1
|
Stöber TM, Batulin D, Triesch J, Narayanan R, Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun Biol 2023; 6:479. [PMID: 37137938 PMCID: PMC10156698 DOI: 10.1038/s42003-023-04823-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Due to its complex and multifaceted nature, developing effective treatments for epilepsy is still a major challenge. To deal with this complexity we introduce the concept of degeneracy to the field of epilepsy research: the ability of disparate elements to cause an analogous function or malfunction. Here, we review examples of epilepsy-related degeneracy at multiple levels of brain organisation, ranging from the cellular to the network and systems level. Based on these insights, we outline new multiscale and population modelling approaches to disentangle the complex web of interactions underlying epilepsy and to design personalised multitarget therapies.
Collapse
Affiliation(s)
- Tristan Manfred Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, 44801, Bochum, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University, 60590, Frankfurt, Germany
| | - Danylo Batulin
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- CePTER - Center for Personalized Translational Epilepsy Research, Goethe University, 60590, Frankfurt, Germany
- Faculty of Computer Science and Mathematics, Goethe University, 60486, Frankfurt, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, 35390, Giessen, Germany.
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Rosenberg EC, Chamberland S, Bazelot M, Nebet ER, Wang X, McKenzie S, Jain S, Greenhill S, Wilson M, Marley N, Salah A, Bailey S, Patra PH, Rose R, Chenouard N, Sun SED, Jones D, Buzsáki G, Devinsky O, Woodhall G, Scharfman HE, Whalley BJ, Tsien RW. Cannabidiol modulates excitatory-inhibitory ratio to counter hippocampal hyperactivity. Neuron 2023; 111:1282-1300.e8. [PMID: 36787750 DOI: 10.1016/j.neuron.2023.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023]
Abstract
Cannabidiol (CBD), a non-euphoric component of cannabis, reduces seizures in multiple forms of pediatric epilepsies, but the mechanism(s) of anti-seizure action remain unclear. In one leading model, CBD acts at glutamatergic axon terminals, blocking the pro-excitatory actions of an endogenous membrane phospholipid, lysophosphatidylinositol (LPI), at the G-protein-coupled receptor GPR55. However, the impact of LPI-GPR55 signaling at inhibitory synapses and in epileptogenesis remains underexplored. We found that LPI transiently increased hippocampal CA3-CA1 excitatory presynaptic release probability and evoked synaptic strength in WT mice, while attenuating inhibitory postsynaptic strength by decreasing GABAARγ2 and gephyrin puncta. LPI effects at excitatory and inhibitory synapses were eliminated by CBD pre-treatment and absent after GPR55 deletion. Acute pentylenetrazole-induced seizures elevated GPR55 and LPI levels, and chronic lithium-pilocarpine-induced epileptogenesis potentiated LPI's pro-excitatory effects. We propose that CBD exerts potential anti-seizure effects by blocking LPI's synaptic effects and dampening hyperexcitability.
Collapse
Affiliation(s)
- Evan C Rosenberg
- Department of Neuroscience & Physiology and Neuroscience Institute, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - Simon Chamberland
- Department of Neuroscience & Physiology and Neuroscience Institute, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - Michael Bazelot
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Hopkins Life Science Building, Whiteknights, Reading, Berks RG6 6AP, UK; GW Research Ltd, Histon, Cambridge, UK
| | - Erica R Nebet
- Department of Neuroscience & Physiology and Neuroscience Institute, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - Xiaohan Wang
- Department of Neuroscience & Physiology and Neuroscience Institute, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - Sam McKenzie
- Department of Neuroscience & Physiology and Neuroscience Institute, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - Swati Jain
- Departments of Child and Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA; Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, USA
| | - Stuart Greenhill
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Max Wilson
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Nicole Marley
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Alejandro Salah
- Department of Neuroscience & Physiology and Neuroscience Institute, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - Shanice Bailey
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Hopkins Life Science Building, Whiteknights, Reading, Berks RG6 6AP, UK
| | - Pabitra Hriday Patra
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Hopkins Life Science Building, Whiteknights, Reading, Berks RG6 6AP, UK
| | - Rebecca Rose
- Department of Advanced Research Technologies, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - Nicolas Chenouard
- Department of Neuroscience & Physiology and Neuroscience Institute, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - Simón E D Sun
- Department of Neuroscience & Physiology and Neuroscience Institute, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - Drew Jones
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - György Buzsáki
- Department of Neuroscience & Physiology and Neuroscience Institute, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA
| | - Gavin Woodhall
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Helen E Scharfman
- Departments of Child and Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA; Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, USA
| | - Benjamin J Whalley
- School of Chemistry, Food and Nutritional Sciences, and Pharmacy, University of Reading, Hopkins Life Science Building, Whiteknights, Reading, Berks RG6 6AP, UK; GW Research Ltd, Histon, Cambridge, UK
| | - Richard W Tsien
- Department of Neuroscience & Physiology and Neuroscience Institute, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA; Department of Neurology, NYU Langone Medical Center, 435 E 30th St, New York, NY 10016, USA.
| |
Collapse
|
3
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
4
|
Comino Garcia-Munoz A, Alemán-Gómez Y, Toledano R, Poch C, García-Morales I, Aledo-Serrano Á, Gil-Nagel A, Campo P. Morphometric and microstructural characteristics of hippocampal subfields in mesial temporal lobe epilepsy and their correlates with mnemonic discrimination. Front Neurol 2023; 14:1096873. [PMID: 36864916 PMCID: PMC9972498 DOI: 10.3389/fneur.2023.1096873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Pattern separation (PS) is a fundamental aspect of memory creation that defines the ability to transform similar memory representations into distinct ones, so they do not overlap when storing and retrieving them. Experimental evidence in animal models and the study of other human pathologies have demonstrated the role of the hippocampus in PS, in particular of the dentate gyrus (DG) and CA3. Patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HE) commonly report mnemonic deficits that have been associated with failures in PS. However, the link between these impairments and the integrity of the hippocampal subfields in these patients has not yet been determined. The aim of this work is to explore the association between the ability to perform mnemonic functions and the integrity of hippocampal CA1, CA3, and DG in patients with unilateral MTLE-HE. Method To reach this goal we evaluated the memory of patients with an improved object mnemonic similarity test. We then analyzed the hippocampal complex structural and microstructural integrity using diffusion weighted imaging. Results Our results indicate that patients with unilateral MTLE-HE present alterations in both volume and microstructural properties at the level of the hippocampal subfields DG, CA1, CA3, and the subiculum, that sometimes depend on the lateralization of their epileptic focus. However, none of the specific changes was found to be directly related to the performance of the patients in a pattern separation task, which might indicate a contribution of various alterations to the mnemonic deficits or the key contribution of other structures to the function. Discussion we established for the first time the alterations in both the volume and the microstructure at the level of the hippocampal subfields in a group of unilateral MTLE patients. We observed that these changes are greater in the DG and CA1 at the macrostructural level, and in CA3 and CA1 in the microstructural level. None of these changes had a direct relation to the performance of the patients in a pattern separation task, which suggests a contribution of various alterations to the loss of function.
