda
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Chiara Ghirardi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Fabio Bedin
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy; Department of Hematology and Hematology-Oncology (DIPO), Università degli Studi di Milano, Milano 20122, Italy
| | - Nico Mitro
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy; DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| |
Collapse
|
4
|
Chatzikyriakou P, Brempou D, Quinn M, Fishbein L, Noberini R, Anastopoulos IN, Tufton N, Lim ES, Obholzer R, Hubbard JG, Moonim M, Bonaldi T, Nathanson KL, Izatt L, Oakey RJ. A comprehensive characterisation of phaeochromocytoma and paraganglioma tumours through histone protein profiling, DNA methylation and transcriptomic analysis genome wide. Clin Epigenetics 2023; 15:196. [PMID: 38124114 PMCID: PMC10734084 DOI: 10.1186/s13148-023-01598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours. Pathogenic variants have been identified in more than 15 susceptibility genes; associated tumours are grouped into three Clusters, reinforced by their transcriptional profiles. Cluster 1A PPGLs have pathogenic variants affecting enzymes of the tricarboxylic acid cycle, including succinate dehydrogenase. Within inherited PPGLs, these are the most common. PPGL tumours are known to undergo epigenetic reprograming, and here, we report on global histone post-translational modifications and DNA methylation levels, alongside clinical phenotypes. RESULTS Out of the 25 histone post-translational modifications examined, Cluster 1A PPGLs were distinguished from other tumours by a decrease in hyper-acetylated peptides and an increase in H3K4me2. DNA methylation was compared between tumours from individuals who developed metastatic disease versus those that did not. The majority of differentially methylated sites identified tended to be completely methylated or unmethylated in non-metastatic tumours, with low inter-sample variance. Metastatic tumours by contrast consistently had an intermediate DNA methylation state, including the ephrin receptor EPHA4 and its ligand EFNA3. Gene expression analyses performed to identify genes involved in metastatic tumour behaviour pin-pointed a number of genes previously described as mis-regulated in Cluster 1A tumours, as well as highlighting the tumour suppressor RGS22 and the pituitary tumour-transforming gene PTTG1. CONCLUSIONS Combined transcriptomic and DNA methylation analyses revealed aberrant pathways, including ones that could be implicated in metastatic phenotypes and, for the first time, we report a decrease in hyper-acetylated histone marks in Cluster 1 PPGLs.
Collapse
Affiliation(s)
- Prodromos Chatzikyriakou
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Comprehensive Cancer Centre, King's College London, London, SE5 8AF, UK
| | - Dimitria Brempou
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Mark Quinn
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Lauren Fishbein
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes and Metabolism in the Department of Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Ioannis N Anastopoulos
- Department of Biomolecular Engineering, UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Nicola Tufton
- Department of Endocrinology, St. Bartholomew's Hospital, Barts Health NHS Trust, and William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Eugenie S Lim
- Department of Endocrinology, St. Bartholomew's Hospital, Barts Health NHS Trust, and William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Rupert Obholzer
- Department of ENT and Skull Base Surgery, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Johnathan G Hubbard
- Department of Endocrine Surgery, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Mufaddal Moonim
- Department of Cellular Pathology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milano, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, Philadelphia, PA, USA
| | - Louise Izatt
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
5
|
