1
|
Kosior-Jarecka E, Grzybowski A. Retinal Ganglion Cell Replacement in Glaucoma Therapy: A Narrative Review. J Clin Med 2024; 13:7204. [PMID: 39685661 DOI: 10.3390/jcm13237204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. It leads to the progressive degeneration of retinal ganglion cells (RGCs), the axons of which form the optic nerve. Enormous RGC apoptosis causes a lack of transfer of visual information to the brain. The RGC loss typical of the central nervous system is irreversible, and when glaucoma progresses, the total amount of RGCs in the retina enormously diminishes. The successful treatment in glaucoma patients is a direct neuroprotection by decreasing the intraocular pressure, which enables RGC protection but does not revive the lost ones. The intriguing new therapy for advanced glaucoma is the possibility of RGC replacement with new healthy cells. In this review article, the strategies regarding RGC replacement therapy are presented with the latest advances in the technique and the obstacles that it meets.
Collapse
Affiliation(s)
- Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, 20-079 Lublin, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 60-836 Poznan, Poland
| |
Collapse
|
2
|
Xie M, Tang J, Zhang Y, Deng Y, Ma K, Xiang X, Tang L. Assessment of the Corneal Biomechanical Features of Sturge-Weber Syndrome Using Dynamic Ultrahigh-speed Scheimpflug Imaging. Cornea 2024; 43:1340-1347. [PMID: 39104013 DOI: 10.1097/ico.0000000000003617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/29/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE To evaluate the corneal biomechanical characteristics of eyes with Sturge-Weber syndrome (SWS) secondary glaucoma (SSG) by analyzing corneal biomechanical parameters obtained using the Corneal Visualization Scheimpflug Technology instrument (Corvis ST). METHODS In patients with SWS, eyes affected by SSG were designated as the SSG group while the contralateral eyes were designated as the SWS contralateral group (SC group). Patients from the myopia clinic served as the control group. Dynamic corneal response parameters (DCRs) including the stress-strain index (SSI)-a critical material stiffness parameter that excludes interference from IOP and central corneal thickness (CCT)-were analyzed. RESULTS For CCT, no significant difference was observed between the SSG and SC groups. However, significant differences were found between the SSG and control groups and between the SC and control groups. Parameters such as HC Time, A1 Deformation Amp., A2 Deformation Amp., length of Whole Eye Movement (WEM), DA Ratio Max (2 mm), PachySlope, DA Ratio Max (1 mm), and ARTh showed significant differences between the SSG group and control group. In the SSG group, 4 of night eyes had an SSI of less than 0.85. CONCLUSIONS Some DCRs indicated a stiffer cornea in the SSG group, possibly due to a thicker cornea in this group. On analyzing SSI, it was found that corneal material properties change, becoming less stiff in some of the patients with SSG. In conclusion, our study provides a preliminary exploration of the biomechanical properties of SWS secondary glaucoma.
Collapse
Affiliation(s)
- Mengzhen Xie
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yingping Deng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Ma
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingye Xiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China; and
- Georgia State University, Atlanta, GA
| | - Li Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Kim SH, Kim M, Lee KM. How is eyeball growth associated with optic nerve head shape and glaucoma? The Lamina cribrosa/Bruch's membrane opening offset theory. Exp Eye Res 2024; 245:109975. [PMID: 38906240 DOI: 10.1016/j.exer.2024.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/04/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The optic nerve head (ONH) is a complex structure wherein the axons of the retinal ganglion cells extrude from the eyeball through three openings: 1) the Bruch's membrane opening (BMO) in the retinal layer, 2) the anterior scleral canal opening in the anterior scleral layer, and 3) the lamina cribrosa (LC). Eyeball expansion during growth induces an offset among openings, since the expansion affects the inner retinal and outer scleral layers differently: the posterior polar retinal structure is preserved by the preferential growth in the equatorial region, whereas no such regional difference is observed in the scleral layer. The various modes and extents of eyeball expansion result in diverse directionality and amount of offset among openings, which causes diverse ONH morphology in adults, especially in myopia. In this review, we summarize the ONH changes that occur during myopic axial elongation. These changes were observed prospectively in our previous studies, wherein LC shift and subsequent offset from the BMO center could be predicted by tracing the central retinal vascular trunk position. This offset induces the formation of γ-zone parapapillary atrophy or externally oblique border tissue. As a presumptive site of glaucomatous damage, the LC/BMO offset may render the LC pores in the opposite direction more vulnerable. To support such speculation, we also summarize the relationship between LC/BMO offset and glaucomatous damage. Indeed, LC/BMO offset is not only the cause of diverse ONH morphology in adults, but is also, potentially, an important clinical marker for assessment of glaucoma.
Collapse
Affiliation(s)
| | - Martha Kim
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang, South Korea
| | - Kyoung Min Lee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, South Korea; Department of Ophthalmology, Seoul National University Boramae Medical Center, Seoul, South Korea.
| |
Collapse
|
4
|
Hannay V, Czerpak C, Quigley HA, Nguyen TD. A Noninvasive Clinical Method to Measure in Vivo Mechanical Strains of the Lamina Cribrosa by OCT. OPHTHALMOLOGY SCIENCE 2024; 4:100473. [PMID: 38560276 PMCID: PMC10973664 DOI: 10.1016/j.xops.2024.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 04/04/2024]
Abstract
Objective To measure mechanical strain of the lamina cribrosa (LC) after intraocular pressure (IOP) change produced 1 week after a change in glaucoma medication. Design Cohort study. Participants Adult glaucoma patients (23 eyes, 15 patients) prescribed a change in IOP-lowering medication. Intervention Noninvasive OCT imaging of the eye. Main Outcome Measures Deformation calculated by digital volume correlation of OCT scans of the LC before and after IOP lowering by medication. Results Among 23 eyes, 17 eyes of 12 persons had IOP lowering ≥ 3 mmHg (reduced IOP group) with tensile anterior-posterior Ezz strain = 1.0% ± 1.1% (P = 0.003) and compressive radial strain (Err) = -0.3% ± 0.5% (P = 0.012; random effects models accounting inclusion of both eyes in some persons). Maximum in-plane principal (tensile) strain and maximum shear strain in the reduced-IOP group were as follows: Emax = 1.7% ± 1.0% and Γmax = 1.4% ± 0.7%, respectively (both P < 0.0001 vs. zero). Reduced-IOP group strains Emax and Γmax were significantly larger with greater % IOP decrease (P < 0.0001 and P < 0.0001, respectively). The compliances of the Ezz, Emax, and Γmax strain responses, defined as strain normalized by the IOP decrease, were larger with more abnormal perimetric mean deviation or visual field index values (all P ≤ 0.02). Strains were unrelated to age (all P ≥ 0.088). In reduced-IOP eyes, mean LC anterior border posterior movement was only 2.05 μm posteriorly (P = 0.052) and not related to % IOP change (P = 0.94, random effects models). Only Err was significantly related to anterior lamina depth change, becoming more negative with greater posterior LC border change (P = 0.015). Conclusions Lamina cribrosa mechanical strains can be effectively measured by changes in eye drop medication using OCT and are related to degree of visual function loss in glaucoma. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Vanessa Hannay
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Cameron Czerpak
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Harry A. Quigley
- Department of Ophthalmology, Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thao D. Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
- Department of Ophthalmology, Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Czerpak CA, Quigley HA, Nguyen TD. Long-term Remodeling Response in the Lamina Cribrosa Years after Intraocular Pressure Lowering by Suturelysis after Trabeculectomy. Ophthalmol Glaucoma 2024; 7:298-307. [PMID: 38272391 PMCID: PMC11127792 DOI: 10.1016/j.ogla.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
OBJECTIVE To measure the remodeling of the lamina cribrosa (LC) years after intraocular pressure (IOP) lowering by suturelysis. DESIGN Cohort study. PARTICIPANTS Glaucoma patients were imaged 20 minutes after laser suturelysis after trabeculectomy surgery and at their follow-up appointment 1 to 4 years later (16 image pairs; 15 persons). INTERVENTION Noninvasive OCT imaging of the eye. MAIN OUTCOME MEASURES Deformation calculated by correlating OCT scans of the LC immediately after IOP lowering by suturelysis and those acquired years later (defined as remodeling strain). RESULTS The LC anterior border moved 60.9 ± 54.6 μm into the eye (P = 0.0007), and the LC exhibited regions of large local stretch in the anterior-posterior direction on long-term, maintained IOP lowering, resulting in a mean anterior-posterior remodeling strain of 14.0% ± 21.3% (P = 0.02). This strain and the LC border movement was 14 times and 124 times larger, respectively, than the direct response to IOP lowering by suturelysis. A larger anterior LC border movement was associated with greater mean anterior-posterior remodeling strain (P = 0.004). A thinner retinal nerve fiber layer at suturelysis was also associated with greater mean anterior-posterior remodeling strain at follow-up (P = 0.05). Worsening visual field indexes during follow-up were associated with a greater mean circumferential remodeling strain (P = 0.02), due to regions of large local circumferential stretch of the LC. Eyes with a more compliant LC torsional shear strain response at lysis were associated with worse mean deviation at follow-up (P = 0.03). CONCLUSIONS Strains and LC border position changes measured years after IOP lowering are far larger than the immediate response to IOP lowering and indicate dramatic remodeling of the LC anatomical structure caused by IOP lowering and glaucoma progression. The remodeling strains indicate substantial local stretch in the anterior-posterior direction and are associated with movement of the LC anterior border into the eye. Eyes with greater direct strain response to IOP lowering, greater glaucoma damage at suturelysis, and greater worsening of visual field at follow-up experienced greater remodeling. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03267849. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Cameron A Czerpak
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland.
