1
|
Kunkle DE, Cai Y, Eichman BF, Skaar EP. An interstrand DNA crosslink glycosylase aids Acinetobacter baumannii pathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2402422121. [PMID: 38923984 PMCID: PMC11228520 DOI: 10.1073/pnas.2402422121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Maintenance of DNA integrity is essential to all forms of life. DNA damage generated by reaction with genotoxic chemicals results in deleterious mutations, genome instability, and cell death. Pathogenic bacteria encounter several genotoxic agents during infection. In keeping with this, the loss of DNA repair networks results in virulence attenuation in several bacterial species. Interstrand DNA crosslinks (ICLs) are a type of DNA lesion formed by covalent linkage of opposing DNA strands and are particularly toxic as they interfere with replication and transcription. Bacteria have evolved specialized DNA glycosylases that unhook ICLs, thereby initiating their repair. In this study, we describe AlkX, a DNA glycosylase encoded by the multidrug resistant pathogen Acinetobacter baumannii. AlkX exhibits ICL unhooking activity similar to that of its Escherichia coli homolog YcaQ. Interrogation of the in vivo role of AlkX revealed that its loss sensitizes cells to DNA crosslinking and impairs A. baumannii colonization of the lungs and dissemination to distal tissues during pneumonia. These results suggest that AlkX participates in A. baumannii pathogenesis and protects the bacterium from stress conditions encountered in vivo. Consistent with this, we found that acidic pH, an environment encountered during host colonization, results in A. baumannii DNA damage and that alkX is induced by, and contributes to, defense against acidic conditions. Collectively, these studies reveal functions for a recently described class of proteins encoded in a broad range of pathogenic bacterial species.
Collapse
Affiliation(s)
- Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN37232
| | - Yujuan Cai
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
| | - Brandt F. Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
- Department of Biochemistry, Vanderbilt University, Nashville, TN37232
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
| |
Collapse
|
2
|
Salmons B, Gunzburg WH. Long-Term Survival of Cellulose Sulphate-Encapsulated Cells and Metronomic Ifosfamide Control Tumour Growth in Pancreatic Cancer Models-A Prelude to Treating Solid Tumours Effectively in Pets and Humans. Life (Basel) 2023; 13:2357. [PMID: 38137959 PMCID: PMC10745020 DOI: 10.3390/life13122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/10/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The use of encapsulated cells for the in vivo delivery of biotherapeutics is a promising new technology to potentiate the effectiveness of cell-based therapies for veterinary and human application. One use of the technology is to locally activate chemotherapeutics to their short-lived highly active forms. We have previously shown that a stable clone of HEK293 cells overexpressing a cytochrome P450 enzyme that has been encapsulated in immunoprotective cellulose sulphate beads can be implanted near solid tumours in order to activate oxazaphosphorines such as ifosfamide and cyclophosphamide to the tumour-killing metabolite phosphoramide mustard. The efficacy of this approach has been shown in animal models as well as in human and canine clinical trials. In these previous studies, the oxazaphosphorine was only given twice. An analysis of the Kaplan-Meier plots of the results of the clinical trials suggest that repeated dosing might result in a significant clinical benefit. AIMS In this study, we aimed to (i) demonstrate the stable long-term expression of cytochrome P450 from a characterized, transfected cell clone, as well as (ii) demonstrate that one implanted dose of these encapsulated cytochrome P450-expressing cells is capable of activating multiple doses of ifosfamide in animal models. METHODOLOGY We initially used cell and molecular methods to show cell line stability over multiple passages, as well as chemical and biological function in vitro. This was followed by a demonstration that encapsulated HEK293 cells are capable of activating multiple doses of ifosfamide in a mouse model of pancreatic cancer without being killed by the chemotherapeutic. CONCLUSION A single injection of encapsulated HEK293 cells followed by multiple rounds of ifosfamide administration results in repeated anti-tumour activity and halts tumour growth but, in the absence of a functioning immune system, does not cause tumour regression.
Collapse
Affiliation(s)
- Brian Salmons
- Austrianova Singapore Pte Ltd., 2 International Business Park, The Strategy @ IBP #09-04, Singapore 609930, Singapore;
| | - Walter H. Gunzburg
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
3
|
Cheun YK, Groehler AS, Schärer OD. New Synthetic Analogs of Nitrogen Mustard DNA Interstrand Cross-Links and Their Use to Study Lesion Bypass by DNA Polymerases. Chem Res Toxicol 2021; 34:1790-1799. [PMID: 34133118 PMCID: PMC11246215 DOI: 10.1021/acs.chemrestox.1c00123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nitrogen mustards are a widely used class of antitumor agents that exert their cytotoxic effects through the formation of DNA interstrand cross-links (ICLs). Despite being among the first antitumor agents used, the biological responses to NM ICLs remain only partially understood. We have previously reported the generation of NM ICL mimics by incorporation of ICL precursors into DNA using solid-phase synthesis at defined positions, followed by a double reductive amination reaction. However, the structure of these mimics deviated from the native NM ICLs. Using further development of our approach, we report a new class of NM ICL mimics that only differ from their native counterpart by substitution of dG with 7-deaza-dG at the ICL. Importantly, this approach allows for the synthesis of diverse NM ICLs, illustrated here with a mimic of the adduct formed by chlorambucil. We used the newly generated ICLs in reactions with replicative and translesion synthesis DNA polymerase to demonstrate their stability and utility for functional studies. These new NM ICLs will allow for the further characterization of the biological responses to this important class of antitumor agents.