Collapse
Affiliation(s)
- Alicia Comino Garcia-Munoz
- Centre de Résonance Magnétique Biologique et Médicale-Unité Mixte de Recherche 7339, Aix-Marseille Université, Marseille, France
| | - Yasser Alemán-Gómez
- Connectomics Lab, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Rafael Toledano
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain,Epilepsy Unit, Neurology Department, University Hospital Ramón y Cajal, Madrid, Spain
| | - Claudia Poch
- Facultad de Lenguas y Educación, Universidad de Nebrija, Madrid, Spain
| | - Irene García-Morales
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain,Epilepsy Unit, Neurology Department, University Hospital of San Carlos, Madrid, Spain
| | - Ángel Aledo-Serrano
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Antonio Gil-Nagel
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Pablo Campo
- Department of Basic Psychology, Autonoma University of Madrid, Madrid, Spain,*Correspondence: Pablo Campo ✉
| |
Collapse
|
5
|
Stieve BJ, Smith MM, Krook-Magnuson E. LINCs Are Vulnerable to Epileptic Insult and Fail to Provide Seizure Control via On-Demand Activation. eNeuro 2023; 10:ENEURO.0195-22.2022. [PMID: 36725340 PMCID: PMC9933934 DOI: 10.1523/eneuro.0195-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is notoriously pharmacoresistant, and identifying novel therapeutic targets for controlling seizures is crucial. Long-range inhibitory neuronal nitric oxide synthase-expressing cells (LINCs), a population of hippocampal neurons, were recently identified as a unique source of widespread inhibition in CA1, able to elicit both GABAA-mediated and GABAB-mediated postsynaptic inhibition. We therefore hypothesized that LINCs could be an effective target for seizure control. LINCs were optogenetically activated for on-demand seizure intervention in the intrahippocampal kainate (KA) mouse model of chronic TLE. Unexpectedly, LINC activation at 1 month post-KA did not substantially reduce seizure duration in either male or female mice. We tested two different sets of stimulation parameters, both previously found to be effective with on-demand optogenetic approaches, but neither was successful. Quantification of LINCs following intervention revealed a substantial reduction of LINC numbers compared with saline-injected controls. We also observed a decreased number of LINCs when the site of initial insult (i.e., KA injection) was moved to the amygdala [basolateral amygdala (BLA)-KA], and correspondingly, no effect of light delivery on BLA-KA seizures. This indicates that LINCs may be a vulnerable population in TLE, regardless of the site of initial insult. To determine whether long-term circuitry changes could influence outcomes, we continued testing once a month for up to 6 months post-KA. However, at no time point did LINC activation provide meaningful seizure suppression. Altogether, our results suggest that LINCs are not a promising target for seizure inhibition in TLE.
Collapse
Affiliation(s)
- Bethany J Stieve
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Madison M Smith
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Esther Krook-Magnuson
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
6
|
DeFelipe J, DeFelipe-Oroquieta J, Furcila D, Muñoz-Alegre M, Maestú F, Sola RG, Blázquez-Llorca L, Armañanzas R, Kastanaskaute A, Alonso-Nanclares L, Rockland KS, Arellano JI. Neuroanatomical and psychological considerations in temporal lobe epilepsy. Front Neuroanat 2022; 16:995286. [PMID: 36590377 PMCID: PMC9794593 DOI: 10.3389/fnana.2022.995286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 01/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy and is associated with a variety of structural and psychological alterations. Recently, there has been renewed interest in using brain tissue resected during epilepsy surgery, in particular 'non-epileptic' brain samples with normal histology that can be found alongside epileptic tissue in the same epileptic patients - with the aim being to study the normal human brain organization using a variety of methods. An important limitation is that different medical characteristics of the patients may modify the brain tissue. Thus, to better determine how 'normal' the resected tissue is, it is fundamental to know certain clinical, anatomical and psychological characteristics of the patients. Unfortunately, this information is frequently not fully available for the patient from which the resected tissue has been obtained - or is not fully appreciated by the neuroscientists analyzing the brain samples, who are not necessarily experts in epilepsy. In order to present the full picture of TLE in a way that would be accessible to multiple communities (e.g., basic researchers in neuroscience, neurologists, neurosurgeons and psychologists), we have reviewed 34 TLE patients, who were selected due to the availability of detailed clinical, anatomical, and psychological information for each of the patients. Our aim was to convey the full complexity of the disorder, its putative anatomical substrates, and the wide range of individual variability, with a view toward: (1) emphasizing the importance of considering critical patient information when using brain samples for basic research and (2) gaining a better understanding of normal and abnormal brain functioning. In agreement with a large number of previous reports, this study (1) reinforces the notion of substantial individual variability among epileptic patients, and (2) highlights the common but overlooked psychopathological alterations that occur even in patients who become "seizure-free" after surgery. The first point is based on pre- and post-surgical comparisons of patients with hippocampal sclerosis and patients with normal-looking hippocampus in neuropsychological evaluations. The second emerges from our extensive battery of personality and projective tests, in a two-way comparison of these two types of patients with regard to pre- and post-surgical performance.
Collapse
Affiliation(s)
- Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain,*Correspondence: Javier DeFelipe,
| | - Jesús DeFelipe-Oroquieta
- Gerencia Asistencial de Atención Primaria, Servicio Madrileño de Salud, Madrid, Spain,Facultad de Educación, Universidad Camilo José Cela, Madrid, Spain
| | - Diana Furcila
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Mar Muñoz-Alegre
- Facultad de Educación y Psicología, Universidad Francisco de Vitoria, Madrid, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain,Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Rafael G. Sola
- Cátedra UAM de “Innovación en Neurocirugía”, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lidia Blázquez-Llorca
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Armañanzas
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain,Tecnun School of Engineering, Universidad de Navarra, Donostia-San Sebastian, Spain
| | - Asta Kastanaskaute
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lidia Alonso-Nanclares
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain,Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Kathleen S. Rockland
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jon I. Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
Dong X, Fan J, Lin D, Wang X, Kuang H, Gong L, Chen C, Jiang J, Xia N, He D, Shen W, Jiang P, Kuang R, Zeng L, Xie Y. Captopril alleviates epilepsy and cognitive impairment by attenuation of C3-mediated inflammation and synaptic phagocytosis. J Neuroinflammation 2022; 19:226. [PMID: 36104755 PMCID: PMC9476304 DOI: 10.1186/s12974-022-02587-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractEvidence from experimental and clinical studies implicates immuno-inflammatory responses as playing an important role in epilepsy-induced brain injury. Captopril, an angiotensin-converting enzyme inhibitor (ACEi), has previously been shown to suppress immuno-inflammatory responses in a variety of neurological diseases. However, the therapeutic potential of captopril on epilepsy remains unclear. In the present study, Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to establish a status epilepticus. Captopril (50 mg/kg, i.p.) was administered daily following the KA administration from day 3 to 49. We found that captopril efficiently suppressed the KA-induced epilepsy, as measured by electroencephalography. Moreover, captopril ameliorated the epilepsy-induced cognitive deficits, with improved performance in the Morris water maze, Y-maze and novel objective test. RNA sequencing (RNA-seq) analysis indicated that captopril reversed a wide range of epilepsy-related biological processes, particularly the glial activation, complement system-mediated phagocytosis and the production of inflammatory factors. Interestingly, captopril suppressed the epilepsy-induced activation and abnormal contact between astrocytes and microglia. Immunohistochemical experiments demonstrated that captopril attenuated microglia-dependent synaptic remodeling presumably through C3–C3ar-mediated phagocytosis in the hippocampus. Finally, the above effects of captopril were partially blocked by an intranasal application of recombinant C3a (1.3 μg/kg/day). Our findings demonstrated that captopril reduced the occurrence of epilepsy and cognitive impairment by attenuation of inflammation and C3-mediated synaptic phagocytosis. This approach can easily be adapted to long-term efficacy and safety in clinical practice.