| | - Harry A Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland; Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
7
|
Basavarajappa D, Galindo-Romero C, Gupta V, Agudo-Barriuso M, Gupta VB, Graham SL, Chitranshi N. Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology. Mol Aspects Med 2023; 94:101216. [PMID: 37856930 DOI: 10.1016/j.mam.2023.101216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Glaucoma is a complex multifactorial eye disease manifesting in retinal ganglion cell (RGC) death and optic nerve degeneration, ultimately causing irreversible vision loss. Research in recent years has significantly enhanced our understanding of RGC degenerative mechanisms in glaucoma. It is evident that high intraocular pressure (IOP) is not the only contributing factor to glaucoma pathogenesis. The equilibrium of pro-survival and pro-death signalling pathways in the retina strongly influences the function and survival of RGCs and optic nerve axons in glaucoma. Molecular evidence from human retinal tissue analysis and a range of experimental models of glaucoma have significantly contributed to unravelling these mechanisms. Accumulating evidence reveals a wide range of molecular signalling pathways that can operate -either alone or via intricate networks - to induce neurodegeneration. The roles of several molecules, including neurotrophins, interplay of intracellular kinases and phosphates, caveolae and adapter proteins, serine proteases and their inhibitors, nuclear receptors, amyloid beta and tau, and how their dysfunction affects retinal neurons are discussed in this review. We further underscore how anatomical alterations in various animal models exhibiting RGC degeneration and susceptibility to glaucoma-related neuronal damage have helped to characterise molecular mechanisms in glaucoma. In addition, we also present different regulated cell death pathways that play a critical role in RGC degeneration in glaucoma.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Caridad Galindo-Romero
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Marta Agudo-Barriuso
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Ophthalmology Department, Universidad de Murcia, Murcia, Spain
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
8
|
Sharif NA. Electrical, Electromagnetic, Ultrasound Wave Therapies, and Electronic Implants for Neuronal Rejuvenation, Neuroprotection, Axonal Regeneration, and IOP Reduction. J Ocul Pharmacol Ther 2023; 39:477-498. [PMID: 36126293 DOI: 10.1089/jop.2022.0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The peripheral nervous system (PNS) of mammals and nervous systems of lower organisms possess significant regenerative potential. In contrast, although neural plasticity can provide some compensation, the central nervous system (CNS) neurons and nerves of adult mammals generally fail to regenerate after an injury or damage. However, use of diverse electrical, electromagnetic and sonographic energy waves are illuminating novel ways to stimulate neuronal differentiation, proliferation, neurite growth, and axonal elongation/regeneration leading to various levels of functional recovery in animals and humans afflicted with disorders of the CNS, PNS, retina, and optic nerve. Tools such as acupuncture, electroacupuncture, electroshock therapy, electrical stimulation, transcranial magnetic stimulation, red light therapy, and low-intensity pulsed ultrasound therapy are demonstrating efficacy in treating many different maladies. These include wound healing, partial recovery from motor dysfunctions, recovery from ischemic/reperfusion insults and CNS and ocular remyelination, retinal ganglion cell (RGC) rejuvenation, and RGC axonal regeneration. Neural rejuvenation and axonal growth/regeneration processes involve activation or intensifying of the intrinsic bioelectric waves (action potentials) that exist in every neuronal circuit of the body. In addition, reparative factors released at the nerve terminals and via neuronal dendrites (transmitter substances), extracellular vesicles containing microRNAs and neurotrophins, and intercellular communication occurring via nanotubes aid in reestablishing lost or damaged connections between the traumatized tissues and the PNS and CNS. Many other beneficial effects of the aforementioned treatment paradigms are mediated via gene expression alterations such as downregulation of inflammatory and death-signal genes and upregulation of neuroprotective and cytoprotective genes. These varied techniques and technologies will be described and discussed covering cell-based and animal model-based studies. Data from clinical applications and linkage to human ocular diseases will also be discussed where relevant translational research has been reported.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, California, USA
- Singapore Eye Research Institute (SERI), Singapore
- SingHealth Duke-NUS Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-National University of Singapore Medical School, Singapore
- Department of Surgery and Cancer, Imperial College of Science and Technology, London, United Kingdom
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
- Department of Pharmacy Sciences, Creighton University, Omaha, Nebraska, USA
- Insitute of Ophthalmology, University College London (UCL), London, United Kingdom
| |
Collapse
|
9
|
Ling YTT, Korneva A, Quigley HA, Nguyen TD. Computational study of the mechanical behavior of the astrocyte network and axonal compartments in the mouse optic nerve head. Biomech Model Mechanobiol 2023; 22:1751-1772. [PMID: 37573553 PMCID: PMC10988382 DOI: 10.1007/s10237-023-01752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 07/15/2023] [Indexed: 08/15/2023]
Abstract
Glaucoma is a blinding disease characterized by the degeneration of the retinal ganglion cell (RGC) axons at the optic nerve head (ONH). A major risk factor for glaucoma is the intraocular pressure (IOP). However, it is currently impossible to measure the IOP-induced mechanical response of the axons of the ONH. The objective of this study was to develop a computational modeling method to estimate the IOP-induced strains and stresses in the axonal compartments in the mouse astrocytic lamina (AL) of the ONH, and to investigate the effect of the structural features on the mechanical behavior. We developed experimentally informed finite element (FE) models of six mouse ALs to investigate the effect of structure on the strain responses of the astrocyte network and axonal compartments to pressure elevation. The specimen-specific geometries of the FE models were reconstructed from confocal fluorescent images of cryosections of the mouse AL acquired in a previous study that measured the structural features of the astrocytic processes and axonal compartments. The displacement fields obtained from digital volume correlation in prior inflation tests of the mouse AL were used to determine the displacement boundary conditions of the FE models. We then applied Gaussian process regression to analyze the effects of the structural features on the strain outcomes simulated for the axonal compartments. The axonal compartments experienced, on average, 6 times higher maximum principal strain but 1800 times lower maximum principal stress compared to those experienced by the astrocyte processes. The strains experienced by the axonal compartments were most sensitive to variations in the area of the axonal compartments. Larger axonal compartments that were more vertically aligned, closer to the AL center, and with lower local actin area fraction had higher strains. Understanding the factors affecting the deformation in the axonal compartments will provide insights into mechanisms of glaucomatous axonal damage.
Collapse
Affiliation(s)
- Yik Tung Tracy Ling
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Arina Korneva
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Harry A Quigley
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Materials Science, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Hannay V, Czerpak CA, Quigley HA, Nguyen TD. A noninvasive clinical method to measure in vivo mechanical strains of the lamina cribrosa by optical coherence tomography. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.14.23294082. [PMID: 37645852 PMCID: PMC10462204 DOI: 10.1101/2023.08.14.23294082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Objective To measure mechanical strain of the lamina cribrosa (LC) after intraocular pressure (IOP) change produced one week after a change in glaucoma medication. Design Cohort study. Participants Adult glaucoma patients (23 eyes, 15 patients) prescribed a change in IOP-lowering medication. Intervention Non-invasive optical coherence tomography (OCT) imaging of the eye. Main Outcomes Deformation calculated by digital volume correlation of OCT scans of the LC before and after IOP lowering by medication. Results Among 23 eyes, 17 eyes of 12 persons had IOP lowering ≥ 3 mmHg (reduced IOP group) with tensile anterior-posterior E zz strain = 1.0% ± 1.1% (p = 0.003) and compressive radial strain ( E rr ) = -0.3% ± 0.5% (p=0.012; random effects models accounting inclusion of both eyes in some persons). Maximum in-plane principal (tensile) strain and maximum shear strain in the reduced IOP group were: E max = 1.7% ± 1.0% and Γ max = 1.4% ± 0.7%, respectively (both p<0.0001 versus zero). Reduced IOP group strains E max and Γ max were significantly larger with greater %IOP decrease (<0.0001, <0.0001). The compliance of the E zz , E max , and Γ max strain response, defined as strain normalized by the IOP decrease, were larger with more abnormal perimetric mean deviation or visual field index values (all p≥0.02). Strains were unrelated to age (all p≥0.088). In reduced IOP eyes, mean LC anterior border posterior movement was only 2.05 μm posteriorly (p=0.052) and not related to % IOP change (p=0.94, random effects models). Only E rr was significantly related to ALD change, becoming more negative with greater posterior LC border change (p=0.015). Conclusion LC mechanical strains can be effectively measured by changes in eye drop medication using OCT and are related to degree of visual function loss in glaucoma. Trial Registration ClinicalTrials.gov Identifier: NCT03267849.
Collapse
|
11
|
Chitranshi N, Rajput R, Godinez A, Pushpitha K, Mirzaei M, Basavarajappa D, Gupta V, Sharma S, You Y, Galliciotti G, Salekdeh GH, Baker MS, Graham SL, Gupta VK. Neuroserpin gene therapy inhibits retinal ganglion cell apoptosis and promotes functional preservation in glaucoma. Mol Ther 2023; 31:2056-2076. [PMID: 36905120 PMCID: PMC10362384 DOI: 10.1016/j.ymthe.2023.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Our research has proven that the inhibitory activity of the serine protease inhibitor neuroserpin (NS) is impaired because of its oxidation deactivation in glaucoma. Using genetic NS knockout (NS-/-) and NS overexpression (NS+/+ Tg) animal models and antibody-based neutralization approaches, we demonstrate that NS loss is detrimental to retinal structure and function. NS ablation was associated with perturbations in autophagy and microglial and synaptic markers, leading to significantly enhanced IBA1, PSD95, beclin-1, and LC3-II/LC3-I ratio and reduced phosphorylated neurofilament heavy chain (pNFH) levels. On the other hand, NS upregulation promoted retinal ganglion cell (RGC) survival in wild-type and NS-/- glaucomatous mice and increased pNFH expression. NS+/+Tg mice demonstrated decreased PSD95, beclin-1, LC3-II/LC3-I ratio, and IBA1 following glaucoma induction, highlighting its protective role. We generated a novel reactive site NS variant (M363R-NS) resistant to oxidative deactivation. Intravitreal administration of M363R-NS was observed to rescue the RGC degenerative phenotype in NS-/- mice. These findings demonstrate that NS dysfunction plays a key role in the glaucoma inner retinal degenerative phenotype and that modulating NS imparts significant protection to the retina. NS upregulation protected RGC function and restored biochemical networks associated with autophagy and microglial and synaptic function in glaucoma.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Rashi Rajput
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Angela Godinez
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Samridhi Sharma
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghasem H Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Mark S Baker
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Czerpak CA, Kashaf MS, Zimmerman BK, Quigley HA, Nguyen TD. The Strain Response to Intraocular Pressure Decrease in the Lamina Cribrosa of Patients with Glaucoma. Ophthalmol Glaucoma 2023; 6:11-22. [PMID: 35863747 PMCID: PMC9849479 DOI: 10.1016/j.ogla.2022.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To measure biomechanical strains in the lamina cribrosa (LC) of living human eyes with intraocular pressure (IOP) lowering. DESIGN Cohort study. PARTICIPANTS Patients with glaucoma underwent imaging before and after laser suturelysis after trabeculectomy surgery (29 image pairs; 26 persons). INTERVENTION Noninvasive imaging of the eye. MAIN OUTCOME MEASURES Strains in optic nerve head tissue and changes in depths of the anterior border of the LC. RESULTS Intraocular pressure decreases caused the LC to expand in thickness in the anterior-posterior strain (Ezz = 0.94 ± 1.2%; P = 0.00020) and contract in radius in the radial strain (Err = - 0.19 ± 0.33%; P = 0.0043). The mean LC depth did not significantly change with IOP lowering (1.33 ± 6.26 μm; P = 0.26). A larger IOP decrease produced a larger, more tensile Ezz (P < 0.0001), greater maximum principal strain (Emax; P < 0.0001), and greater maximum shear strain (Γmax; P < 0.0001). The average LC depth change was associated with the Γmax and radial-circumferential shear strain (Erθ; P < 0.02) but was not significantly related to tensile or compressive strains. An analysis by clock hour showed that in temporal clock hours 3 to 6, a more anterior LC movement was associated with a more positive Emax, and in clock hours 3, 5, and 6, it was associated with a more positive Γmax. At 10 o'clock, a more posterior LC movement was related to a more positive Emax (P < 0.004). Greater compliance (strain/ΔIOP) of Emax (P = 0.044), Γmax (P = 0.052), and Erθ (P = 0.018) was associated with a thinner retinal nerve fiber layer. Greater compliance of Emax (P = 0.041), Γmax (P = 0.021), Erθ (P = 0.024), and in-plane shear strain (Erz; P = 0.0069) was associated with more negative mean deviations. Greater compliance of Γmax (P = 0.055), Erθ (P = 0.040), and Erz (P = 0.015) was associated with lower visual field indices. CONCLUSIONS With IOP lowering, the LC moves either into or out of the eye but, on average, expands in thickness and contracts in radius. Shear strains are nearly as substantial as in-plane strains. Biomechanical strains are more compliant in eyes with greater glaucoma damage. This work was registered at ClinicalTrials.gov as NCT03267849.