Collapse
Affiliation(s)
- Young K Cheun
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Arnold S Groehler
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Translesion synthesis of the major nitrogen mustard-induced DNA lesion by human DNA polymerase η. Biochem J 2021; 477:4543-4558. [PMID: 33175093 DOI: 10.1042/bcj20200767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
Nitrogen mustards are among the first modern anticancer chemotherapeutics that are still widely used as non-specific anticancer alkylating agents. While the mechanism of action of mustard drugs involves the generation of DNA interstrand cross-links, the predominant lesions produced by these drugs are nitrogen half-mustard-N7-dG (NHMG) adducts. The bulky major groove lesion NHMG, if left unrepaired, can be bypassed by translesion synthesis (TLS) DNA polymerases. However, studies of the TLS past NHMG have not been reported so far. Here, we present the first synthesis of an oligonucleotide containing a site-specific NHMG. We also report kinetic and structural characterization of human DNA polymerase η (polη) bypassing NHMG. The templating NHMG slows dCTP incorporation ∼130-fold, while it increases the misincorporation frequency ∼10-30-fold, highlighting the promutagenic nature of NHMG. A crystal structure of polη incorporating dCTP opposite NHMG shows a Watson-Crick NHMG:dCTP base pair with a large propeller twist angle. The nitrogen half-mustard moiety fits snugly into an open cleft created by the Arg61-Trp64 loop of polη, suggesting a role of the Arg61-Trp64 loop in accommodating bulky major groove adducts during lesion bypass. Overall, our results presented here to provide first insights into the TLS of the major DNA adduct formed by nitrogen mustard drugs.
Collapse
|
5
|
Recent Advances and Challenges in Controlling the Spatiotemporal Release of Combinatorial Anticancer Drugs from Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12121156. [PMID: 33261219 PMCID: PMC7759840 DOI: 10.3390/pharmaceutics12121156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
To overcome cancer, various chemotherapeutic studies are in progress; among these, studies on nano-formulated combinatorial drugs (NFCDs) are being actively pursued. NFCDs function via a fusion technology that includes a drug delivery system using nanoparticles as a carrier and a combinatorial drug therapy using two or more drugs. It not only includes the advantages of these two technologies, such as ensuring stability of drugs, selectively transporting drugs to cancer cells, and synergistic effects of two or more drugs, but also has the additional benefit of enabling the spatiotemporal and controlled release of drugs. This spatial and temporal drug release from NFCDs depends on the application of nanotechnology and the composition of the combination drug. In this review, recent advances and challenges in the control of spatiotemporal drug release from NFCDs are provided. To this end, the types of combinatorial drug release for various NFCDs are classified in terms of time and space, and the detailed programming techniques used for this are described. In addition, the advantages of the time and space differences in drug release in terms of anticancer efficacy are introduced in depth.
Collapse
|
6
|
Bradley NP, Washburn LA, Christov PP, Watanabe CMH, Eichman BF. Escherichia coli YcaQ is a DNA glycosylase that unhooks DNA interstrand crosslinks. Nucleic Acids Res 2020; 48:7005-7017. [PMID: 32409837 PMCID: PMC7367128 DOI: 10.1093/nar/gkaa346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Interstrand DNA crosslinks (ICLs) are a toxic form of DNA damage that block DNA replication and transcription by tethering the opposing strands of DNA. ICL repair requires unhooking of the tethered strands by either nuclease incision of the DNA backbone or glycosylase cleavage of the crosslinked nucleotide. In bacteria, glycosylase-mediated ICL unhooking was described in Streptomyces as a means of self-resistance to the genotoxic natural product azinomycin B. The mechanistic details and general utility of glycosylase-mediated ICL repair in other bacteria are unknown. Here, we identify the uncharacterized Escherichia coli protein YcaQ as an ICL repair glycosylase that protects cells against the toxicity of crosslinking agents. YcaQ unhooks both sides of symmetric and asymmetric ICLs in vitro, and loss or overexpression of ycaQ sensitizes E. coli to the nitrogen mustard mechlorethamine. Comparison of YcaQ and UvrA-mediated ICL resistance mechanisms establishes base excision as an alternate ICL repair pathway in bacteria.
Collapse
Affiliation(s)
- Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Lauren A Washburn
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Plamen P Christov
- Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Coran M H Watanabe
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Luan T, Cheng L, Cheng J, Zhang X, Cao Y, Zhang X, Cui H, Zhao G. Tailored Design of an ROS-Responsive Drug Release Platform for Enhanced Tumor Therapy via "Sequential Induced Activation Processes". ACS APPLIED MATERIALS & INTERFACES 2019; 11:25654-25663. [PMID: 31246402 DOI: 10.1021/acsami.9b01433] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The reactive oxygen species (ROS)-responsive intelligent drug delivery system has developed rapidly in recent years. However, because of the low concentration of ROS in most types of tumor cells, it is not possible to rapidly and effectively stimulate the drug delivery system to release the active drug. Here, we introduced "sequential induced activation processes" for efficient tumor therapy by designing a new ROS-responsive drug release platform. β-Lapachone, a positively charged nitrogen mustard (NM) prodrug, and two diblock molecules (mPEG-AcMH and PAsp-AcMH) are self-assembled to form prodrug primary micelles, which are further aggregated into nanoparticles that facilitate drug codelivery. When administered by intravenous injection, the nanoparticles reach the tumor site and enter the tumor cells by endocytosis. The β-lapachone released in the tumor cells induces a large amount of H2O2, and the ROS-responsive NM prodrug is activated to form activated NM, quinone methide, and boric acid under the induction of H2O2. The activated NM leads to tumor cell apoptosis.
Collapse
|
8
|
Cui Q, Wang JQ, Assaraf YG, Ren L, Gupta P, Wei L, Ashby CR, Yang DH, Chen ZS. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat 2018; 41:1-25. [DOI: 10.1016/j.drup.2018.11.001] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
|