Graphical Abstract
Collapse
|
8
|
Gorlewicz A, Pijet B, Orlova K, Kaczmarek L, Knapska E. Epileptiform GluN2B–driven excitation in hippocampus as a therapeutic target against temporal lobe epilepsy. Exp Neurol 2022; 354:114087. [DOI: 10.1016/j.expneurol.2022.114087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 11/04/2022]
|
9
|
Godoy LD, Prizon T, Rossignoli MT, Leite JP, Liberato JL. Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Front Integr Neurosci 2022; 16:765324. [PMID: 35250498 PMCID: PMC8891758 DOI: 10.3389/fnint.2022.765324] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin is a calcium-binding protein present in inhibitory interneurons that play an essential role in regulating many physiological processes, such as intracellular signaling and synaptic transmission. Changes in parvalbumin expression are deeply related to epilepsy, which is considered one of the most disabling neuropathologies. Epilepsy is a complex multi-factor group of disorders characterized by periods of hypersynchronous activity and hyperexcitability within brain networks. In this scenario, inhibitory neurotransmission dysfunction in modulating excitatory transmission related to the loss of subsets of parvalbumin-expressing inhibitory interneuron may have a prominent role in disrupted excitability. Some studies also reported that parvalbumin-positive interneurons altered function might contribute to psychiatric comorbidities associated with epilepsy, such as depression, anxiety, and psychosis. Understanding the epileptogenic process and comorbidities associated with epilepsy have significantly advanced through preclinical and clinical investigation. In this review, evidence from parvalbumin altered function in epilepsy and associated psychiatric comorbidities were explored with a translational perspective. Some advances in potential therapeutic interventions are highlighted, from current antiepileptic and neuroprotective drugs to cutting edge modulation of parvalbumin subpopulations using optogenetics, designer receptors exclusively activated by designer drugs (DREADD) techniques, transcranial magnetic stimulation, genome engineering, and cell grafting. Creating new perspectives on mechanisms and therapeutic strategies is valuable for understanding the pathophysiology of epilepsy and its psychiatric comorbidities and improving efficiency in clinical intervention.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- João Pereira Leite,
| | - José Luiz Liberato
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: José Luiz Liberato,
| |
Collapse
|
10
|
Deficits in Behavioral and Neuronal Pattern Separation in Temporal Lobe Epilepsy. J Neurosci 2021; 41:9669-9686. [PMID: 34620720 PMCID: PMC8612476 DOI: 10.1523/jneurosci.2439-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
In temporal lobe epilepsy, the ability of the dentate gyrus to limit excitatory cortical input to the hippocampus breaks down, leading to seizures. The dentate gyrus is also thought to help discriminate between similar memories by performing pattern separation, but whether epilepsy leads to a breakdown in this neural computation, and thus to mnemonic discrimination impairments, remains unknown. Here we show that temporal lobe epilepsy is characterized by behavioral deficits in mnemonic discrimination tasks, in both humans (females and males) and mice (C57Bl6 males, systemic low-dose kainate model). Using a recently developed assay in brain slices of the same epileptic mice, we reveal a decreased ability of the dentate gyrus to perform certain forms of pattern separation. This is because of a subset of granule cells with abnormal bursting that can develop independently of early EEG abnormalities. Overall, our results linking physiology, computation, and cognition in the same mice advance our understanding of episodic memory mechanisms and their dysfunction in epilepsy.SIGNIFICANCE STATEMENT People with temporal lobe epilepsy (TLE) often have learning and memory impairments, sometimes occurring earlier than the first seizure, but those symptoms and their biological underpinnings are poorly understood. We focused on the dentate gyrus, a brain region that is critical to avoid confusion between similar memories and is anatomically disorganized in TLE. We show that both humans and mice with TLE experience confusion between similar situations. This impairment coincides with a failure of the dentate gyrus to disambiguate similar input signals because of pathologic bursting in a subset of neurons. Our work bridges seizure-oriented and memory-oriented views of the dentate gyrus function, suggests a mechanism for cognitive symptoms in TLE, and supports a long-standing hypothesis of episodic memory theories.
Collapse
|
11
|
Dubey V, Dey S, Dixit AB, Tripathi M, Chandra PS, Banerjee J. Differential glutamate receptor expression and function in the hippocampus, anterior temporal lobe and neocortex in a pilocarpine model of temporal lobe epilepsy. Exp Neurol 2021; 347:113916. [PMID: 34752784 DOI: 10.1016/j.expneurol.2021.113916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of intractable epilepsy where hyperactive glutamate receptors may contribute to the complex epileptogenic network hubs distributed among different regions. This study was designed to investigate the region-specific molecular alterations of the glutamate receptors and associated excitatory synaptic transmission in pilocarpine rat model of TLE. We recorded spontaneous excitatory postsynaptic currents (EPSCs) from pyramidal neurons in resected rat brain slices of the hippocampus, anterior temporal lobe (ATL) and neocortex. We also performed mRNA and protein expression of the glutamate receptor subunits (NR1, NR2A, NR2B, and GLUR1-4) by qPCR and immunohistochemistry. We observed significant increase in the frequency and amplitude of spontaneous EPSCs in the hippocampal and ATL samples of TLE rats than in control rats. Additionally, the magnitude of the frequency and amplitude was increased in ATL samples compared to that of the hippocampal samples of TLE rats. The mRNA level of NR1 was upregulated in both the hippocampal as well as ATL samples and that of NR2A, NR2B were upregulated only in the hippocampal samples of TLE rats than in control rats. The mRNA level of GLUR4 was upregulated in both the hippocampal as well as ATL samples of TLE rats than in control rats. Immunohistochemical analysis demonstrated that the number of NR1, NR2A, NR2B, and GLUR4 immuno-positive cells were significantly higher in the hippocampal samples whereas number of NR1 and GLUR4 immuno-positive cells were significantly higher in the ATL samples of the TLE rats than in control rats. This study demonstrated the region-specific alterations of glutamate receptor subunits in pilocarpine model of TLE, suggesting possible cellular mechanisms contributing to generation of independent epileptogenic networks in different temporal lobe structures.
Collapse
Affiliation(s)
- Vivek Dubey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Soumil Dey
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - P Sarat Chandra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotirmoy Banerjee
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
12
|
Marissal T. An inventory of basic research in temporal lobe epilepsy. Rev Neurol (Paris) 2021; 177:1069-1081. [PMID: 34176659 DOI: 10.1016/j.neurol.2021.02.390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022]
Abstract
Temporal lobe epilepsy is a severe neurological disease, characterized by seizure occurrence and invalidating cognitive co-morbidities, which affects up to 1% of the adults. Roughly one third of the patients are resistant to any conventional pharmacological treatments. The last option in that case is the surgical removal of the epileptic focus, with no guarantee for clinical symptom alleviation. This state of affairs requests the identification of cellular or molecular targets for novel therapeutic approaches with limited side effects. Here we review some generalities about the disease as well as some of the most recent discoveries about the cellular and molecular mechanisms of TLE, and the latest perspectives for novel treatments.