Collapse
Affiliation(s)
- Cameron A Czerpak
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland.
| | - Michael Saheb Kashaf
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Brandon K Zimmerman
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Harry A Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland; Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
13
|
Kurysheva NI, Kim VY, Kim VE, Pliyeva HM. [The value of lamina cribrosa in the diagnosis and treatment of glaucoma. Remodeling of lamina cribrosa collagen and approaches to its therapeutic treatment]. Vestn Oftalmol 2023; 139:121-126. [PMID: 37638582 DOI: 10.17116/oftalma2023139041121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Among the first structures suffering damage with an increase in intraocular pressure (IOP) and in early stage of glaucoma are the lamina cribrosa (LC) and peripapillary sclera (ppScl). Changes in these structures occur at the molecular and cellular level. Extracellular matrix (ECM) is the basis of connective tissue, provides mechanical support for the cells, facilitates intercellular interactions and transport of chemicals, including in LC and ppScl. Mechanical stress causes remodeling and disorganization of the ECM, which leads to changes in the structure of the tissue itself, an increase in its rigidity and a decrease in elasticity. Taking into account the molecular and cellular mechanisms of damage to LC and ppScl, various researchers have developed strategies and tactics for therapeutic intervention on these structures, contributing to a decrease in ECM secretion and, as a consequence, suspension of their remodeling. These approaches may in the future form the basis for the treatment of glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- N I Kurysheva
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center of the Federal Medical Biological Agency, Moscow, Russia
| | - V Yu Kim
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
| | - V E Kim
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
| | - H M Pliyeva
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
14
|
Guan C, Pease ME, Quillen S, Ling YTT, Li X, Kimball E, Johnson TV, Nguyen TD, Quigley HA. Quantitative Microstructural Analysis of Cellular and Tissue Remodeling in Human Glaucoma Optic Nerve Head. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 36269186 PMCID: PMC9617510 DOI: 10.1167/iovs.63.11.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To measure quantitatively changes in lamina cribrosa (LC) cell and connective tissue structure in human glaucoma eyes. Methods We studied 27 glaucoma and 19 age-matched non-glaucoma postmortem eyes. In 25 eyes, LC cross-sections were examined by confocal and multiphoton microscopy to quantify structures identified by anti-glial fibrillary acidic protein (GFAP), phalloidin-labeled F-actin, nuclear 4',6-diamidino-2-phenylindole (DAPI), and by second harmonic generation imaging of LC beams. Additional light and transmission electron microscopy were performed in 21 eyes to confirm features of LC remodeling, including immunolabeling by anti-SOX9 and anti-collagen IV. All glaucoma eyes had detailed clinical histories of open-angle glaucoma status, and degree of axon loss was quantified in retrolaminar optic nerve cross-sections. Results Within LC pores, the proportionate area of both GFAP and F-actin processes was significantly lower in glaucoma eyes than in controls (P = 0.01). Nuclei were rounder (lower median aspect ratio) in glaucoma specimens (P = 0.02). In models assessing degree of glaucoma damage, F-actin process width was significantly wider in glaucoma eyes with more damage (P = 0.024), average LC beam width decreased with worse glaucoma damage (P = 0.042), and nuclear count per square millimeter rose with worse damage (P = 0.019). The greater cell count in LC pores represented 92.3% astrocytes by SOX9 labeling. The results are consistent with replacement of axons in LC pores by basement membrane labeled by anti-collagen IV and in-migrating astrocytes. Conclusions Alteration in LC structure in glaucoma involves migration of astrocytes into axonal bundles, change in astrocyte orientation and processes, production of basement membrane material, and thinning of connective tissue beams.
Collapse
Affiliation(s)
- Carolyn Guan
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Mary Ellen Pease
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Sarah Quillen
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Yik Tung Tracy Ling
- Departments of Mechanical Engineering and Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Ximin Li
- Department of Biostatistics, The Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Elizabeth Kimball
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Thomas V. Johnson
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Thao D. Nguyen
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
- Departments of Mechanical Engineering and Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Harry A. Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
15
|
Strickland RG, Garner MA, Gross AK, Girkin CA. Remodeling of the Lamina Cribrosa: Mechanisms and Potential Therapeutic Approaches for Glaucoma. Int J Mol Sci 2022; 23:8068. [PMID: 35897642 PMCID: PMC9329908 DOI: 10.3390/ijms23158068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Glaucomatous optic neuropathy is the leading cause of irreversible blindness in the world. The chronic disease is characterized by optic nerve degeneration and vision field loss. The reduction of intraocular pressure remains the only proven glaucoma treatment, but it does not prevent further neurodegeneration. There are three major classes of cells in the human optic nerve head (ONH): lamina cribrosa (LC) cells, glial cells, and scleral fibroblasts. These cells provide support for the LC which is essential to maintain healthy retinal ganglion cell (RGC) axons. All these cells demonstrate responses to glaucomatous conditions through extracellular matrix remodeling. Therefore, investigations into alternative therapies that alter the characteristic remodeling response of the ONH to enhance the survival of RGC axons are prevalent. Understanding major remodeling pathways in the ONH may be key to developing targeted therapies that reduce deleterious remodeling.
Collapse
Affiliation(s)
- Ryan G. Strickland
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Alecia K. Gross
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Christopher A. Girkin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Panda SK, Cheong H, Tun TA, Devella SK, Senthil V, Krishnadas R, Buist ML, Perera S, Cheng CY, Aung T, Thiéry AH, Girard MJ. Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence. Am J Ophthalmol 2022; 236:172-182. [PMID: 34157276 DOI: 10.1016/j.ajo.2021.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE To develop a novel deep-learning approach that can describe the structural phenotype of the glaucomatous optic nerve head (ONH) and can be used as a robust glaucoma diagnosis tool. DESIGN Retrospective, deep-learning approach diagnosis study. METHOD We trained a deep-learning network to segment 3 neural-tissue and 4 connective-tissue layers of the ONH. The segmented optical coherence tomography images were then processed by a customized autoencoder network with an additional parallel branch for binary classification. The encoder part of the autoencoder reduced the segmented optical coherence tomography images into a low-dimensional latent space (LS), whereas the decoder and the classification branches reconstructed the images and classified them as glaucoma or nonglaucoma, respectively. We performed principal component analysis on the latent parameters and identified the principal components (PCs). Subsequently, the magnitude of each PC was altered in steps and reported how it impacted the morphology of the ONH. RESULTS The image reconstruction quality and diagnostic accuracy increased with the size of the LS. With 54 parameters in the LS, the diagnostic accuracy was 92.0 ± 2.3% with a sensitivity of 90.0 ± 2.4% (at 95% specificity), and the corresponding Dice coefficient for the reconstructed images was 0.86 ± 0.04. By changing the magnitudes of PC in steps, we were able to reveal how the morphology of the ONH changes as one transitions from a "nonglaucoma" to a "glaucoma" condition. CONCLUSIONS Our network was able to identify novel biomarkers of the ONH for glaucoma diagnosis. Specifically, the structural features identified by our algorithm were found to be related to clinical observations of glaucoma.
Collapse
|
17
|
Akkaya S, Ulusoy DM, Doğan H, Arslan ME. Assessment of the lamina cribrosa in attention-deficit hyperactivity disorder. Indian J Ophthalmol 2021; 69:3607-3611. [PMID: 34827004 PMCID: PMC8837350 DOI: 10.4103/ijo.ijo_562_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The aim of this study was to determine the usefulness of the lamina cribrosa thickness (LCT) and lamina cribrosa depth (LCD) in adolescence with attention-deficit hyperactivity disorder (ADHD) and compare with those receiving methylphenidate (MPH) and healthy controls. METHODS Fifty-five children with ADHD (9.23 ± 1.92 years, mean ± standard deviation), 41 children with ADHD given MPH (9.24 ± 1.84 years), and 86 healthy controls (9.95 ± 2.16 years) were recruited for the study. All subjects were subjected to a complete eye exam and optical coherence tomography (OCT) was used to assess LCT and LCD. The severity of ADHD symptoms was evaluated by using parent-report measures, including Conners's Parent Rating Scale-Revised: Short Form (CPRS-R: S) and the Strengths and Difficulties Questionnaire: Parent Form (SDQ: P). RESULTS The study showed a significant finding between the research groups with regard to LCT. LCT was shown to be significantly increased in ADHD subjects given MPH compared with the controls. However, LCD was not significantly different between cohorts. Also, a significant inverse correlation was found between the SDQ: P-Emotional Problems Subscale and LCT (r = -0.253; P = 0.030) in ADHD patients. CONCLUSION Changes in lamina cribrosa (LC) in ADHD children receiving MPH suggest that the mechanism of action for MPH may target developing LC structures. More studies to define the relationship between MPH medications and the LC variations are defensible.
Collapse
Affiliation(s)
- Serkan Akkaya
- Department of Ophthalmology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Döndü M Ulusoy
- Department of Ophthalmology, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Hatice Doğan
- Department of Child and Adolescent Psychiatry, Kayseri Training and Research Hospital, Kayseri, Turkey
| | - Mahmut E Arslan
- Department of Ophthalmology, Kayseri Training and Research Hospital, Kayseri, Turkey
| |
Collapse
|
18
|
Sung MS, Jin HN, Park SW. Clinical Features of Advanced Glaucoma With Optic Nerve Head Prelaminar Schisis. Am J Ophthalmol 2021; 232:17-29. [PMID: 34153266 DOI: 10.1016/j.ajo.2021.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/18/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the clinical characteristics of optic nerve head (ONH) prelaminar schisis in eyes with advanced glaucoma. DESIGN Cross-sectional study. METHODS One hundred sixteen eyes with advanced glaucoma (30-2 mean deviation <-12 dB) were included. ONH prelaminar schisis was identified using the spectral-domain optical coherence tomography independently by 2 evaluators and only eyes that reached consensus for the presence of ONH prelaminar schisis were included. Bruch membrane opening-minimum rim width (BMO-MRW), thickness and depth of lamina cribrosa (LC), peripapillary retinal nerve fiber layer (RNFL) thickness, macular thickness (total, RNFL, ganglion cell layer, inner plexiform layer), and peripapillary and subfoveal choroidal thickness were additionally obtained. Clinical characteristics were compared between the 2 groups based on the presence of ONH prelaminar schisis. RESULTS ONH prelaminar schisis was identified in 48 of 116 eyes. Multivariate logistic regression analysis revealed that short axial length, thin and deep LC, and thick macula were associated with the presence of ONH prelaminar schisis. When the structure-function relationships were determined, macular structural parameters tended to have a better relationship with functional parameters than the BMO-MRW and peripapillary RNFL thickness parameters in eyes with ONH prelaminar schisis. CONCLUSIONS The ONH prelaminar schisis was associated with thin and deep LC, short axial length, and generally thick macula. In patients with this features, the macular measurements, rather than peripapillary or ONH measurements, better predict the functional status of the eye. Our findings may have significant clinical implications for management of advanced glaucoma eyes with and without ONH prelaminar schisis.