Noberini R, Longhi E, Bonaldi T. A Super-SILAC Approach for Profiling Histone Posttranslational Modifications. Methods Mol Biol 2023; 2603:87-102. [PMID: 36370272 DOI: 10.1007/978-1-0716-2863-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Histone posttranslational modifications (PTMs) play an important role in the regulation of gene expression and have been implicated in a multitude of physiological and pathological processes. During the last decade, mass spectrometry (MS) has emerged as the most accurate and versatile tool to quantitate histone PTMs. Stable-isotope labeling by amino acids in cell culture (SILAC) is an MS-based quantitation strategy involving metabolic labeling of cells, which has been applied to global protein profiling as well as histone PTM analysis. The classical SILAC approach is associated with reduced experimental variability and high quantitation accuracy, but provides limited multiplexing capabilities and can be applied only to actively dividing cells, thus excluding clinical samples. Both limitations are overcome by an evolution of classical SILAC involving the use of a mix of heavy-labeled cell lines as a spike-in standard, known as "super-SILAC". In this chapter, we will provide a detailed description of the optimized protocol used in our laboratory to generate a histone-focused super-SILAC mix and employ it as an internal standard for histone PTM quantitation.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Elisa Longhi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
6
|
Amatori S, Persico G, Cantatore F, Rusin M, Formica M, Giorgi L, Macedi E, Casciaro F, Errico Provenzano A, Gambardella S, Noberini R, Bonaldi T, Fusi V, Giorgio M, Fanelli M. Small molecule-induced epigenomic reprogramming of APL blasts leading to antiviral-like response and c-MYC downregulation. Cancer Gene Ther 2022; 30:671-682. [PMID: 36536122 DOI: 10.1038/s41417-022-00576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
AbstractAcute promyelocytic leukemia (APL) is an aggressive subtype of acute myeloid leukemia (AML) in which the PML/RARα fusion protein exerts oncogenic activities by recruiting repressive complexes to the promoter of specific target genes. Other epigenetic perturbations, as alterations of histone H3 lysine 9 trimethylation (H3K9me3), have been frequently found in AMLs and are associated with leukemogenesis and leukemia progression. Here, we characterized the epigenomic effects of maltonis, a novel maltol-derived molecule, in APL cells. We demonstrate that maltonis treatments induce a profound remodulation of the histone code, reducing global H3K9me3 signal and modulating other histone post-translational modifications. Transcriptomic and epigenomic analyses revealed that maltonis exposure induces changes of genes expression associated with a genomic redistribution of histone H3 lysine 4 trimethylation (H3K4me3) and lysine 27 acetylation (H3K27ac). Upregulation of interferon alpha and gamma response and downregulation of c-MYC target genes, in function of c-MYC reduced expression (monitored in all the hematopoietic neoplasms tested), represent the most significant modulated pathways. These data demonstrate the ability of maltonis to epigenetically reprogram the gene expression profile of APL cells, inducing an intriguing antiviral-like response, concomitantly with the downregulation of c-MYC-related pathways, thus making it an attractive candidate for antileukemic therapy.
Collapse
|
7
|
Robusti G, Vai A, Bonaldi T, Noberini R. Investigating pathological epigenetic aberrations by epi-proteomics. Clin Epigenetics 2022; 14:145. [PMID: 36371348 PMCID: PMC9652867 DOI: 10.1186/s13148-022-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetics includes a complex set of processes that alter gene activity without modifying the DNA sequence, which ultimately determines how the genetic information common to all the cells of an organism is used to generate different cell types. Dysregulation in the deposition and maintenance of epigenetic features, which include histone posttranslational modifications (PTMs) and histone variants, can result in the inappropriate expression or silencing of genes, often leading to diseased states, including cancer. The investigation of histone PTMs and variants in the context of clinical samples has highlighted their importance as biomarkers for patient stratification and as key players in aberrant epigenetic mechanisms potentially targetable for therapy. Mass spectrometry (MS) has emerged as the most powerful and versatile tool for the comprehensive, unbiased and quantitative analysis of histone proteoforms. In recent years, these approaches-which we refer to as "epi-proteomics"-have demonstrated their usefulness for the investigation of epigenetic mechanisms in pathological conditions, offering a number of advantages compared with the antibody-based methods traditionally used to profile clinical samples. In this review article, we will provide a critical overview of the MS-based approaches that can be employed to study histone PTMs and variants in clinical samples, with a strong focus on the latest advances in this area, such as the analysis of uncommon modifications and the integration of epi-proteomics data into multi-OMICs approaches, as well as the challenges to be addressed to fully exploit the potential of this novel field of research.