Collapse
Affiliation(s)
- T Marissal
- INMED, Inserm UMR1249, Aix-Marseille université, Marseille, France.
| |
Collapse
|
13
|
Effects of hyperventilation with face mask on brain network in patients with epilepsy. Epilepsy Res 2021; 176:106741. [PMID: 34418857 DOI: 10.1016/j.eplepsyres.2021.106741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/20/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES During the ongoing pandemic of COVID-19, wearing face masks was recommended, including patients with epilepsy doing the hyperventilation (HV) test during electroencephalogram (EEG) examination somewhere. However, evidence was still limited about the effect of HV with face mask on cortical excitability of patients with epilepsy. The motivation of this work is to make use of the graph theory of EEG to characterize the cortical excitability of patients with epilepsy when they did HV under the condition wearing a surgical face mask. METHODS We recruited 19 patients with epilepsy and 17 normal controls. All of participants completed two HV experiments, including HV with face mask (HV+) and HV without a mask (HV). The interval was 30 min and the sequence was random. Each experiment consisted of three segments: resting EEG, EEG of HV, and EEG of post-HV. EEG were recorded successively during each experiment. Participants were asked to evaluate the discomfort degree using a questionnaire when every HV is completed. RESULTS All of the participants felt more uncomfortable after HV + . Moreover, not only HV decreased small-worldness index in patients with epilepsy, but also HV + significantly increased the clustering coefficient in patients with epilepsy. Importantly, the three-way of Mask*HV*Epilepsy showed interaction in the clustering coefficient in the delta band, as well as in the path length and the small-worldness index in the theta band. CONCLUSIONS The results of this study indicated that patients with epilepsy showed the increased excitability of brain network during HV + . We should pay more attention to the adverse effect on brain network excitability caused by HV + in patients with epilepsy. In the clinical practice under the COVID-19 pandemic, it is important that the wearing face mask remain cautious for the individuals with epilepsy when they carried out HV behavior such as exercise (e.g., running, etc.).
Collapse
|
14
|
Gulyaeva NV. Stress-Associated Molecular and Cellular Hippocampal Mechanisms Common for Epilepsy and Comorbid Depressive Disorders. BIOCHEMISTRY (MOSCOW) 2021; 86:641-656. [PMID: 34225588 DOI: 10.1134/s0006297921060031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The review discusses molecular and cellular mechanisms common to the temporal lobe epileptogenesis/epilepsy and depressive disorders. Comorbid temporal lobe epilepsy and depression are associated with dysfunction of the hypothalamic-pituitary-adrenocortical axis. Excessive glucocorticoids disrupt the function and impair the structure of the hippocampus, a brain region key to learning, memory, and emotions. Selective vulnerability of the hippocampus to stress, mediated by the reception of glucocorticoid hormones secreted during stress, is the price of the high functional plasticity and pleiotropy of this limbic structure. Common molecular and cellular mechanisms include the dysfunction of glucocorticoid receptors, neurotransmitters, and neurotrophic factors, development of neuroinflammation, leading to neurodegeneration and loss of hippocampal neurons, as well as disturbances in neurogenesis in the subgranular neurogenic niche and formation of aberrant neural networks. These glucocorticoid-dependent processes underlie altered stress response and the development of chronic stress-induced comorbid pathologies, in particular, temporal lobe epilepsy and depressive disorders.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia. .,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
15
|
Klein Gunnewiek TM, Van Hugte EJH, Frega M, Guardia GS, Foreman K, Panneman D, Mossink B, Linda K, Keller JM, Schubert D, Cassiman D, Rodenburg R, Vidal Folch N, Oglesbee D, Perales-Clemente E, Nelson TJ, Morava E, Nadif Kasri N, Kozicz T. m.3243A > G-Induced Mitochondrial Dysfunction Impairs Human Neuronal Development and Reduces Neuronal Network Activity and Synchronicity. Cell Rep 2021; 31:107538. [PMID: 32320658 DOI: 10.1016/j.celrep.2020.107538] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Epilepsy, intellectual and cortical sensory deficits, and psychiatric manifestations are the most frequent manifestations of mitochondrial diseases. How mitochondrial dysfunction affects neural structure and function remains elusive, mostly because of a lack of proper in vitro neuronal model systems with mitochondrial dysfunction. Leveraging induced pluripotent stem cell technology, we differentiated excitatory cortical neurons (iNeurons) with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function on an isogenic nuclear DNA background from patients with the common pathogenic m.3243A > G variant of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). iNeurons with high heteroplasmy exhibited mitochondrial dysfunction, delayed neural maturation, reduced dendritic complexity, and fewer excitatory synapses. Micro-electrode array recordings of neuronal networks displayed reduced network activity and decreased synchronous network bursting. Impaired neuronal energy metabolism and compromised structural and functional integrity of neurons and neural networks could be the primary drivers of increased susceptibility to neuropsychiatric manifestations of mitochondrial disease.
Collapse
Affiliation(s)
- Teun M Klein Gunnewiek
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Eline J H Van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, the Netherlands
| | - Gemma Solé Guardia
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Katharina Foreman
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Daan Panneman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Katrin Linda
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Jason M Keller
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands
| | - David Cassiman
- Department of Hepatology, UZ Leuven, 3000 Leuven, Belgium
| | - Richard Rodenburg
- Radboud Center for Mitochondrial Disorders, Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Noemi Vidal Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Timothy J Nelson
- Division of General Internal Medicine, Division of Pediatric Cardiology, Departments of Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic Center for Regenerative Medicine, Rochester, MN 55905, USA
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands.
| | - Tamas Kozicz
- Department of Anatomy, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, the Netherlands; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 55905 Rochester, MN, USA.
| |
Collapse
|
16
|
Kang YJ, Clement EM, Park IH, Greenfield LJ, Smith BN, Lee SH. Vulnerability of cholecystokinin-expressing GABAergic interneurons in the unilateral intrahippocampal kainate mouse model of temporal lobe epilepsy. Exp Neurol 2021; 342:113724. [PMID: 33915166 DOI: 10.1016/j.expneurol.2021.113724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Temporal lobe epilepsy (TLE) is characterized by recurrent spontaneous seizures and behavioral comorbidities. Reduced hippocampal theta oscillations and hyperexcitability that contribute to cognitive deficits and spontaneous seizures are present beyond the sclerotic hippocampus in TLE. However, the mechanisms underlying compromised network oscillations and hyperexcitability observed in circuits remote from the sclerotic hippocampus are largely unknown. Cholecystokinin (CCK)-expressing basket cells (CCKBCs) critically participate in hippocampal theta rhythmogenesis, and regulate neuronal excitability. Thus, we examined whether CCKBCs were vulnerable in nonsclerotic regions of the ventral hippocampus remote from dorsal sclerotic hippocampus using the intrahippocampal kainate (IHK) mouse model of TLE, targeting unilateral dorsal hippocampus. We found a decrease in the number of CCK+ interneurons in ipsilateral ventral CA1 regions from epileptic mice compared to those from sham controls. We also found that the number of boutons from CCK+ interneurons was reduced in the stratum pyramidale, but not in other CA1 layers, of ipsilateral hippocampus in epileptic mice, suggesting that CCKBCs are vulnerable. Electrical recordings showed that synaptic connectivity and strength from surviving CCKBCs to CA1 pyramidal cells (PCs) were similar between epileptic mice and sham controls. In agreement with reduced CCKBC number in TLE, electrical recordings revealed a significant reduction in amplitude and frequency of IPSCs in CA1 PCs evoked by carbachol (commonly used to excite CCK+ interneurons) in ventral CA1 regions from epileptic mice versus sham controls. These findings suggest that loss of CCKBCs beyond the hippocampal lesion may contribute to hyperexcitability and compromised network oscillations in TLE.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ethan M Clement
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Lazar John Greenfield
- Department of Neurology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Bret N Smith
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Sang-Hun Lee
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
17
|
Owen B, Bichler E, Benveniste M. Excitatory synaptic transmission in hippocampal area CA1 is enhanced then reduced as chronic epilepsy progresses. Neurobiol Dis 2021; 154:105343. [PMID: 33753293 DOI: 10.1016/j.nbd.2021.105343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/27/2022] Open
Abstract
This study examines changes in synaptic transmission with progression of the chronic epileptic state. Male Sprague-Dawley rats (P40-45) were injected with either saline or pilocarpine. In rats injected with pilocarpine, status epilepticus ensued. Hippocampal slices were cut 20-60 days or 80-110 days post-treatment. Evoked and miniature EPSCs (mEPSCs) were recorded from CA1 pyramidal neurons using whole-cell voltage-clamp. Fiber volleys were also recorded from stratum radiatum. Evoked EPSCs from the pilocarpine-treated cohort showed enhanced amplitudes 20-60 days post-treatment compared to the saline-treated cohort, whereas mEPSCs recorded from the same age group showed no change in event frequency and a slight but significant decrease in mEPSC amplitude distribution. In contrast, comparing evoked EPSCs and mEPSCs recorded 80-110 days after treatment indicated reduced amplitudes from pilocarpine-treated animals compared to controls. mEPSC inter-event interval decreased. This could be explained by a partial depletion of the ready releasable pool of neurotransmitter vesicles in Schaffer collateral presynaptic terminals of the pilocarpine-treated rats. In both saline- and pilocarpine-treated cohorts, concomitant decreases in mEPSC amplitudes as time after treatment progressed suggest that age-related changes in CA1 circuitry may be partially responsible for changes in synaptic transmission that may influence the chronic epileptic state.