Collapse
Affiliation(s)
- Mi Sun Sung
- From the Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Hyung Nam Jin
- From the Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Sang Woo Park
- From the Department of Ophthalmology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju, South Korea.
| |
Collapse
|
19
|
Bradley AE, Wancket LM, Rinke M, Gruebbel MM, Saladino BH, Schafer K, Katsuta O, Garcia B, Chanut F, Hughes K, Nelson K, Himmel L, McInnes E, Schucker A, Uchida K. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Rabbit. J Toxicol Pathol 2021; 34:183S-292S. [PMID: 34712007 PMCID: PMC8544166 DOI: 10.1293/tox.34.183s] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for
Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of
Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North
America (STP) to develop an internationally accepted nomenclature for proliferative and
non-proliferative lesions in laboratory animals. The purpose of this publication is to
provide a standardized nomenclature for classifying microscopic lesions observed in most
tissues and organs from the laboratory rabbit used in nonclinical safety studies. Some of
the lesions are illustrated by color photomicrographs. The standardized nomenclature
presented in this document is also available electronically on the internet
(http://www.goreni.org/). Sources of material included histopathology databases from
government, academia, and industrial laboratories throughout the world. Content includes
spontaneous lesions as well as lesions induced by exposure to test materials. Relevant
infectious and parasitic lesions are included as well. A widely accepted and utilized
international harmonization of nomenclature for lesions in laboratory animals will provide
a common language among regulatory and scientific research organizations in different
countries and increase and enrich international exchanges of information among
toxicologists and pathologists.
Collapse
Affiliation(s)
- Alys E Bradley
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | | | | | | | | | | | | | - Begonya Garcia
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | - Franck Chanut
- Sanofi, 1 Avenue Pierre Brosselette, 91380 Chilly-Mazarin, France
| | | | | | - Lauren Himmel
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Adrienne Schucker
- American Preclinical Services, LLC, 8945 Evergreen Blvd, Minneapolis, MN 55433
| | | |
Collapse
|
20
|
Lee EJ, Kee HJ, Park KA, Han JC, Kee C. Comparative Topographical Analysis of Choroidal Microvascular Dropout Between Glaucoma and Nonarteritic Anterior Ischemic Optic Neuropathy. Invest Ophthalmol Vis Sci 2021; 62:27. [PMID: 34705024 PMCID: PMC8556563 DOI: 10.1167/iovs.62.13.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose To identify the presence of choroidal microvascular dropout (MvD) in nonarteritic anterior ischemic optic neuropathy (NAION) eyes and to characterize the topographical distribution for the mechanistic interpretation of MvD development. Methods We performed optical coherence tomography angiography on 47 open-angle glaucoma (OAG) and 19 NAION eyes with β-zone peripapillary atrophy (βPPA). We recorded the presence of MvD and compared between the peripapillary topographical measures of MvD, retinal nerve fiber layer (RNFL) defect, and βPPA in angular width and location. Results MvD was present in both diseases, marginally more frequently in NAION eyes (19/19, 100.0%) than in OAG eyes (38/47, 80.6%, P = 0.050), without a discernable difference in appearance. NAION eyes also showed wider MvD and RNFL defects compared to OAG eyes (both P < 0.001). In topographical measurements, the distribution of MvD showed a strong correspondence to superimposition areas of βPPA and RNFL defects, more distinctly than to RNFL defects (all P < 0.001). The outline of superimposition area also remarkably resembled the MvD area. Conclusions MvD was present in both the OAG and NAION groups. The βPPA-RNFL defect superimposition area topographically and morphologically matched MvD. Further investigations are needed to elucidate the role of RNFL defects in the pathogenesis of MvD and the clinical significance.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Joo Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Colman K, Andrews RN, Atkins H, Boulineau T, Bradley A, Braendli-Baiocco A, Capobianco R, Caudell D, Cline M, Doi T, Ernst R, van Esch E, Everitt J, Fant P, Gruebbel MM, Mecklenburg L, Miller AD, Nikula KJ, Satake S, Schwartz J, Sharma A, Shimoi A, Sobry C, Taylor I, Vemireddi V, Vidal J, Wood C, Vahle JL. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate ( M. fascicularis). J Toxicol Pathol 2021; 34:1S-182S. [PMID: 34712008 PMCID: PMC8544165 DOI: 10.1293/tox.34.1s] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the nonhuman primate used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Institutes for BioMedical Research, Cambridge, MA,
USA
| | - Rachel N. Andrews
- Wake Forest School of Medicine, Department of Radiation
Oncology, Winston-Salem, NC, USA
| | - Hannah Atkins
- Penn State College of Medicine, Department of Comparative
Medicine, Hershey, PA, USA
| | | | - Alys Bradley
- Charles River Laboratories Edinburgh Ltd., Tranent,
Scotland, UK
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical
Sciences, Roche Innovation Center Basel, Switzerland
| | - Raffaella Capobianco
- Janssen Research & Development, a Division of Janssen
Pharmaceutica NV, Beerse, Belgium
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Cline
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Takuya Doi
- LSIM Safety Institute Corporation, Ibaraki, Japan
| | | | | | - Jeffrey Everitt
- Department of Pathology, Duke University School of
Medicine, Durham, NC, USA
| | | | | | | | - Andew D. Miller
- Cornell University College of Veterinary Medicine, Ithaca,
NY, USA
| | | | - Shigeru Satake
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima and
Tokyo, Japan
| | | | - Alok Sharma
- Covance Laboratories, Inc., Madison, WI, USA
| | | | | | | | | | | | - Charles Wood
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT,
USA
| | | |
Collapse
|
22
|
Decorin-An Antagonist of TGF-β in Astrocytes of the Optic Nerve. Int J Mol Sci 2021; 22:ijms22147660. [PMID: 34299278 PMCID: PMC8306213 DOI: 10.3390/ijms22147660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
During the pathogenesis of glaucoma, optic nerve (ON) axons become continuously damaged at the optic nerve head (ONH). This often is associated with reactive astrocytes and increased transforming growth factor (TGF-β) 2 levels. In this study we tested the hypothesis if the presence or absence of decorin (DCN), a small leucine-rich proteoglycan and a natural inhibitor of several members of the TGF family, would affect the expression of the TGF-βs and connective tissue growth factor (CTGF/CCN2) in human ONH astrocytes and murine ON astrocytes. We found that DCN is present in the mouse ON and is expressed by human ONH and murine ON astrocytes. DCN expression and synthesis was significantly reduced after 24 h treatment with 3 nM CTGF/CCN2, while treatment with 4 pM TGF-β2 only reduced expression of DCN significantly. Conversely, DCN treatment significantly reduced the expression of TGF-β1, TGF-β2 and CTGF/CCN2 vis-a-vis untreated controls. Furthermore, DCN treatment significantly reduced expression of fibronectin (FN) and collagen IV (COL IV). Notably, combined treatment with DCN and triciribine, a small molecule inhibitor of protein kinase B (AKT), attenuated effects of DCN on CTGF/CCN2, TGF-β1, and TGF-β2 mRNA expression. We conclude (1) that DCN is an important regulator of TGF-β and CTGF/CCN2 expression in astrocytes of the ON and ONH, (2) that DCN thereby regulates the expression of extracellular matrix (ECM) components and (3) that DCN executes its negative regulatory effects on TGF-β and CTGF/CCN2 via the pAKT/AKT signaling pathway in ON astrocytes.
Collapse
|
23
|
Komáromy AM, Koehl KL, Park SA. Looking into the future: Gene and cell therapies for glaucoma. Vet Ophthalmol 2021; 24 Suppl 1:16-33. [PMID: 33411993 PMCID: PMC7979454 DOI: 10.1111/vop.12858] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Glaucoma is a complex group of optic neuropathies that affects both humans and animals. Intraocular pressure (IOP) elevation is a major risk factor that results in the loss of retinal ganglion cells (RGCs) and their axons. Currently, lowering IOP by medical and surgical methods is the only approved treatment for primary glaucoma, but there is no cure, and vision loss often progresses despite therapy. Recent technologic advances provide us with a better understanding of disease mechanisms and risk factors; this will permit earlier diagnosis of glaucoma and initiation of therapy sooner and more effectively. Gene and cell therapies are well suited to target these mechanisms specifically with the potential to achieve a lasting therapeutic effect. Much progress has been made in laboratory settings to develop these novel therapies for the eye. Gene and cell therapies have already been translated into clinical application for some inherited retinal dystrophies and age-related macular degeneration (AMD). Except for the intravitreal application of ciliary neurotrophic factor (CNTF) by encapsulated cell technology for RGC neuroprotection, there has been no other clinical translation of gene and cell therapies for glaucoma so far. Possible application of gene and cell therapies consists of long-term IOP control via increased aqueous humor drainage, including inhibition of fibrosis following filtration surgery, RGC neuroprotection and neuroregeneration, modification of ocular biomechanics for improved IOP tolerance, and inhibition of inflammation and neovascularization to prevent the development of some forms of secondary glaucoma.