Collapse
Affiliation(s)
- Giulia Robusti
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Alessandro Vai
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Tiziana Bonaldi
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hematology-Oncology, University of Milan, 20122 Milan, Italy
| | - Roberta Noberini
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| |
Collapse
|
8
|
De Clerck L, Willems S, Daled S, Van Puyvelde B, Verhelst S, Corveleyn L, Deforce D, Dhaenens M. An experimental design to extract more information from MS-based histone studies. Mol Omics 2021; 17:929-938. [PMID: 34522942 DOI: 10.1039/d1mo00201e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Histone-based chromatin organization paved the way for eukaryotic genome complexity. Because of their key role in information management, the histone posttranslational modifications (hPTM), which mediate their function, have evolved into an alphabet that has more letters than there are amino acids, together making up the "histone code". The resulting combinatorial complexity is manifold higher than what is usually encountered in proteomics. Consequently, a considerably bigger part of the acquired MSMS spectra remains unannotated to date. Adapted search parameters can dig deeper into the dark histone ion space, but the lack of false discovery rate (FDR) control and the high level of ambiguity when searching combinatorial PTMs makes it very hard to assess whether the newly assigned ions are informative. Therefore, we propose an easily adoptable time-lapse enzymatic deacetylation (HDAC1) of a commercial histone extract as a quantify-first strategy that allows isolating ion populations of interest, when studying e.g. acetylation on histones, that currently remain in the dark. By adapting search parameters to study potential issues in sample preparation, data acquisition and data analysis, we stepwise managed to double the portion of annotated precursors of interest from 10.5% to 21.6%. This strategy is intended to make up for the lack of validated FDR control and has led to several adaptations of our current workflow that will reduce the portion of the dark histone ion space in the future. Finally, this strategy can be applied with any enzyme targeting a modification of interest.
Collapse
Affiliation(s)
- Laura De Clerck
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Sander Willems
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Simon Daled
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Bart Van Puyvelde
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Sigrid Verhelst
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Laura Corveleyn
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Noberini R, Savoia EO, Brandini S, Greco F, Marra F, Bertalot G, Pruneri G, McDonnell LA, Bonaldi T. Spatial epi-proteomics enabled by histone post-translational modification analysis from low-abundance clinical samples. Clin Epigenetics 2021; 13:145. [PMID: 34315505 PMCID: PMC8317427 DOI: 10.1186/s13148-021-01120-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Increasing evidence linking epigenetic mechanisms and different diseases, including cancer, has prompted in the last 15 years the investigation of histone post-translational modifications (PTMs) in clinical samples. Methods allowing the isolation of histones from patient samples followed by the accurate and comprehensive quantification of their PTMs by mass spectrometry (MS) have been developed. However, the applicability of these methods is limited by the requirement for substantial amounts of material. RESULTS To address this issue, in this study we streamlined the protein extraction procedure from low-amount clinical samples and tested and implemented different in-gel digestion strategies, obtaining a protocol that allows the MS-based analysis of the most common histone PTMs from laser microdissected tissue areas containing as low as 1000 cells, an amount approximately 500 times lower than what is required by available methods. We then applied this protocol to breast cancer patient laser microdissected tissues in two proof-of-concept experiments, identifying differences in histone marks in heterogeneous regions selected by either morphological evaluation or MALDI MS imaging. CONCLUSIONS These results demonstrate that analyzing histone PTMs from very small tissue areas and detecting differences from adjacent tumor regions is technically feasible. Our method opens the way for spatial epi-proteomics, namely the investigation of epigenetic features in the context of tissue and tumor heterogeneity, which will be instrumental for the identification of novel epigenetic biomarkers and aberrant epigenetic mechanisms.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Evelyn Oliva Savoia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Brandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Greco
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy
- Fondazione Pisana Per La Scienza ONLUS, 56107, San Giuliano Terme, PI, Italy
| | - Francesca Marra