Collapse
Affiliation(s)
- Benjamin Owen
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Edyta Bichler
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Morris Benveniste
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
18
|
Lenck-Santini PP, Sakkaki S. Alterations of Neuronal Dynamics as a Mechanism for Cognitive Impairment in Epilepsy. Curr Top Behav Neurosci 2021; 55:65-106. [PMID: 33454922 DOI: 10.1007/7854_2020_193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Epilepsy is commonly associated with cognitive and behavioral deficits that dramatically affect the quality of life of patients. In order to identify novel therapeutic strategies aimed at reducing these deficits, it is critical first to understand the mechanisms leading to cognitive impairments in epilepsy. Traditionally, seizures and epileptiform activity in addition to neuronal injury have been considered to be the most significant contributors to cognitive dysfunction. In this review we however highlight the role of a new mechanism: alterations of neuronal dynamics, i.e. the timing at which neurons and networks receive and process neural information. These alterations, caused by the underlying etiologies of epilepsy syndromes, are observed in both animal models and patients in the form of abnormal oscillation patterns in unit firing, local field potentials, and electroencephalogram (EEG). Evidence suggests that such mechanisms significantly contribute to cognitive impairment in epilepsy, independently of seizures and interictal epileptiform activity. Therefore, therapeutic strategies directly targeting neuronal dynamics rather than seizure reduction may significantly benefit the quality of life of patients.
Collapse
Affiliation(s)
- Pierre-Pascal Lenck-Santini
- Aix-Marseille Université, INSERM, INMED, Marseille, France. .,Department of Neurological sciences, University of Vermont, Burlington, VT, USA.
| | - Sophie Sakkaki
- Department of Neurological sciences, University of Vermont, Burlington, VT, USA.,Université de. Montpellier, CNRS, INSERM, IGF, Montpellier, France
| |
Collapse
|
19
|
Transcriptional readout of neuronal activity via an engineered Ca 2+-activated protease. Proc Natl Acad Sci U S A 2020; 117:33186-33196. [PMID: 33323488 DOI: 10.1073/pnas.2006521117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molecular integrators, in contrast to real-time indicators, convert transient cellular events into stable signals that can be exploited for imaging, selection, molecular characterization, or cellular manipulation. Many integrators, however, are designed as complex multicomponent circuits that have limited robustness, especially at high, low, or nonstoichiometric protein expression levels. Here, we report a simplified design of the calcium and light dual integrator FLARE. Single-chain FLARE (scFLARE) is a single polypeptide chain that incorporates a transcription factor, a LOV domain-caged protease cleavage site, and a calcium-activated TEV protease that we designed through structure-guided mutagenesis and screening. We show that scFLARE has greater dynamic range and robustness than first-generation FLARE and can be used in culture as well as in vivo to record patterns of neuronal activation with 10-min temporal resolution.
Collapse
|
20
|
Dunn PJ, Maher BH, Albury CL, Stuart S, Sutherland HG, Maksemous N, Benton MC, Smith RA, Haupt LM, Griffiths LR. Tiered analysis of whole-exome sequencing for epilepsy diagnosis. Mol Genet Genomics 2020; 295:751-763. [DOI: 10.1007/s00438-020-01657-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
21
|
Rambousek L, Gschwind T, Lafourcade C, Paterna JC, Dib L, Fritschy JM, Fontana A. Aberrant expression of PAR bZIP transcription factors is associated with epileptogenesis, focus on hepatic leukemia factor. Sci Rep 2020; 10:3760. [PMID: 32111960 PMCID: PMC7048777 DOI: 10.1038/s41598-020-60638-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022] Open
Abstract
Epilepsy is a widespread neurological disease characterized by abnormal neuronal activity resulting in recurrent seizures. There is mounting evidence that a circadian system disruption, involving clock genes and their downstream transcriptional regulators, is associated with epilepsy. In this study, we characterized the hippocampal expression of clock genes and PAR bZIP transcription factors (TFs) in a mouse model of temporal lobe epilepsy induced by intrahippocampal injection of kainic acid (KA). The expression of PAR bZIP TFs was significantly altered following KA injection as well as in other rodent models of acquired epilepsy. Although the PAR bZIP TFs are regulated by proinflammatory cytokines in peripheral tissues, we discovered that the regulation of their expression is inflammation-independent in hippocampal tissue and rather mediated by clock genes and hyperexcitability. Furthermore, we report that hepatic leukemia factor (Hlf), a member of PAR bZIP TFs family, is invariably downregulated in animal models of acquired epilepsy, regulates neuronal activity in vitro and its overexpression in dentate gyrus neurons in vivo leads to altered expression of genes associated with seizures and epilepsy. Overall, our study provides further evidence of PAR bZIP TFs involvement in epileptogenesis and points to Hlf as the key player.
Collapse
Affiliation(s)
- Lukas Rambousek
- Institute of Experimental Immunology, Winterthurerstrasse 190, University of Zurich, 8057, Zurich, Switzerland.
| | - Tilo Gschwind
- Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, University of Zurich, 8057, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
| | - Carlos Lafourcade
- Laboratorio de Neurociencias, Universidad de los Andes, 7620157, Santiago, Chile
| | - Jean-Charles Paterna
- Viral Vector Facility, Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
| | - Linda Dib
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, Winterthurerstrasse 190, University of Zurich, 8057, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
| | - Adriano Fontana
- Institute of Experimental Immunology, Winterthurerstrasse 190, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
22
|
Restrained Dendritic Growth of Adult-Born Granule Cells Innervated by Transplanted Fetal GABAergic Interneurons in Mice with Temporal Lobe Epilepsy. eNeuro 2019; 6:ENEURO.0110-18.2019. [PMID: 31043461 PMCID: PMC6497906 DOI: 10.1523/eneuro.0110-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
The dentate gyrus (DG) is a region of the adult rodent brain that undergoes continuous neurogenesis. Seizures and loss or dysfunction of GABAergic synapses onto adult-born dentate granule cells (GCs) alter their dendritic growth and migration, resulting in dysmorphic and hyperexcitable GCs. Additionally, transplants of fetal GABAergic interneurons in the DG of mice with temporal lobe epilepsy (TLE) result in seizure suppression, but it is unknown whether increasing interneurons with these transplants restores GABAergic innervation to adult-born GCs. Here, we address this question by birth-dating GCs with retrovirus at different times up to 12 weeks after pilocarpine-induced TLE in adult mice. Channelrhodopsin 2 (ChR2)-enhanced yellow fluorescent protein (EYFP)-expressing medial-ganglionic eminence (MGE)-derived GABAergic interneurons from embryonic day (E)13.5 mouse embryos were transplanted into the DG of the TLE mice and GCs with transplant-derived inhibitory post-synaptic currents (IPSCs) were identified by patch-clamp electrophysiology and optogenetic interrogation. Putative synaptic sites between GCs and GABAergic transplants were also confirmed by intracellular biocytin staining, immunohistochemistry, and confocal imaging. 3D reconstructions of dendritic arbors and quantitative morphometric analyses were carried out in >150 adult-born GCs. GABAergic inputs from transplanted interneurons correlated with markedly shorter GC dendrites, compared to GCs that were not innervated by the transplants. Moreover, these effects were confined to distal dendritic branches and a short time window of six to eight weeks. The effects were independent of seizures as they were also observed in naïve mice with MGE transplants. These findings are consistent with the hypothesis that increased inhibitory currents over a smaller dendritic arbor in adult-born GCs may reduce their excitability and lead to seizure suppression.