Collapse
Affiliation(s)
- András M. Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Kristin L. Koehl
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Shin Ae Park
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
24
|
Calkins DJ. Adaptive responses to neurodegenerative stress in glaucoma. Prog Retin Eye Res 2021; 84:100953. [PMID: 33640464 DOI: 10.1016/j.preteyeres.2021.100953] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Glaucoma causes loss of vision through degeneration of the retinal ganglion cell (RGC) projection to the brain. The disease is characterized by sensitivity to intraocular pressure (IOP) conveyed at the optic nerve head, through which RGC axons pass unmyelinated to form the optic nerve. From this point, a pathogenic triumvirate comprising inflammatory, oxidative, and metabolic stress influence both proximal structures in the retina and distal structures in the optic projection. This review focuses on metabolic stress and how the optic projection may compensate through novel adaptive mechanisms to protect excitatory signaling to the brain. In the retina and proximal nerve head, the unmyelinated RGC axon segment is energy-inefficient, which leads to increased demand for adenosine-5'-triphosphate (ATP) at the risk of vulnerability to Ca2+-related metabolic and oxidative pressure. This vulnerability may underlie the bidirectional nature of progression. However, recent evidence highlights that the optic projection in glaucoma is not passive but rather demonstrates adaptive processes that may push back against neurodegeneration. In the retina, even as synaptic and dendritic pruning ensues, early progression involves enhanced excitability of RGCs. Enhancement involves depolarization of the resting membrane potential and increased response to light, independent of RGC morphological type. This response is axogenic, arising from increased levels and translocation of voltage-gated sodium channels (NaV) in the unmyelinated segment. During this same early period, large-scale networks of gap-junction coupled astrocytes redistribute metabolic resources to the optic projection stressed by elevated IOP to slow loss of axon function. This redistribution may reflect more local remodeling, as astrocyte processes respond to focal metabolic duress by boosting glycogen turnover in response to axonal activity in an effort to promote survival of the healthiest axons. Both enhanced excitability and metabolic redistribution are transient, indicating that the same adaptive mechanisms that apparently serve to slow progression ultimately may be too expensive for the system to sustain over longer periods.
Collapse
Affiliation(s)
- David J Calkins
- The Vanderbilt Eye Institute, Nashville, TN, USA; Vanderbilt Vision Research Center, Vanderbilt University Medical Center, 1161 21st Ave S, AA7100 Medical Center North Nashville, Tennessee, 37232, USA.
| |
Collapse
|
25
|
Schneider M, Pawlak R, Weber GR, Dillinger AE, Kuespert S, Iozzo RV, Quigley HA, Ohlmann A, Tamm ER, Fuchshofer R. A novel ocular function for decorin in the aqueous humor outflow. Matrix Biol 2021; 97:1-19. [PMID: 33582236 DOI: 10.1016/j.matbio.2021.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Primary open-angle glaucoma, a neurodegenerative disorder characterized by degeneration of optic nerve axons, is a frequent cause of vision loss and blindness worldwide. Several randomized multicenter studies have identified intraocular pressure as the major risk factor for its development, caused by an increased outflow resistance to the aqueous humor within the trabecular meshwork. However, the molecular mechanism for increased outflow resistance in POAG has not been fully established. One of the proposed players is the pro-fibrotic transforming growth factor (TGF)-β2, which is found in higher amounts in the aqueous humor of patients with POAG. In this study we elucidated the role of decorin, a small leucine-rich proteoglycan and known antagonist of TGF-β, in the region of aqueous humor outflow tissue. Utilizing decorin deficient mice, we discovered that decorin modulated TGF-β signaling in the canonical outflow pathways and the lack of decorin in vivo caused an increase in intraocular pressure. Additionally, the Dcn-/- mice showed significant loss of optic nerve axons and morphological changes in the glial lamina, typical features of glaucoma. Moreover, using human trabecular meshwork cells we discovered that soluble decorin attenuated TGF-β2 mediated synthesis and expression of typical downstream target genes including CCN2/CTGF, FN and COL IV. Finally, we found a negative reciprocal regulation of decorin and TGF-β, with a dramatic downregulation of decorin in the canonical outflow pathways of patients with primary open-angle glaucoma. Collectively, our results indicate that decorin plays an important role in the pathogenesis of primary open-angle glaucoma and offers novel perspectives in the treatment of this serious disease.
Collapse
Affiliation(s)
- Magdalena Schneider
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany
| | - Ramona Pawlak
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany
| | - Gregor R Weber
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea E Dillinger
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany
| | - Sabrina Kuespert
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, United States
| | - Harry A Quigley
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Andreas Ohlmann
- Department of Ophthalmology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Universitätsstr. 31, Regensburg D-93053, Germany.
| |
Collapse
|
26
|
Qian X, Li R, Lu G, Jiang L, Kang H, Kirk Shung K, Humayun MS, Zhou Q. Ultrasonic elastography to assess biomechanical properties of the optic nerve head and peripapillary sclera of the eye. ULTRASONICS 2021; 110:106263. [PMID: 33065466 PMCID: PMC7736296 DOI: 10.1016/j.ultras.2020.106263] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/13/2020] [Accepted: 09/22/2020] [Indexed: 05/30/2023]
Abstract
PURPOSE To quantitatively investigate both optic nerve head (ONH) and peripapillary sclera (PPS) biomechanical properties of porcine eyes through an ultrasonic elastography imaging system in response to both increasing and decreasing intraocular pressure (IOP). METHODS The Young's modulus of the ONH and PPS were assessed using our high resolution ultrasonic imaging system which utilized a mechanical shaker to induce shear waves and an off-axis aligned 40 MHz needle transducer to track micron-level displacement along the direction of wave propagation. In this study, imaging on a total of 8 ex vivo porcine eyes preloaded with IOPs from 6 mmHg to 30 mmHg was performed. To have a better understanding of the effect of varying IOP on biomechanics, both increasing and decreasing IOPs were investigated. RESULTS The increase of the Young's modulus of ONH (92.4 ± 13.9 kPa at 6 mmHg to 224.7 ± 71.1 kPa at 30 mmHg) and PPS (176.8 ± 14.3 kPa at 6 mmHg to 573.5 ± 64.4 kPa at 30 mmHg) following IOP elevation could be observed in the reconstructed Young's modulus of the shear wave elasticity (SWE) imaging while the B-mode structural images remained almost unchanged. In addition, for the same IOP level, both ONH and PPS have a tendency to be stiffer with decreasing IOP as compared to increasing IOP. CONCLUSIONS Our results demonstrate the feasibility of using our ultrasonic elastography system to investigate the stiffness mapping of posterior eye with high resolution in both increasing and decreasing IOPs, making this technique potentially useful for glaucoma.
Collapse
Affiliation(s)
- Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Laiming Jiang
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Haochen Kang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - K Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; USC Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
27
|
Sun Y, Guo Y, Cao K, Zhang Y, Xie Y, Pang R, Shi Y, Wang H, Wang N. Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma. Eur J Ophthalmol 2020; 31:3049-3056. [PMID: 33334173 DOI: 10.1177/1120672120982521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To evaluate the relationship between corneal biomechanical parameters and lamina cribrosa (LC) curvature in normal tension glaucoma (NTG). METHODS 95 eyes of 56 NTG patients were enrolled in this prospective, observational study. Corneal biomechanical parameters, including stiffness parameters at applanation 1 (SP-A1), deformation amplitude ratio (DA ratio), inverse concave radius and biomechanically corrected intraocular pressure estimate (bIOP), were captured using the Corneal Visualization Scheimpflug Technology instrument (Corvis-ST). LC curvature was evaluated by mean adjusted LC curvature index (maLCCI) averaged by the measurements on 12 radial B-scan images obtained using swept-source optical coherence tomography (SS-OCT). Linear mixed models were constructed to assess the relationship between corneal biomechanical parameters and LC curvature. RESULTS The mean age of participants was 51.04 ± 13.74 years (range, 24-82 years). The SP-A1 and maLCCI were 93.50 ± 13.82 mm Hg/mm and 7.57 ± 1.58, respectively. In univariate and multivariate analysis, SP-A1 (p < 0.001 and p = 0.001) and age (p = 0.010 and p = 0.024) were both significantly associated with maLCCI. The LC curvature increased with softer cornea demonstrated by lower SP-A1 and younger eyes. There was no statistical significance interaction between SP-A1 and age (p = 0.194). CONCLUSIONS The greater posterior LC curvature was associated with lower corneal stiffness parameters and younger eyes in NTG patients. CLINICAL TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR1900021465.
Collapse
Affiliation(s)
- Yunxiao Sun
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Yiqin Guo
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Kai Cao
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Yue Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Yuan Xie
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ruiqi Pang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | - Yan Shi
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Huaizhou Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| |
Collapse
|
28
|
Teng B, Li D, Choi EY, Shen LQ, Pasquale LR, Boland MV, Ramulu P, Wellik SR, De Moraes CG, Myers JS, Yousefi S, Nguyen T, Fan Y, Wang H, Bex PJ, Elze T, Wang M. Inter-Eye Association of Visual Field Defects in Glaucoma and Its Clinical Utility. Transl Vis Sci Technol 2020; 9:22. [PMID: 33244442 PMCID: PMC7683854 DOI: 10.1167/tvst.9.12.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/27/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose To investigate intereye associations of visual field (VF) defects. Methods We selected 24-2 VF pairs of both eyes from 63,604 patients tested on the same date with mean deviation (MD) ≥ −12 dB. VFs were decomposed into one normal and 15 defect patterns previously identified using archetypal analysis. VF pattern weighting coefficients were correlated between the worse and better eyes, as defined by MD. VF defect patterns (weighting coefficients > 10%) in the better eye were predicted from weighting coefficients of the worse eye by logistic regression models, which were evaluated by area under the receiver operating characteristic curve (AUC). Results Intereye correlations of archetypal VF patterns were strongest for the same defect pattern between fellow eyes. The AUCs for predicting the presence of 15 defect patterns in the better eye based on the worse eye ranged from 0.69 (superior nasal step) to 0.92 (near total loss). The AUC for predicting superior paracentral loss was 0.89. Superior paracentral loss in the better eye was positively correlated with coefficients of superior paracentral loss, central scotoma, superior altitudinal defect, nasal hemianopia, and inferior paracentral loss in the worse eye, and negatively correlated with coefficients of the normal VF, superior peripheral defect, concentric peripheral defect, and temporal wedge. The parameters are presented in the descending order of statistical significance. Conclusions VF patterns of the worse eye are predictive of VF defects in the better eye. Translational Relevance Our models can potentially assist clinicians to better interpret VF loss under measurement uncertainty.
Collapse
Affiliation(s)
- Bettina Teng
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Dian Li
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eun Young Choi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Lucy Q Shen
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Louis R Pasquale
- Eye and Vision Research Institute of New York Eye and Ear at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael V Boland
- Wilmer Eye Institute and Division of Health Sciences Informatics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pradeep Ramulu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah R Wellik
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | | | - Jonathan S Myers
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Siamak Yousefi
- Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Thao Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuying Fan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Hui Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Institute for Psychology and Behavior, Jilin University of Finance and Economics, Changchun, China
| | - Peter J Bex
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Tobias Elze
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | - Mengyu Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Perucho-González L, García-Feijoó J. Evaluation and treatment of glaucoma 24hours a day. Where are we and where are we going? ACTA ACUST UNITED AC 2020; 95:345-352. [PMID: 32345482 DOI: 10.1016/j.oftal.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022]
Abstract
Current management of glaucoma generally involves medical, laser, or surgical treatment in order to achieve an intraocular pressure (IOP) control which is commensurate with either stability or delayed progression of the disease. Although the follow-up of glaucoma patients is usually carried out with sporadic and isolated intraocular pressure measurements, the literature already indicates that this might not the best option to manage glaucoma patients. This article reviews the importance of 24hours intraocular pressure monitoring based on studies and publications that exist in this regard to date. A critical review on the methodology of these publications has been conducted. The need is stressed for further studies on the intraocular pressure patterns in different types of glaucoma, as well as the pattern with different therapies used in glaucoma aimed at optimising the management of the disease.