- Department of Pathology, Fondazione IRCCS-Istituto Nazionale Tumori, Milan, Italy
| | - Giovanni Bertalot
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology, Fondazione IRCCS-Istituto Nazionale Tumori, Milan, Italy
| | - Liam A McDonnell
- Fondazione Pisana Per La Scienza ONLUS, 56107, San Giuliano Terme, PI, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
10
|
Vinaiphat A, Low JK, Yeoh KW, Chng WJ, Sze SK. Application of Advanced Mass Spectrometry-Based Proteomics to Study Hypoxia Driven Cancer Progression. Front Oncol 2021; 11:559822. [PMID: 33708620 PMCID: PMC7940826 DOI: 10.3389/fonc.2021.559822] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the largest contributors to the burden of chronic disease in the world and is the second leading cause of death globally. It is associated with episodes of low-oxygen stress (hypoxia or ischemia/reperfusion) that promotes cancer progression and therapeutic resistance. Efforts have been made in the past using traditional proteomic approaches to decipher oxygen deprivation stress-related mechanisms of the disease initiation and progression and to identify key proteins as a therapeutic target for the treatment and prevention. Despite the potential benefits of proteomic in translational research for the discovery of new drugs, the therapeutic outcome with this approach has not met expectations in clinical trials. This is mainly due to the disease complexity which possess a multifaceted molecular pathology. Therefore, novel strategies to identify and characterize clinically important sets of modulators and molecular events for multi-target drug discovery are needed. Here, we review important past and current studies on proteomics in cancer with an emphasis on recent pioneered labeling approaches in mass spectrometry (MS)-based systematic quantitative analysis to improve clinical success. We also discuss the results of the selected innovative publications that integrate advanced proteomic technologies (e.g. MALDI-MSI, pSILAC/SILAC/iTRAQ/TMT-LC-MS/MS, MRM-MS) for comprehensive analysis of proteome dynamics in different biosystems, including cell type, cell species, and subcellular proteome (i.e. secretome and chromatome). Finally, we discuss the future direction and challenges in the application of these technological advancements in mass spectrometry within the context of cancer and hypoxia.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jee Keem Low
- Department of Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Kheng Wei Yeoh
- Department of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
11
|
Kim YE, Kim K, Oh HB, Lee SK, Kang D. Quantitative proteomic profiling of Cervicovaginal fluid from pregnant women with term and preterm birth. Proteome Sci 2021; 19:3. [PMID: 33588889 PMCID: PMC7885372 DOI: 10.1186/s12953-021-00171-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 02/04/2021] [Indexed: 01/13/2023] Open
Abstract
Background Preterm birth (PTB) is one of major causes of perinatal mortality and neonatal morbidity, but knowledge of its complex etiology is still limited. Here we present cervicovaginal fluid (CVF) protein profiles of pregnant women who subsequently delivered at spontaneous preterm or term, aiming to identify differentially expressed CVF proteins in PTB and term birth. Methods The CVF proteome of women who sequentially delivered at preterm and term was analyzed using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional nanoflow liquid chromatography-tandem mass spectrometry (2D-nLC-MS/MS). We compared the CVF proteome of PTB (n = 5) and control subjects (term birth, n = 7) using pooled control CVF (term birth, n = 20) as spike-in standard. Results We identified 1294 CVF proteins, of which 605 were newly identified proteins. Of 990 proteins quantified in both PTB and term birth, 52 proteins were significantly up/down-regulated in PTB compared to term birth. The differentially expressed proteins were functionally associated to immune response, endopeptidase inhibitors and structural constituent of cytoskeleton. Finally, we confirm the down-regulation of SERPINB7 (a serine-type protease inhibitor) in PTB compared to control by Western blot. Conclusions Taken together, our study provide quantitative CVF proteome profiles of pregnant women who ultimately delivered at preterm and term. These promising results could help to improve the understanding of PTB etiology and to discover biomarkers for asymptomatic PTB. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-021-00171-1.
Collapse
Affiliation(s)
- Young Eun Kim
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, South Korea
| | - Kwonseong Kim
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, South Korea.,Department of Chemistry, Sogang University, Seoul, 04107, South Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, South Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University Hospital, 158 Gasuwondong-Ro, Seo-Gu, Daejeon, 3535, South Korea.
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, South Korea.