Collapse
|
23
|
Liberato JL, Godoy LD, Cunha AOS, Mortari MR, de Oliveira Beleboni R, Fontana ACK, Lopes NP, Dos Santos WF. Parawixin2 Protects Hippocampal Cells in Experimental Temporal Lobe Epilepsy. Toxins (Basel) 2018; 10:toxins10120486. [PMID: 30469496 PMCID: PMC6316435 DOI: 10.3390/toxins10120486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is considered as one of the major disabling neuropathologies. Almost one third of adult patients with temporal lobe epilepsy (TLE) do not respond to current antiepileptic drugs (AEDs). Additionally, most AEDs do not have neuroprotective effects against the inherent neurodegenerative process underlying the hippocampal sclerosis on TLE. Dysfunctions in the GABAergic neurotransmission may contribute not only to the onset of epileptic activity but also constitute an important system for therapeutic approaches. Therefore, molecules that enhance GABA inhibitory effects could open novel avenues for the understanding of epileptic plasticity and for drug development. Parawixin2, a compound isolated from Parawixia bistriata spider venom, inhibits both GABA and glycine uptake and has an anticonvulsant effect against a wide range of chemoconvulsants. The neuroprotective potential of Parawixin2 was analyzed in a model of TLE induced by a long-lasting Status Epilepticus (SE), and its efficiency was compared to well-known neuroprotective drugs, such as riluzole and nipecotic acid. Neuroprotection was assessed through histological markers for cell density (Nissl), astrocytic reactivity (GFAP) and cell death labeling (TUNEL), which were performed 24 h and 72 h after SE. Parawixin2 treatment resulted in neuroprotective effects in a dose dependent manner at 24 h and 72 h after SE, as well as reduced reactive astrocytes and apoptotic cell death. Based on these findings, Parawixin2 has a great potential to be used as a tool for neuroscience research and as a probe to the development of novel GABAergic neuroprotective agents.
Collapse
Affiliation(s)
- José Luiz Liberato
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
- Neuroscience Behavioral Institute (INEC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil.
| | - Lívea Dornela Godoy
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
- Neuroscience Behavioral Institute (INEC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil.
| | - Alexandra Olimpio Siqueira Cunha
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
| | - Marcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, DF 70910-900 Brasília, Brazil.
| | - Rene de Oliveira Beleboni
- Department of Biotechnology/School of Medicine, University of Ribeirão Preto, Av. Costábile Romano, 2201, Ribeirão Preto, 14096-900 São Paulo, Brazil.
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102, USA.
| | - Norberto Peporine Lopes
- NPPNS, Department of Physics and Chemistry, College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil, Av. do Cafe s/n, Ribeirão Preto, 14040-903 São Paulo, Brazil.
| | - Wagner Ferreira Dos Santos
- Neurobiology and Venoms Laboratory (LNP), Department of Biology, College of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901 São Paulo, Brazil.
- Neuroscience Behavioral Institute (INEC), Av. do Café, 2450, Ribeirão Preto, 14050-220 São Paulo, Brazil.
| |
Collapse
|
24
|
Ali AE, Mahdy HM, Elsherbiny DM, Azab SS. Rifampicin ameliorates lithium-pilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: Impact on oxidative, inflammatory and apoptotic machineries. Biochem Pharmacol 2018; 156:431-443. [PMID: 30195730 DOI: 10.1016/j.bcp.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/05/2018] [Indexed: 01/28/2023]
Abstract
Epilepsy is one of the serious neurological sequelae of bacterial meningitis. Rifampicin, the well-known broad spectrum antibiotic, is clinically used for chemoprophylaxis of meningitis. Besides its antibiotic effects, rifampicin has been proven to be an effective neuroprotective candidate in various experimental models of neurological diseases. In addition, rifampicin was found to have promising antioxidant, anti-inflammatory and anti-apoptotic effects. Herein, we investigated the anticonvulsant effect of rifampicin at experimental meningitis dose (20 mg/kg, i.p.) using lithium-pilocarpine model of status epilepticus (SE) in rats. Additionally, we studied the effect of rifampicin on seizure induced histopathological, neurochemical and behavioral abnormalities. Our study showed that rifampicin pretreatment attenuated seizure activity and the resulting hippocampal insults marked by hematoxylin and eosin. Markers of oxidative stress, neuroinflammation and apoptosis were evaluated, in the hippocampus, 24 h after SE induction. We found that rifampicin pretreatment suppressed oxidative stress as indicated by normalized malondialdehyde and glutathione levels. Rifampicin pretreatment attenuated SE-induced neuroinflammation and decreased the hippocampal expression of interleukin-1β, tumor necrosis factor-α, nuclear factor kappa-B, and cyclooxygenase-2. Moreover, rifampicin mitigated SE-induced neuronal apoptosis as indicated by fewer positive cytochrome c immunostained cells and lower caspase-3 activity in the hippocampus. Furthermore, Morris water maze testing at 7 days after SE induction showed that rifampicin pretreatment can improve cognitive dysfunction. Therefore, rifampicin, currently used in the management of meningitis, has a potential additional advantage of ameliorating its epileptic sequelae.
Collapse
Affiliation(s)
- Alaa E Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba M Mahdy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa M Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
25
|
Hachem LD, Wong SM, Ibrahim GM. The vagus afferent network: emerging role in translational connectomics. Neurosurg Focus 2018; 45:E2. [DOI: 10.3171/2018.6.focus18216] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vagus nerve stimulation (VNS) is increasingly considered for the treatment of intractable epilepsy and holds potential for the management of a variety of neuropsychiatric conditions. The emergence of the field of connectomics and the introduction of large-scale modeling of neural networks has helped elucidate the underlying neurobiology of VNS, which may be variably expressed in patient populations and related to responsiveness to stimulation. In this report, the authors outline current data on the underlying neural circuitry believed to be implicated in VNS responsiveness in what the authors term the “vagus afferent network.” The emerging role of biomarkers to predict treatment effect is further discussed and important avenues for future work are highlighted.