Collapse
Affiliation(s)
- L Perucho-González
- Fundación para la Investigación Biomédica, Hospital Clínico San Carlos, IdISSC, Departamento de Oftalmología, Universidad Complutense de Madrid, RETICS, Madrid, España.
| | - J García-Feijoó
- Fundación para la Investigación Biomédica, Hospital Clínico San Carlos, IdISSC, Departamento de Oftalmología, Universidad Complutense de Madrid, RETICS, Madrid, España
| |
Collapse
|
30
|
Li R, Du Z, Qian X, Li Y, Martinez-Camarillo JC, Jiang L, Humayun MS, Chen Z, Zhou Q. High resolution optical coherence elastography of retina under prosthetic electrode. Quant Imaging Med Surg 2020; 11:918-927. [PMID: 33654665 DOI: 10.21037/qims-20-1137] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Quantitatively investigating the biomechanics of retina with a retinal prosthetic electrode, we explored the effects of the prosthetic electrode on the retina, and further supplemented data for a potential clinical trial. Methods Biomechanical properties were assessed with a high resolution optical coherence tomography (OCT) based elastography (OCE) system. A shaker was used to initiate elastic waves and an OCT system was used to track axial displacement along with wave propagation. Rabbits received surgery to implant the retinal prosthetic electrode, and elastic wave speed was measured before and after implantation; anatomical B-mode images were also acquired. Results Spatial-temporal maps of each layer in retina with and without prosthetic electrodes were acquired. Elastic wave speed of nerve fiber to inner plexiform layer, inner nuclear to outer nuclear layer, retinal pigmented epithelium layer and choroid to sclera layer without prosthetic electrode were found to be 3.66±0.36, 5.33±0.07, 6.85±0.37, and 9.69±0.24 m/s, respectively. With prosthetic electrode, the elastic wave speed was found to be 4.09±0.26, 5.14±0.11, 6.88±0.70, and 9.99±0.73 m/s, respectively in each layer. Conclusions Our results show that the elastic wave speed in each layer of retina is slightly faster with the retinal electrode, and further demonstrate that the retinal prosthetic electrode does not affect biomechanical properties significantly. In the future, we expect OCE technology to be used by clinicians where it could become part of routine testing and evaluation of the biomechanical properties of the retina in response to long term use of prosthetic electrodes in patients.
Collapse
Affiliation(s)
- Runze Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Zhaodong Du
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Yan Li
- Beckman Laser Institute, University of California, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | | | - Laiming Jiang
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Mark S Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Lee KM, Kim TW, Lee EJ, Girard MJA, Mari JM, Weinreb RN. Association of Corneal Hysteresis With Lamina Cribrosa Curvature in Primary Open Angle Glaucoma. Invest Ophthalmol Vis Sci 2020; 60:4171-4177. [PMID: 31598628 DOI: 10.1167/iovs.19-27087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate whether corneal biomechanical properties are associated with the lamina cribrosa (LC) curvature in eyes with primary open angle glaucoma (POAG). Methods Corneal biomechanical properties and LC curvature were assessed in 65 treatment-naïve POAG patients. Corneal biomechanical properties, including corneal hysteresis (CH), corneal resistance factor (CRF), and corneal-compensated intraocular pressure (IOPcc), were measured using an ocular response analyzer (ORA; Reichert Ophthalmic Instruments). LC curvature was assessed by measuring the LC curvature index (LCCI) on B-scan images obtained using spectral-domain optical coherence tomography (OCT). The LCCI was determined by measuring LC curve depth on the anterior LC surface and the width of the reference line. Results The LCCI was correlated with CH (P = 0.001), CRF (P = 0.012) and IOPcc (P = 0.001) in the univariate analysis. To adjust multicollinearity, principal component analysis was performed, and multivariate regression analyses were conducted using one variable from each component. The larger LCCI was associated with larger IOPcc (P < 0.001), smaller CRF (P = 0.001) and smaller CH (P < 0.001). Conclusions Lower CH was associated with a more posteriorly curved LC in treatment naïve POAG patients. This finding may provide a basic explanation for the reported association between CH and an increased risk for glaucoma development and progression, and support a potential value of CH for risk assessment for glaucoma.
Collapse
Affiliation(s)
- Kyoung Min Lee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Department of Ophthalmology, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Tae-Woo Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Ji Lee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea.,Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Michaël J A Girard
- Department of Bioengineering, National University of Singapore, Singapore.,Singapore Eye Research Institute, Singapore
| | | | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, and Viterbi Family Department of Ophthalmology, University of California, San Diego, California, United States
| |
Collapse
|
32
|
Munemasa Y. Histone H2B induces retinal ganglion cell death through toll-like receptor 4 in the vitreous of acute primary angle closure patients. J Transl Med 2020; 100:1080-1089. [PMID: 32321985 PMCID: PMC7374083 DOI: 10.1038/s41374-020-0427-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/29/2020] [Accepted: 03/29/2020] [Indexed: 11/14/2022] Open
Abstract
Acute primary angle closure (APAC) is a disease of ophthalmic urgency; lack of treatment can lead to blindness. Even after adequate treatment for APAC, subsequent elevated acute intraocular pressure induces severe neuronal damage which can result in secondary glaucomatous optic neuropathy (GON). Damage-associated molecular patterns (DAMPs) are released from damaged and dead neuronal cells, which induce secondary inflammatory changes and further tissue damage. Our hypothesis is that histone H2B (H2B), which is one of the DAMPs, is released from damaged cells in the development of GON after APAC treatment. Intravitreal injection of H2B induces neuronal cell death through toll-like receptor 4 (TLR4) expression, following the upregulation of inflammatory cytokine mRNAs and phosphorylation of mitogen activated protein kinases (MAPKs). Knockdown of TLR4 caused a reduction of H2B neurotoxicity in damaged cells through TLR4 signaling. Significantly increased H2B was observed in the vitreous cells of APAC patients. In addition, enhanced H2B protein correlated with decreased ganglion cell analysis and retinal ganglion cell (RGC) layer thinning, which indicates the effect of H2B on RGCs. Our data from clinical and animal studies show the involvement of H2B-TLR4 pathways in the development of GON after APAC treatment providing new insight for the mechanism of RGC degeneration.
Collapse
Affiliation(s)
- Yasunari Munemasa
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae, Kawasaki, Kanagawa, 2168511, Japan.
| |
Collapse
|
33
|
Komáromy AM, Bras D, Esson DW, Fellman RL, Grozdanic SD, Kagemann L, Miller PE, Moroi SE, Plummer CE, Sapienza JS, Storey ES, Teixeira LB, Toris CB, Webb TR. The future of canine glaucoma therapy. Vet Ophthalmol 2019; 22:726-740. [PMID: 31106969 PMCID: PMC6744300 DOI: 10.1111/vop.12678] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
Abstract
Canine glaucoma is a group of disorders that are generally associated with increased intraocular pressure (IOP) resulting in a characteristic optic neuropathy. Glaucoma is a leading cause of irreversible vision loss in dogs and may be either primary or secondary. Despite the growing spectrum of medical and surgical therapies, there is no cure, and many affected dogs go blind. Often eyes are enucleated because of painfully high, uncontrollable IOP. While progressive vision loss due to primary glaucoma is considered preventable in some humans, this is mostly not true for dogs. There is an urgent need for more effective, affordable treatment options. Because newly developed glaucoma medications are emerging at a very slow rate and may not be effective in dogs, work toward improving surgical options may be the most rewarding approach in the near term. This Viewpoint Article summarizes the discussions and recommended research strategies of both a Think Tank and a Consortium focused on the development of more effective therapies for canine glaucoma; both were organized and funded by the American College of Veterinary Ophthalmologists Vision for Animals Foundation (ACVO-VAF). The recommendations consist of (a) better understanding of disease mechanisms, (b) early glaucoma diagnosis and disease staging, (c) optimization of IOP-lowering medical treatment, (d) new surgical therapies to control IOP, and (e) novel treatment strategies, such as gene and stem cell therapies, neuroprotection, and neuroregeneration. In order to address these needs, increases in research funding specifically focused on canine glaucoma are necessary.
Collapse
Affiliation(s)
- András M Komáromy
- College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Dineli Bras
- Centro de Especialistas Veterinarios de Puerto Rico, San Juan, Puerto Rico
| | | | | | | | - Larry Kagemann
- U.S. Food and Drug Administration, Silver Spring, Maryland.,New York University School of Medicine, New York, New York.,Department of Ophthalmology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Paul E Miller
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sayoko E Moroi
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Caryn E Plummer
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | | | - Eric S Storey
- South Atlanta Veterinary Emergency & Specialty, Fayetteville, Georgia
| | - Leandro B Teixeira
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carol B Toris
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Terah R Webb
- MedVet Medical & Cancer Centers for Pets, Worthington, Ohio
| |
Collapse
|
34
|
Duan XJ, Jefferys JL, Quigley HA. Evaluation of Automated Segmentation Algorithms for Optic Nerve Head Structures in Optical Coherence Tomography Images. Invest Ophthalmol Vis Sci 2019; 59:3816-3826. [PMID: 30073355 DOI: 10.1167/iovs.18-24469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To compare the identification of optic nerve head (ONH) structures in optical coherence tomography images by observers and automated algorithms. Methods ONH images in 24 radial scan sets by optical coherence tomography were obtained in 51 eyes of 29 glaucoma patients and suspects. Masked intraobserver and interobserver comparisons were made of marked endpoints of Bruch's membrane opening (BMO) and the anterior lamina cribrosa (LC). BMO and LC positional markings were compared between observer and automated algorithm. Repeated analysis on 20 eyes by the algorithm was compared. Regional ONH data were derived from the algorithms. Results Intraobserver difference in BMO width was not significantly different from zero (P ≥ 0.32) and the difference in LC position was less than 1% different (P = 0.04). Interobserver were slightly larger than intraobserver differences, but interobserver BMO width difference was 0.36% (P = 0.63). Mean interobserver difference in LC position was 14.74 μm (P = 0.004), 3% of the typical anterior lamina depth (ALD). Between observer and algorithm, BMO width differed by 1.85% (P = 0.23) and mean LC position was not significantly different (3.77 μm, P = 0.77). Repeat algorithmic analysis had a mean difference in BMO area of 0.38% (P = 0.47) and mean ALD difference of 0.54 ± 0.72%. Regional ALD had greater variability in the horizontal ONH regions. Some individual outlier images were not validly marked by either observers or algorithm. Conclusions Automated identification of ONH structures is comparable to observer markings for BMO and anterior LC position, making BMO a practical reference plane for algorithmic analysis.