| |
Collapse
|
12
|
Ferrari KJ, Amato S, Noberini R, Toscani C, Fernández-Pérez D, Rossi A, Conforti P, Zanotti M, Bonaldi T, Tamburri S, Pasini D. Intestinal differentiation involves cleavage of histone H3 N-terminal tails by multiple proteases. Nucleic Acids Res 2021; 49:791-804. [PMID: 33398338 PMCID: PMC7826276 DOI: 10.1093/nar/gkaa1228] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
The proteolytic cleavage of histone tails, also termed histone clipping, has been described as a mechanism for permanent removal of post-translational modifications (PTMs) from histone proteins. Such activity has been ascribed to ensure regulatory function in key cellular processes such as differentiation, senescence and transcriptional control, for which different histone-specific proteases have been described. However, all these studies were exclusively performed using cell lines cultured in vitro and no clear evidence that histone clipping is regulated in vivo has been reported. Here we show that histone H3 N-terminal tails undergo extensive cleavage in the differentiated cells of the villi in mouse intestinal epithelium. Combining biochemical methods, 3D organoid cultures and in vivo approaches, we demonstrate that intestinal H3 clipping is the result of multiple proteolytic activities. We identified Trypsins and Cathepsin L as specific H3 tail proteases active in small intestinal differentiated cells and showed that their proteolytic activity is differentially affected by the PTM pattern of histone H3 tails. Together, our findings provide in vivo evidence of H3 tail proteolysis in mammalian tissues, directly linking H3 clipping to cell differentiation.
Collapse
Affiliation(s)
- Karin Johanna Ferrari
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Roberta Noberini
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Cecilia Toscani
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy.,University of Milan, Department of Health Sciences, Via A. di Rudinì, 8, 20142 Milan, Italy
| | - Daniel Fernández-Pérez
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Alessandra Rossi
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Pasquale Conforti
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marika Zanotti
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simone Tamburri
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy.,University of Milan, Department of Health Sciences, Via A. di Rudinì, 8, 20142 Milan, Italy
| | - Diego Pasini
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy.,University of Milan, Department of Health Sciences, Via A. di Rudinì, 8, 20142 Milan, Italy
| |
Collapse
|
13
|
Noberini R, Robusti G, Bonaldi T. Mass spectrometry-based characterization of histones in clinical samples: applications, progresses, and challenges. FEBS J 2021; 289:1191-1213. [PMID: 33415821 PMCID: PMC9291046 DOI: 10.1111/febs.15707] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
In the last 15 years, increasing evidence linking epigenetics to various aspects of cancer biology has prompted the investigation of histone post-translational modifications (PTMs) and histone variants in the context of clinical samples. The studies performed so far demonstrated the potential of this type of investigations for the discovery of both potential epigenetic biomarkers for patient stratification and novel epigenetic mechanisms potentially targetable for cancer therapy. Although traditionally the analysis of histones in clinical samples was performed through antibody-based methods, mass spectrometry (MS) has emerged as a more powerful tool for the unbiased, comprehensive, and quantitative investigation of histone PTMs and variants. MS has been extensively used for the analysis of epigenetic marks in cell lines and animal tissue and, thanks to recent technological advances, is now ready to be applied also to clinical samples. In this review, we will provide an overview on the quantitative MS-based analysis of histones, their PTMs and their variants in cancer clinical samples, highlighting current achievements and future perspectives for this novel field of research. Among the different MS-based approaches currently available for histone PTM profiling, we will focus on the 'bottom-up' strategy, namely the analysis of short proteolytic peptides, as it has been already successfully employed for the analysis of clinical samples.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Robusti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
14
|
Nicosia L, Bonaldi T. Native Chromatin Proteomics (N-ChroP) to Characterize Histone Post-translational Modification (PTM) Combinatorics at Distinct Genomic Regions. Methods Mol Biol 2021; 2351:251-274. [PMID: 34382194 DOI: 10.1007/978-1-0716-1597-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this chapter, we describe the proteomic approach named "Native Chromatin Proteomics" (N-ChroP) that couples a modified Chromatin ImmunoPrecipitation (ChIP) protocol with the mass spectrometry (MS) analysis of immunoprecipitated proteins to study the combinatorial enrichment or exclusion of histone post-translational modifications (PTMs) at specific genomic regions, such as promoters or enhancers. We describe the protocol steps from the digestion of chromatin and nucleosome immunoprecipitation to histone digestion and peptide enrichment prior to MS analysis, up to the MS raw data analysis. We also discuss current challenges and offer suggestions based on the direct hands-on experience acquired during the method setup.