Collapse
Affiliation(s)
- Laureen D. Hachem
- 1Division of Neurosurgery, Department of Surgery, University of Toronto
| | - Simeon M. Wong
- 2Department of Diagnostic Imaging, Hospital for Sick Children, Toronto; and
| | - George M. Ibrahim
- 1Division of Neurosurgery, Department of Surgery, University of Toronto
- 3Division of Neurosurgery, Hospital for Sick Children, Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Khan AA, Shekh-Ahmad T, Khalil A, Walker MC, Ali AB. Cannabidiol exerts antiepileptic effects by restoring hippocampal interneuron functions in a temporal lobe epilepsy model. Br J Pharmacol 2018; 175:2097-2115. [PMID: 29574880 PMCID: PMC5979781 DOI: 10.1111/bph.14202] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/13/2017] [Accepted: 02/27/2018] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose A non‐psychoactive phytocannabinoid, cannabidiol (CBD), shows promising results as an effective potential antiepileptic drug in some forms of refractory epilepsy. To elucidate the mechanisms by which CBD exerts its anti‐seizure effects, we investigated its effects at synaptic connections and on the intrinsic membrane properties of hippocampal CA1 pyramidal cells and two major inhibitory interneurons: fast spiking, parvalbumin (PV)‐expressing and adapting, cholecystokinin (CCK)‐expressing interneurons. We also investigated whether in vivo treatment with CBD altered the fate of CCK and PV interneurons using immunohistochemistry. Experimental Approach Electrophysiological intracellular whole‐cell recordings combined with neuroanatomy were performed in acute brain slices of rat temporal lobe epilepsy in in vivo (induced by kainic acid) and in vitro (induced by Mg2+‐free solution) epileptic seizure models. For immunohistochemistry experiments, CBD was administered in vivo (100 mg·kg−1) at zero time and 90 min post status epilepticus, induced with kainic acid. Key Results Bath application of CBD (10 μM) dampened excitability at unitary synapses between pyramidal cells but enhanced inhibitory synaptic potentials elicited by fast spiking and adapting interneurons at postsynaptic pyramidal cells. Furthermore, CBD restored impaired membrane excitability of PV, CCK and pyramidal cells in a cell type‐specific manner. These neuroprotective effects of CBD were corroborated by immunohistochemistry experiments that revealed a significant reduction in atrophy and death of PV‐ and CCK‐expressing interneurons after CBD treatment. Conclusions and Implications Our data suggest that CBD restores excitability and morphological impairments in epileptic models to pre‐epilepsy control levels through multiple mechanisms to reinstate normal network function.
Collapse
Affiliation(s)
| | | | | | | | - Afia B Ali
- UCL School of Pharmacy, London, WC1N 1AX, UK
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The overlap of neuropsychiatric illness and developmental disability continues to be prominently recognized in clinical practice and in the academic literature. Theoretical and practical considerations may represent a frontier for understanding brain and behavior relationships. The purpose of this review is to explore this common relationship and report on recent literature that helps advance the larger fields of psychiatry and neurology. RECENT FINDINGS Overlap between developmental disability, epilepsy, and neuropsychiatric illness may be more common than originally thought. Excessive excitatory neurotransmitter activity may be present in epilepsy and in autism spectrum disorder. Specific seizure types may be associated with features of developmental disabilities and neuropsychiatric conditions. SUMMARY Neuropsychiatric illness is common in epilepsy and more frequent in developmental disabilities than generally recognized. Seizure foci in the temporal lobe may play a significant role. Brain connectivity and specific neurotransmitter systems are active areas of investigation. Antiepileptic drugs may improve neuropsychiatric symptoms in persons with developmental disability and epilepsy.
Collapse
|
28
|
Klein P, Dingledine R, Aronica E, Bernard C, Blümcke I, Boison D, Brodie MJ, Brooks-Kayal AR, Engel J, Forcelli PA, Hirsch LJ, Kaminski RM, Klitgaard H, Kobow K, Lowenstein DH, Pearl PL, Pitkänen A, Puhakka N, Rogawski MA, Schmidt D, Sillanpää M, Sloviter RS, Steinhäuser C, Vezzani A, Walker MC, Löscher W. Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia 2018; 59:37-66. [PMID: 29247482 PMCID: PMC5993212 DOI: 10.1111/epi.13965] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
Abstract
The most common forms of acquired epilepsies arise following acute brain insults such as traumatic brain injury, stroke, or central nervous system infections. Treatment is effective for only 60%-70% of patients and remains symptomatic despite decades of effort to develop epilepsy prevention therapies. Recent preclinical efforts are focused on likely primary drivers of epileptogenesis, namely inflammation, neuron loss, plasticity, and circuit reorganization. This review suggests a path to identify neuronal and molecular targets for clinical testing of specific hypotheses about epileptogenesis and its prevention or modification. Acquired human epilepsies with different etiologies share some features with animal models. We identify these commonalities and discuss their relevance to the development of successful epilepsy prevention or disease modification strategies. Risk factors for developing epilepsy that appear common to multiple acute injury etiologies include intracranial bleeding, disruption of the blood-brain barrier, more severe injury, and early seizures within 1 week of injury. In diverse human epilepsies and animal models, seizures appear to propagate within a limbic or thalamocortical/corticocortical network. Common histopathologic features of epilepsy of diverse and mostly focal origin are microglial activation and astrogliosis, heterotopic neurons in the white matter, loss of neurons, and the presence of inflammatory cellular infiltrates. Astrocytes exhibit smaller K+ conductances and lose gap junction coupling in many animal models as well as in sclerotic hippocampi from temporal lobe epilepsy patients. There is increasing evidence that epilepsy can be prevented or aborted in preclinical animal models of acquired epilepsy by interfering with processes that appear common to multiple acute injury etiologies, for example, in post-status epilepticus models of focal epilepsy by transient treatment with a trkB/PLCγ1 inhibitor, isoflurane, or HMGB1 antibodies and by topical administration of adenosine, in the cortical fluid percussion injury model by focal cooling, and in the albumin posttraumatic epilepsy model by losartan. Preclinical studies further highlight the roles of mTOR1 pathways, JAK-STAT3, IL-1R/TLR4 signaling, and other inflammatory pathways in the genesis or modulation of epilepsy after brain injury. The wealth of commonalities, diversity of molecular targets identified preclinically, and likely multidimensional nature of epileptogenesis argue for a combinatorial strategy in prevention therapy. Going forward, the identification of impending epilepsy biomarkers to allow better patient selection, together with better alignment with multisite preclinical trials in animal models, should guide the clinical testing of new hypotheses for epileptogenesis and its prevention.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | | | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Christophe Bernard
- Aix Marseille Univ, Inserm, INS, Instit Neurosci Syst, Marseille, 13005, France
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Martin J Brodie
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, UK
| | - Amy R Brooks-Kayal
- Division of Neurology, Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Children's Hospital Colorado, Aurora, CO, USA
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jerome Engel
- Departments of Neurology, Neurobiology, and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Brain Research Institute, University of California, Los Angeles, CA, USA
| | | | | | | | | | - Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Puhakka
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michael A Rogawski
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | | | - Matti Sillanpää
- Departments of Child Neurology and General Practice, University of Turku and Turku University Hospital, Turku, Finland
| | - Robert S Sloviter
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Institute for Pharmacological Research, Milan,, Italy
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
29
|
Rudy M, Mayer-Proschel M. Iron Deficiency Affects Seizure Susceptibility in a Time- and Sex-Specific Manner. ASN Neuro 2017; 9:1759091417746521. [PMID: 29243938 PMCID: PMC5734468 DOI: 10.1177/1759091417746521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Iron deficiency (ID) affects more than three billion people worldwide making it the most common micronutrient deficiency. ID is most prevalent during gestation and early life, which is of particular concern since its impact on the developing central nervous system is associated with an increased risk of a wide range of different psychiatric disorders later in life. The cause for this association is not known, but many of these same disorders are also associated with an imbalance between excitation and inhibition (E/I) within the brain. Based on this shared impairment, we asked whether ID could contribute to such an imbalance. Disruptions in the E/I balance can be uncovered by the brain’s response to seizure inducing insults. We therefore tested the seizure threshold under different nutritional models of ID. We found that mice which were postnatally exposed to ID (and were acutely ID) had a decreased seizure threshold and increased susceptibility to certain seizure types. In contrast, mice that were exposed to ID only during gestation had an increased seizure threshold and low seizure incidence. We suggest that exposure to ID during gestation might alter the cellular components that contribute to the establishment of a proper E/I balance later in life. In addition, our data highlight the importance of considering the window of vulnerability since gestational ID and postnatal ID have significantly different consequences on seizure probability.