Collapse
Affiliation(s)
- Xiangyun J Duan
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Joan L Jefferys
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Harry A Quigley
- The Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
35
|
Ly A, Phu J, Katalinic P, Kalloniatis M. An evidence-based approach to the routine use of optical coherence tomography. Clin Exp Optom 2018; 102:242-259. [PMID: 30560558 PMCID: PMC6590481 DOI: 10.1111/cxo.12847] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/13/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Optical coherence tomography is an imaging technology that has revolutionised the detection, assessment and management of ocular disease. It is now a mainstream technology in clinical practice and is performed by non-specialised personnel in some settings. This article provides a clinical perspective on the implications of that movement and describes best practice using multimodal imaging and an evidence-based approach. Practical, illustrative guides on the interpretation of optical coherence tomography are provided for three major diseases of the ocular fundus, in which optical coherence tomography is often crucial to management: age-related macular degeneration, diabetic retinopathy and glaucoma. Topics discussed include: cross-sectional and longitudinal signs in ocular disease, so-called 'red-green' disease whereby clinicians rely on machine/statistical comparisons for diagnosis in managing treatment-naïve patients, and the utility of optical coherence tomography angiography and machine learning.
Collapse
Affiliation(s)
- Angelica Ly
- Centre for Eye Health, The University of New South Wales, Sydney, New South Wales, Australia.,Faculty of Science, School of Optometry and Vision Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Jack Phu
- Centre for Eye Health, The University of New South Wales, Sydney, New South Wales, Australia.,Faculty of Science, School of Optometry and Vision Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Paula Katalinic
- Centre for Eye Health, The University of New South Wales, Sydney, New South Wales, Australia.,Faculty of Science, School of Optometry and Vision Science, The University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Kalloniatis
- Centre for Eye Health, The University of New South Wales, Sydney, New South Wales, Australia.,Faculty of Science, School of Optometry and Vision Science, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Pitha I, Oglesby E, Chow A, Kimball E, Pease ME, Schaub J, Quigley H. Rho-Kinase Inhibition Reduces Myofibroblast Differentiation and Proliferation of Scleral Fibroblasts Induced by Transforming Growth Factor β and Experimental Glaucoma. Transl Vis Sci Technol 2018; 7:6. [PMID: 30479877 PMCID: PMC6238981 DOI: 10.1167/tvst.7.6.6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/16/2018] [Indexed: 01/07/2023] Open
Abstract
Purpose We evaluated prevention of transforming growth factor β (TGFβ)–induced transdifferentiation of cultured scleral fibroblasts to myofibroblasts by rho-associated protein kinase (ROCK) inhibitors. Additionally, we tested whether local delivery of ROCK inhibitors reduced scleral fibroblast proliferation in response to chronic intraocular pressure (IOP) elevation. Methods Primary human peripapillary sclera (PPS) fibroblasts were cultured and treated with TGFβ to induce myofibroblast transdifferentiation, as determined by immunoblot assessment of α smooth muscle actin (SMA) levels and collagen gel contraction. Cells were treated with the ROCK inhibitors Y27632, fasudil, and H1152 before TGFβ treatment. ROCK activity in TGFβ-treated fibroblasts and sclera from ocular hypertensive mice was assessed by measuring phosphorylation of the ROCK substrate MYPT1 at Thr696. Fibroblast proliferation following IOP elevation and ROCK inhibitor treatment was assessed by an enzyme-linked immunosorbent (ELISA) assay. Results ROCK inhibitors H1152 (10μM), Y27632 (10 μM), and fasudil (5μM) reduced SMA expression 72%, 85%, and 68%, respectively. Collagen gel contraction was reduced by 36% (P < 0.001), 27% (P = 0.0003), and 33% (P = 0.0019) following treatment with fasudil (25 μM), Y27632 (10 μM), and H1152 (10μM). ROCK activity induced by TGFβ rose 4.74 ± 1.9 times over control at 4 hours (P = 0.0004) and 2.4 ± 0.47-fold (P = 0.0016) in sclera after IOP elevation. Proliferation of scleral fibroblasts after chronic IOP elevation was reduced 77% by Y27632 (P = 0.001) and 84% by fasudil (P = 0.0049). Conclusions ROCK inhibitors reduce TGFβ-induced myofibroblast transdifferentiation and glaucoma-induced scleral cell proliferation. Translational Relevance These findings suggest altered fibroblast activity promoted by ROCK inhibitors could modify scleral biomechanics and be relevant to glaucoma treatment.
Collapse
Affiliation(s)
- Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ericka Oglesby
- Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amanda Chow
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Kimball
- Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Ellen Pease
- Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie Schaub
- Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
37
|
Krzyżanowska-Berkowska P, Czajor K, Helemejko I, Iskander DR. Relationship between the rate of change in lamina cribrosa depth and the rate of retinal nerve fiber layer thinning following glaucoma surgery. PLoS One 2018; 13:e0206040. [PMID: 30399148 PMCID: PMC6219770 DOI: 10.1371/journal.pone.0206040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 10/05/2018] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To assess whether lamina cribrosa depth (LCD) reduction and the rate of change in LCD over time (ΔLCD/Δt) is associated with retinal nerve fiber layer (RNFL) thickness and the rate of RNFL thinning over time (ΔRNFL/Δt) to test the hypothesis that, in a long term, RNFL thinning occurs irrespectively to the displacement of the lamina cribrosa following glaucoma surgery. METHODS Twenty-nine primary open-angle glaucoma patients underwent glaucoma surgery. Sixteen patients underwent trabeculectomy and 13 patients undertook non-penetrating deep sclerectomy. Images of optic nerve head using spectral-domain optical coherence tomography (SD-OCT) with enhanced depth imaging technology were obtained preoperatively, at one-, three-, six-month and follow-up postoperative visit from 12 to 29 months after surgery (1pv, 3pv, 6pv, and FUpv, respectively). Correspondingly, measurements of the circumpapillary RNFL thickness were acquired. RESULTS Intraocular pressure decreased from 24.0±8.9 to 10.9±3.9mmHg at 6pv (P<0.001) and to 12.7±4.4mmHg at FUpv (P<0.001). LCD was reduced from 465.3±136.4μm to 402.9±126.4μm at 1pv (P<0.001) and maintained similar position at 6pv (394.3±118.4μm; P = 0.170 with respect to 1pv). A significant decrease in the LCD was noted at FUpv (342.8±90.3μm, P<0.001) with respect to 6pv. RNFL thickness increased significantly to 64.9±19.8μm at 1pv (P = 0.005) and subsequently decreased to baseline level at 3pv. Further statistically significant decrease in RNFL thickness with respect to previous visit was found at 6pv and at FUpv (56.4±15.6μm and 55.0±14.0μm, P = 0.023 and P = 0.045, respectively). A thinner RNFL thickness at FUpv was not related to the LCD at FUpv (P = 0.129) but was correlated with ΔLCD/Δt at FUpv (P = 0.003). The ΔRNFL/Δt at FUpv was statistically significantly correlated with ΔLCD/Δt at FUpv (P<0.001). CONCLUSIONS This is the first study that considers direct correlation between the rate of change in LCD with the rate of RNFL thinning over time. A thinner RNFL thickness following glaucoma surgery was associated with the rate of LCD reduction, not with position of the lamina cribrosa at the FUpv.
Collapse
Affiliation(s)
| | - Karolina Czajor
- Department of Ophthalmology, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Helemejko
- Department of Ophthalmology, Wroclaw Medical University, Wroclaw, Poland
| | - D Robert Iskander
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
38
|
Structural features of eyelid connective tissue in patients with primary open-angle glaucoma. Int Ophthalmol 2018; 39:2005-2014. [PMID: 30315390 DOI: 10.1007/s10792-018-1035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE To study the connective tissue (CT) structure of upper eyelid skin of primary open-angle glaucoma (POAG) patients. PATIENTS AND METHODS Forty-seven patients aged 47-91 expecting blepharoplasty formed 3 groups: group 1 [16 subjects without POAG, median age 55 years (interquartile range 54-55.5)], group 2 [12 subjects without POAG, median age 73 (72-76.5)], and group 3 [(19 subjects with POAG, median age 74 (70-80.5)]. Age differences between groups 1 and 2 and groups 1 and 3 are significant (p < 0.05). Thermodynamic parameters of skin samples taken during blepharoplasty: Endothermic peak ([Formula: see text], °C) and denaturation enthalpy ([Formula: see text], J/g of dry weight) were determined using differential scanning calorimetry. RESULTS [Formula: see text] and [Formula: see text] in groups 1-3 were, respectively, 8.41 (7.42-10.25) and 66.55 (59.9-66.7); 7.10 (5.76-10.17) and 67.35 (67.0-68.03); 11.40 (9.0-14.9) and 67.70 (67.05-68.45). [Formula: see text] differences between groups 1 and 2 are significant (p < 0.05), and Spearman's correlation between the age and [Formula: see text] is direct, medium (R = 0.638) and significant. [Formula: see text] in group 3 is significantly higher than in group 2. [Formula: see text] and [Formula: see text] in patients without POAG (groups 1 and 2) and those with POAG (group 3) are, respectively, 7.79 (6.9-10.17) and 66.6 (61.2-67,3); 11.40 (9.0-14.9); 67.7 (67.05-68.45); the respective differences are significant. CONCLUSION Patients without POAG show a significant increase in [Formula: see text] with age, while [Formula: see text] slightly decreases. In POAG, [Formula: see text] is significantly higher and [Formula: see text] tends to grow, which may indicate structural changes in eyelid CT (collagen accumulation and cross-linking level rise). Since the upper lid is unaffected by increasing IOP directly, the changes may be viewed as manifestations of systemic CT pathology.
Collapse
|
39
|
Shin A, Yoo L, Park J, Demer JL. Finite Element Biomechanics of Optic Nerve Sheath Traction in Adduction. J Biomech Eng 2018; 139:2648719. [PMID: 28787473 DOI: 10.1115/1.4037562] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Indexed: 02/01/2023]
Abstract
Historical emphasis on increased intraocular pressure (IOP) in the pathogenesis of glaucoma has been challenged by the recognition that many patients lack abnormally elevated IOP. We employed finite element analysis (FEA) to infer contribution to optic neuropathy from tractional deformation of the optic nerve head (ONH) and lamina cribrosa (LC) by extraocular muscle (EOM) counterforce exerted when optic nerve (ON) redundancy becomes exhausted in adduction. We characterized assumed isotropic Young's modulus of fresh adult bovine ON, ON sheath, and peripapillary and peripheral sclera by tensile elongation in arbitrary orientations of five specimens of each tissue to failure under physiological temperature and humidity. Physical dimensions of the FEA were scaled to human histological and magnetic resonance imaging (MRI) data and used to predict stress and strain during adduction 6 deg beyond ON straightening at multiple levels of IOP. Young's modulus of ON sheath of 44.6 ± 5.6 MPa (standard error of mean) greatly exceeded that of ON at 5.2 ± 0.4 MPa, peripapillary sclera at 5.5 ± 0.8 MPa, and peripheral sclera at 14.0 ± 2.3 MPa. FEA indicated that adduction induced maximum stress and strain in the temporal ONH. In the temporal LC, the maximum stress was 180 kPa, and the maximum strain was ninefold larger than produced by IOP elevation to 45 mm Hg. The simulation suggests that ON sheath traction by adduction concentrates far greater mechanical stress and strain in the ONH region than does elevated IOP, supporting the novel concept that glaucomatous optic neuropathy may result at least partly from external traction on the ON, rather than exclusively on pressure on the ON exerted from within the eye.