Collapse
Affiliation(s)
- Luciano Nicosia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
15
|
Noberini R, Restellini C, Savoia EO, Bonaldi T. Enrichment of histones from patient samples for mass spectrometry-based analysis of post-translational modifications. Methods 2020; 184:19-28. [DOI: 10.1016/j.ymeth.2019.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022] Open
|
16
|
Histone H1 Post-Translational Modifications: Update and Future Perspectives. Int J Mol Sci 2020; 21:ijms21165941. [PMID: 32824860 PMCID: PMC7460583 DOI: 10.3390/ijms21165941] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Histone H1 is the most variable histone and its role at the epigenetic level is less characterized than that of core histones. In vertebrates, H1 is a multigene family, which can encode up to 11 subtypes. The H1 subtype composition is different among cell types during the cell cycle and differentiation. Mass spectrometry-based proteomics has added a new layer of complexity with the identification of a large number of post-translational modifications (PTMs) in H1. In this review, we summarize histone H1 PTMs from lower eukaryotes to humans, with a particular focus on mammalian PTMs. Special emphasis is made on PTMs, whose molecular function has been described. Post-translational modifications in H1 have been associated with the regulation of chromatin structure during the cell cycle as well as transcriptional activation, DNA damage response, and cellular differentiation. Additionally, PTMs in histone H1 that have been linked to diseases such as cancer, autoimmune disorders, and viral infection are examined. Future perspectives and challenges in the profiling of histone H1 PTMs are also discussed.
Collapse
|
17
|
Restellini C, Cuomo A, Lupia M, Giordano M, Bonaldi T, Noberini R. Alternative digestion approaches improve histone modification mapping by mass spectrometry in clinical samples. Proteomics Clin Appl 2018; 13:e1700166. [PMID: 30471193 DOI: 10.1002/prca.201700166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/03/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Profiling histone posttranslational modifications (PTMs) in clinical samples holds great potential for the identification of epigenetic biomarkers and the discovery of novel epigenetic targets. MS-based approaches to analyze histone PTMs in clinical samples usually rely on SDS-PAGE separation following histone enrichment in order to eliminate detergents and further isolate histones. However, this limits the digestions options and hence the modification coverage. EXPERIMENTAL DESIGN AND RESULTS The aim of this study is the implementation of a procedure involving acetone protein precipitation followed by histone enrichment through a C18 StageTip column to obtain histone preparations suitable for various in-solution digestion protocols. Among them, the Arg-C digestion, which allows profiling histone H4 modifications, and the Prop-PIC method, which improves the detection of short and hydrophilic peptides, are tested. This approach is validated on different types of samples, including formalin-fixed paraffin-embedded pathology tissues, and employed to profile histone H4 modifications in cancer samples and normal tissues, identifying previously reported differences, as well as novel ones. CONCLUSIONS AND CLINICAL RELEVANCE This protocol widens the number of applications available in the toolbox of clinical epigenomics, allowing the investigation of a larger spectrum of histone marks in patient samples.
Collapse
Affiliation(s)
- Camilla Restellini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Michela Lupia
- Unit of Gynecological Oncology Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marco Giordano
- Unit of Gynecological Oncology Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
18
|
Noberini R, Osti D, Miccolo C, Richichi C, Lupia M, Corleone G, Hong SP, Colombo P, Pollo B, Fornasari L, Pruneri G, Magnani L, Cavallaro U, Chiocca S, Minucci S, Pelicci G, Bonaldi T. Extensive and systematic rewiring of histone post-translational modifications in cancer model systems. Nucleic Acids Res 2018; 46:3817-3832. [PMID: 29618087 PMCID: PMC5934616 DOI: 10.1093/nar/gky224] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Histone post-translational modifications (PTMs) generate a complex combinatorial code that regulates gene expression and nuclear functions, and whose deregulation has been documented in different types of cancers. Therefore, the availability of relevant culture models that can be manipulated and that retain the epigenetic features of the tissue of origin is absolutely crucial for studying the epigenetic mechanisms underlying cancer and testing epigenetic drugs. In this study, we took advantage of quantitative mass spectrometry to comprehensively profile histone PTMs in patient tumor tissues, primary cultures and cell lines from three representative tumor models, breast cancer, glioblastoma and ovarian cancer, revealing an extensive and systematic rewiring of histone marks in cell culture conditions, which includes a decrease of H3K27me2/me3, H3K79me1/me2 and H3K9ac/K14ac, and an increase of H3K36me1/me2. While some changes occur in short-term primary cultures, most of them are instead time-dependent and appear only in long-term cultures. Remarkably, such changes mostly revert in cell line- and primary cell-derived in vivo xenograft models. Taken together, these results support the use of xenografts as the most representative models of in vivo epigenetic processes, suggesting caution when using cultured cells, in particular cell lines and long-term primary cultures, for epigenetic investigations.