Collapse
Affiliation(s)
- Michael Rudy
- 1 Department of Environmental Medicine, University of Rochester, NY, USA.,2 Department of Biomedical Genetics, University of Rochester, NY, USA
| | - Margot Mayer-Proschel
- 2 Department of Biomedical Genetics, University of Rochester, NY, USA.,3 Department of Neuroscience, University of Rochester, NY, USA
| |
Collapse
|
30
|
Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice. J Neurosci 2017; 37:8166-8179. [PMID: 28733354 DOI: 10.1523/jneurosci.3456-16.2017] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsies and is generally associated with malfunctioning of the hippocampal formation. Recently, a preferential loss of parvalbumin (PV) neurons has been observed in the subiculum of TLE patients and in animal models of TLE. To demonstrate a possible causative role of defunct PV neurons in the generation of TLE, we permanently inhibited GABA release selectively from PV neurons of the ventral subiculum by injecting a viral vector expressing tetanus toxin light chain in male mice. Subsequently, mice were subjected to telemetric EEG recording and video monitoring. Eighty-eight percent of the mice presented clusters of spike-wave discharges (C-SWDs; 40.0 ± 9.07/month), and 64% showed spontaneous recurrent seizures (SRSs; 5.3 ± 0.83/month). Mice injected with a control vector presented with neither C-SWDs nor SRSs. No neurodegeneration was observed due to vector injection or SRS. Interestingly, mice that presented with only C-SWDs but no SRSs, developed SRSs upon injection of a subconvulsive dose of pentylenetetrazole after 6 weeks. The initial frequency of SRSs declined by ∼30% after 5 weeks. In contrast to permanent silencing of PV neurons, transient inhibition of GABA release from PV neurons through the designer receptor hM4Di selectively expressed in PV-containing neurons transiently reduced the seizure threshold of the mice but induced neither acute nor recurrent seizures. Our data demonstrate a critical role for perisomatic inhibition mediated by PV-containing interneurons, suggesting that their sustained silencing could be causally involved in the development of TLE.SIGNIFICANCE STATEMENT Development of temporal lobe epilepsy (TLE) generally takes years after an initial insult during which maladaptation of hippocampal circuitries takes place. In human TLE and in animal models of TLE, parvalbumin neurons are selectively lost in the subiculum, the major output area of the hippocampus. The present experiments demonstrate that specific and sustained inhibition of GABA release from parvalbumin-expressing interneurons (mostly basket cells) in sector CA1/subiculum is sufficient to induce hyperexcitability and spontaneous recurrent seizures in mice. As in patients with nonlesional TLE, these mice developed epilepsy without signs of neurodegeneration. The experiments highlight the importance of the potent inhibitory action mediated by parvalbumin cells in the hippocampus and identify a potential mechanism in the development of TLE.
Collapse
|
31
|
Garcia-Cairasco N, Umeoka EHL, Cortes de Oliveira JA. The Wistar Audiogenic Rat (WAR) strain and its contributions to epileptology and related comorbidities: History and perspectives. Epilepsy Behav 2017; 71:250-273. [PMID: 28506440 DOI: 10.1016/j.yebeh.2017.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the context of modeling epilepsy and neuropsychiatric comorbidities, we review the Wistar Audiogenic Rat (WAR), first introduced to the neuroscience international community more than 25years ago. The WAR strain is a genetically selected reflex model susceptible to audiogenic seizures (AS), acutely mimicking brainstem-dependent tonic-clonic seizures and chronically (by audiogenic kindling), temporal lobe epilepsy (TLE). Seminal neuroethological, electrophysiological, cellular, and molecular protocols support the WAR strain as a suitable and reliable animal model to study the complexity and emergent functions typical of epileptogenic networks. Furthermore, since epilepsy comorbidities have emerged as a hot topic in epilepsy research, we discuss the use of WARs in fields such as neuropsychiatry, memory and learning, neuroplasticity, neuroendocrinology, and cardio-respiratory autonomic regulation. Last, but not least, we propose that this strain be used in "omics" studies, as well as with the most advanced molecular and computational modeling techniques. Collectively, pioneering and recent findings reinforce the complexity associated with WAR alterations, consequent to the combination of their genetically-dependent background and seizure profile. To add to previous studies, we are currently developing more powerful behavioral, EEG, and molecular methods, combined with computational neuroscience/network modeling tools, to further increase the WAR strain's contributions to contemporary neuroscience in addition to increasing knowledge in a wide array of neuropsychiatric and other comorbidities, given shared neural networks. During the many years that the WAR strain has been studied, a constantly expanding network of multidisciplinary collaborators has generated a growing research and knowledge network. Our current and major wish is to make the WARs available internationally to share our knowledge and to facilitate the planning and execution of multi-institutional projects, eagerly needed to contribute to paradigm shifts in epileptology. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Eduardo H L Umeoka
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | | |
Collapse
|
32
|
|
33
|
Wang X, Tang O, Ye Y, Zheng M, Hu J, Chen Z, Zhong K. [Effects of crocin on hippocampus rapid kindling epilepsy in mice]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2017; 46:7-14. [PMID: 28436625 PMCID: PMC10397052 DOI: 10.3785/j.issn.1008-9292.2017.02.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/21/2016] [Indexed: 11/15/2022]
Abstract
Objective: To investigate the effect of crocin on the progression and generalized seizure of temporal lobe epilepsy in mice. Methods: Hippocampus rapid kindling model was established in C57BL/6J mice. The effects of crocin on seizure stage, afterdischarge duration (ADD), number of stimulation in each stage and final state, the incidence of generalized seizure (GS), average seizure stage and ADD were observed. Results: Crocin (20 mg/kg) significantly retarded behavioral seizure stages ( P<0.05) and shortened cumulative ADD ( P<0.01) during hippocampus rapid kindling acquisition in mice compared with vehicle group. Meanwhile, number of stimulations in stage 1-2 was significantly increased ( P<0.05) and the incidence of fully kindled animals was significantly decreased ( P<0.01). However, 10 or 50 mg/kg crocin showed no significant effect on the above indexes (all P>0.05). Crocin (100 or 200 mg/kg) significantly decreased the incidence of GS (all P<0.01) and reduced average seizure stages (all P<0.01) in fully-kindled mice compared with vehicle group; Fifty mg/kg crocin only reduced average seizure stages ( P<0.05). Conclusion: Low-dose crocin can retard the progression in hippocampus rapid kindling acquisition in mice, while high-dose crocin relieves the GS in fully-kindled mice, which suggests that crocin may be a potential anti-epileptic compound.
Collapse
Affiliation(s)
- Xiting Wang
- Department of Basic Medical Science, Hangzhou Medicine College, Hangzhou 310053, China
| | - Oufeng Tang
- Department of Basic Medical Science, Hangzhou Medicine College, Hangzhou 310053, China
| | - Yilu Ye
- Department of Basic Medical Science, Hangzhou Medicine College, Hangzhou 310053, China
| | - Mingzhi Zheng
- Department of Basic Medical Science, Hangzhou Medicine College, Hangzhou 310053, China
| | - Jue Hu
- Department of Basic Medical Science, Hangzhou Medicine College, Hangzhou 310053, China
| | - Zhong Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kai Zhong
- Department of Basic Medical Science, Hangzhou Medicine College, Hangzhou 310053, China.
| |
Collapse
|