Collapse
Affiliation(s)
- Andrew Shin
- Department of Ophthalmology, Stein Eye Institute, Los Angeles, CA 90095
| | - Lawrence Yoo
- Department of Ophthalmology, Stein Eye Institute, Los Angeles, CA 90095; Intelon Optics Inc., Cambridge, MA 02138-4430
| | - Joseph Park
- Department of Ophthalmology, Stein Eye Institute, Los Angeles, CA 90095; Department of Mechanical Engineering, University of California, Los Angeles, CA 90095
| | - Joseph L Demer
- Arthur L. Rosenbaum Professor of Pediatric Ophthalmology Department of Ophthalmology, Stein Eye Institute, Los Angeles, CA 90095 e-mail: ; Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, CA 90095;Neuroscience Interdepartmental Program, University of California, Los Angeles, CA 90095; Department of Neurology, University of California, Los Angeles, CA 90095
| |
Collapse
|
40
|
Sharif NA. iDrugs and iDevices Discovery Research: Preclinical Assays, Techniques, and Animal Model Studies for Ocular Hypotensives and Neuroprotectants. J Ocul Pharmacol Ther 2018; 34:7-39. [PMID: 29323613 DOI: 10.1089/jop.2017.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Discovery ophthalmic research is centered around delineating the molecular and cellular basis of ocular diseases and finding and exploiting molecular and genetic pathways associated with them. From such studies it is possible to determine suitable intervention points to address the disease process and hopefully to discover therapeutics to treat them. An investigational new drug (IND) filing for a new small-molecule drug, peptide, antibody, genetic treatment, or a device with global health authorities requires a number of preclinical studies to provide necessary safety and efficacy data. Specific regulatory elements needed for such IND-enabling studies are beyond the scope of this article. However, to enhance the overall data packages for such entities and permit high-quality foundation-building publications for medical affairs, additional research and development studies are always desirable. This review aims to provide examples of some target localization/verification, ocular drug discovery processes, and mechanistic and portfolio-enhancing exploratory investigations for candidate drugs and devices for the treatment of ocular hypertension and glaucomatous optic neuropathy (neurodegeneration of retinal ganglion cells and their axons). Examples of compound screening assays, use of various technologies and techniques, deployment of animal models, and data obtained from such studies are also presented.
Collapse
Affiliation(s)
- Najam A Sharif
- 1 Global Alliances & External Research , Santen Incorporated, Emeryville, California.,2 Department of Pharmaceutical Sciences, Texas Southern University , Houston, Texas.,3 Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center , Fort Worth, Texas
| |
Collapse
|
41
|
Rapino C, Tortolani D, Scipioni L, Maccarrone M. Neuroprotection by (endo)Cannabinoids in Glaucoma and Retinal Neurodegenerative Diseases. Curr Neuropharmacol 2018; 16:959-970. [PMID: 28738764 PMCID: PMC6120105 DOI: 10.2174/1570159x15666170724104305] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Emerging neuroprotective strategies are being explored to preserve the retina from degeneration, that occurs in eye pathologies like glaucoma, diabetic retinopathy, age-related macular degeneration, and retinitis pigmentosa. Incidentally, neuroprotection of retina is a defending mechanism designed to prevent or delay neuronal cell death, and to maintain neural function following an initial insult, thus avoiding loss of vision. METHODS Numerous studies have investigated potential neuroprotective properties of plant-derived phytocannabinoids, as well as of their endogenous counterparts collectively termed endocannabinoids (eCBs), in several degenerative diseases of the retina. eCBs are a group of neuromodulators that, mainly by activating G protein-coupled type-1 and type-2 cannabinoid (CB1 and CB2) receptors, trigger multiple signal transduction cascades that modulate central and peripheral cell functions. A fine balance between biosynthetic and degrading enzymes that control the right concentration of eCBs has been shown to provide neuroprotection in traumatic, ischemic, inflammatory and neurotoxic damage of the brain. RESULTS Since the existence of eCBs and their binding receptors was documented in the retina of numerous species (from fishes to primates), their involvement in the visual processing has been demonstrated, more recently with a focus on retinal neurodegeneration and neuroprotection. CONCLUSION The aim of this review is to present a modern view of the endocannabinoid system, in order to discuss in a better perspective available data from preclinical studies on the use of eCBs as new neuroprotective agents, potentially useful to prevent glaucoma and retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Cinzia Rapino
- Address correspondence to these authors at the Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; Tel: +39 0861 266842;, E-mail: and the Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; Tel: +39 06 225419169;, E-mail:
| | | | | | - Mauro Maccarrone
- Address correspondence to these authors at the Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; Tel: +39 0861 266842;, E-mail: and the Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy; Tel: +39 06 225419169;, E-mail:
| |
Collapse
|
42
|
Gupta V, Mirzaei M, Gupta VB, Chitranshi N, Dheer Y, Vander Wall R, Abbasi M, You Y, Chung R, Graham S. Glaucoma is associated with plasmin proteolytic activation mediated through oxidative inactivation of neuroserpin. Sci Rep 2017; 7:8412. [PMID: 28827627 PMCID: PMC5566433 DOI: 10.1038/s41598-017-08688-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/13/2017] [Indexed: 12/15/2022] Open
Abstract
Neuroserpin is a serine protease inhibitor that regulates the activity of plasmin and its activators in the neuronal tissues. This study provides novel evidence of regulatory effect of the neuroserpin on plasmin proteolytic activity in the retina in glaucoma. Human retinal and vitreous tissues from control and glaucoma subjects as well as retinas from experimental glaucoma rats were analysed to establish changes in plasmin and neuroserpin activity. Neuroserpin undergoes oxidative inactivation in glaucoma which leads to augmentation of plasmin activity. Neuroserpin contains several methionine residues in addition to a conserved reactive site methionine and our study revealed enhanced oxidation of Met residues in the serpin under glaucoma conditions. Met oxidation was associated with loss of neuroserpin inhibitory activity and similar findings were observed in the retinas of superoxide dismutase (SOD) mutant mice that have increased oxidative stress. Treatment of purified neuroserpin with H2O2 further established that Met oxidation inversely correlated with its plasmin inhibitory activity. Dysregulation of the plasmin proteolytic system associated with increased degradation of the extracellular matrix (ECM) proteins in the retina. Collectively, these findings delineate a novel molecular basis of plasmin activation in glaucoma and potentially for other neuronal disorders with implications in disease associated ECM remodelling.
Collapse
Affiliation(s)
- Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - Mehdi Mirzaei
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Veer Bala Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Roshana Vander Wall
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Yuyi You
- Save Sight Institute, Sydney University, Sydney, Australia
| | - Roger Chung
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Stuart Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
- Save Sight Institute, Sydney University, Sydney, Australia
| |
Collapse
|
43
|
Zhang L, Li G, Shi M, Liu HH, Ge S, Ou Y, Flanagan JG, Chen L. Establishment and Characterization of an Acute Model of Ocular Hypertension by Laser-Induced Occlusion of Episcleral Veins. Invest Ophthalmol Vis Sci 2017; 58:3879-3886. [PMID: 28763561 PMCID: PMC6108309 DOI: 10.1167/iovs.16-20807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose This study was designed to develop and characterize a laser-induced model of acute intraocular hypertension that permits the study of the anterior segment of the eye. Methods CD1 mice aged 5 and 8 weeks were examined for elevation of IOP induced by laser photocoagulation. We compared between occlusion of episcleral veins alone and when combined with 270° limbal vessel occlusion. Anterior chamber angle, corneal thickness, and retinal nerve fiber layer (RNFL) thickness were evaluated by anterior- and posterior-segment optical coherence tomography (OCT). Additionally, at day 7 post-procedure, the anterior segment was evaluated for inflammatory cellular presentation by histologic analysis and OCT, and limbal vessels and whole-mount retina were immunostained for CD31 and Brn3a, respectively. Brn3a-positive retinal ganglion cells (RGCs) were quantified with ImageJ software. Results After single or combined laser treatment in mice aged 5 or 8 weeks, IOP was significantly elevated for 5 to 6 days before returning to the baseline by day 7 post-procedure. Anterior segment assessment indicated less synechiae in the anterior chamber angle and better preserved limbal vessels with single versus combined laser treatment. Corneal thickness was significantly increased after single or combined treatment. No inflammatory cells were detected in the anterior chamber. The thickness of the RNFL and the density of RGCs were both significantly reduced after single or combined treatment. Conclusions Laser photocoagulation of episcleral veins alone in CD1 mice aged 5 to 8 weeks may be used to induce ocular hypertension resulting in RNFL thinning and ganglion cell loss. This model permits the study of the anterior as well as the posterior segment of the eye.
Collapse
Affiliation(s)
- Liwei Zhang
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States 3Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Guangyu Li
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Meng Shi
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States 3Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hsin-Hua Liu
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Shaokui Ge
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, California, United States
| | - John G Flanagan
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Lu Chen
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States 2School of Optometry and Vision Science, University of California, Berkeley, California, United States
| |
Collapse
|
44
|
Funke S, Perumal N, Bell K, Pfeiffer N, Grus FH. The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev Proteomics 2017; 14:311-334. [PMID: 28271721 DOI: 10.1080/14789450.2017.1298448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Glaucoma, a major ocular neuropathy, is still far from being understood on a molecular scale. Proteomic workflows revealed glaucoma associated alterations in different eye components. By using state-of-the-art mass spectrometric (MS) based discovery approaches large proteome datasets providing important information about glaucoma related proteins and pathways could be generated. Corresponding proteomic information could be retrieved from various ocular sample species derived from glaucoma experimental models or from original human material (e.g. optic nerve head or aqueous humor). However, particular eye tissues with the potential for understanding the disease's molecular pathomechanism remains underrepresented. Areas covered: The present review provides an overview of the analysis depth achieved for the glaucomatous eye proteome. With respect to different eye regions and biofluids, proteomics related literature was found using PubMed, Scholar and UniProtKB. Thereby, the review explores the potential of clinical proteomics for glaucoma research. Expert commentary: Proteomics will provide important contributions to understanding the molecular processes associated with glaucoma. Sensitive discovery and targeted MS approaches will assist understanding of the molecular interplay of different eye components and biofluids in glaucoma. Proteomic results will drive the comprehension of glaucoma, allowing a more stringent disease hypothesis within the coming years.
Collapse
Affiliation(s)
- Sebastian Funke
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Natarajan Perumal
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Katharina Bell
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Norbert Pfeiffer
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Franz H Grus
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| |
Collapse
|