Collapse
Affiliation(s)
- Roberta Noberini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan 20139, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Daniela Osti
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Claudia Miccolo
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Cristina Richichi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Michela Lupia
- Unit of Gynecological Oncology Research, European Institute of Oncology, Milan 20141, Italy
| | - Giacomo Corleone
- Department of Surgery and Cancer, Imperial College Hammersmith, London W12, UK
| | - Sung-Pil Hong
- Department of Surgery and Cancer, Imperial College Hammersmith, London W12, UK
| | - Piergiuseppe Colombo
- Department of Pathology, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Bianca Pollo
- Department of Neuropathology, IRCCS Foundation Neurological Institute 'C. Besta', Milan 20133, Italy
| | - Lorenzo Fornasari
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Giancarlo Pruneri
- Biobank for Translational Medicine Unit, Department of Pathology, European Institute of Oncology, Milano 20141, Italy
- School of Medicine, University of Milan, Milan 20122, Italy
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College Hammersmith, London W12, UK
| | - Ugo Cavallaro
- Unit of Gynecological Oncology Research, European Institute of Oncology, Milan 20141, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
- New Drugs Program, European Institute of Oncology, Milan 20139, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
- Department of Translational Medicine, Piemonte Orientale University 'Amedeo Avogadro', Novara 28100, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| |
Collapse
|
19
|
Noberini R, Longuespée R, Richichi C, Pruneri G, Kriegsmann M, Pelicci G, Bonaldi T. PAT-H-MS coupled with laser microdissection to study histone post-translational modifications in selected cell populations from pathology samples. Clin Epigenetics 2017; 9:69. [PMID: 28702092 PMCID: PMC5504751 DOI: 10.1186/s13148-017-0369-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022] Open
Abstract
Background Aberrations in histone post-translational modifications (hPTMs) have been linked with various pathologies, including cancer, and could not only represent useful biomarkers but also suggest possible targetable epigenetic mechanisms. We have recently developed an approach, termed pathology tissue analysis of histones by mass spectrometry (PAT-H-MS), that allows performing a comprehensive and quantitative analysis of histone PTMs from formalin-fixed paraffin-embedded pathology samples. Despite its great potential, the application of this technique is limited by tissue heterogeneity. Methods In this study, we further implemented the PAT-H-MS approach by coupling it with techniques aimed at reducing sample heterogeneity and selecting specific portions or cell populations within the samples, such as manual macrodissection and laser microdissection (LMD). Results When applied to the analysis of a small set of breast cancer samples, LMD-PAT-H-MS allowed detecting more marked changes between luminal A-like and triple negative patients as compared with the classical approach. These changes included not only the already known H3 K27me3 and K9me3 marks, but also H3 K36me1, which was found increased in triple negative samples and validated on a larger cohort of patients, and could represent a potential novel marker distinguishing breast cancer subtypes. Conclusions These results show the feasibility of applying techniques to reduce sample heterogeneity, including laser microdissection, to the PAT-H-MS protocol, providing new tools in clinical epigenetics and opening new avenues for the comprehensive analysis of histone post-translational modifications in selected cell populations. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0369-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberta Noberini
- Center for Genomic Science of IIT@ SEMM, Istituto Italiano di Tecnologia, Via Adamello 16, 20139 Milan, Italy
| | - Rémi Longuespée
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69620 Heidelberg, Germany
| | - Cristina Richichi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Giancarlo Pruneri
- Biobank for Translational Medicine Unit, Department of Pathology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy.,School of Medicine, University of Milan, 20122 Milan, Italy
| | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Im Neuenheimer Feld 224, 69620 Heidelberg, Germany
| | - Giuliana Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Translational Medicine, Piemonte Orientale University "Amedeo Avogadro", 28100 Novara, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|