1
|
Olesen J. Cerebral blood flow and arterial responses in migraine: history and future perspectives. J Headache Pain 2024; 25:222. [PMID: 39701954 DOI: 10.1186/s10194-024-01903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION It is largely accepted that migraine with aura (MA) is caused by cortical spreading depression (CSD) and that migraine without aura (MO) is not. This is mostly based on old studies of regional cerebral blood flow (rCBF) and studies of vascular responses. These studies are partly forgotten today and may, therefore, be worthwhile reviewing. METHODS The review is based on the authors life-long involvement in these issues and his knowledge of the relevant literature plus scrutiny of reference lists of these papers. RESULTS The strongest evidence for CSD in MA came from studies using intraarterial injection of 133-Xenon and recording from 254 areas of the relevant hemisphere. Measurements could be taken before and during development of an attack because the procedure triggered MA. The findings were identical to many features of CSD. They were confirmed using 133-Xenon Single Photon Emission Computerized Tomography (SPECT).It was shown that the generally accepted vasospastic theory of migraine was incorrect. Headache started while rCBF was decreased and did not change during later hyperperfusion. rCBF remained normal in MO but later studies have shown increase in areas also activated by other pain. Flow Was focally increased in the brain stem also after treatment of the pain. Dilatation of large cerebral arteries during MO attack was first shown with ultrasound and later confirmed by MR angiography which also showed a lack of dilatation of extracerebral arteries. DISCUSSION Much has in later years been done using modern PET and MR techniques. These studies have confirmed the old studies and have added many new aspects which are not reviewed here. The final proof of CSD during MA and its absence during MO still awaits the definitive study. CONCLUSION Studies from the 1980ies and 1990ies caused a fundamental shift in our understanding of the vascular and cortical mechanisms of migraine. They remain a solid base for our current understanding and inspire further study.
Collapse
Affiliation(s)
- Jes Olesen
- Translational Research Center and Danish Headache Center, Rigshospitalet, University of Copenhagen, Nordstjernevej 42, Glostrup, Copenhagen, 2600, Denmark.
| |
Collapse
|
2
|
Eftekhari Moghadam AR, Absalan F, Khatavian E, Jalilian M, Maghsoudi F. Evaluation of the Frequency of Migraine and CVA Patients Based on Circle of Willis Morphological Variations in MRA Images. Adv Biomed Res 2024; 13:109. [PMID: 39717249 PMCID: PMC11665160 DOI: 10.4103/abr.abr_273_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 12/25/2024] Open
Abstract
Background The Circle of Willis (CoW) forms a critical collateral route for the compensation pathway at the basal cistern of the brain. This study aims to determine if migraine headaches and cerebrovascular accidents (CVAs) are associated with the prevalence and patterns of CoW arterial variations seen in the three-dimensional time-of-flight magnetic resonance angiography technique in patients. Materials and Methods A cross-sectional study was undertaken by a systemic search of electronic databases in the Imaging Center, Abadan's Taleghani Hospital, Iran, from March 2020 to March 2022. Data on the prevalence of variations in patients who presented for screening for migraine and CVA were extracted and analyzed with Student t-test and the Chi-square method. Results Findings show complete CoW has been visible in 20.19% of our patients. The anterior part of the CoW was almost intact in all patients. The posterior part of CoW was mostly bilaterally hypoplastic (31.73%) or bilateral aplastic (29.81%) and in some rare cases unilaterally varied. In migraine patients, CoW was rarely in its classic form (15%) and was varied bilaterally in 72.5% of the cases. In CVA patients, CoW was in its complete vascular structure in 23.08% and bilaterally varied in 46.15% of all cases. Conclusions Overall, migraine and CVA are associated with anatomical variations in the posterior portions of the CoW. Further larger prospective trials are needed to determine the true prevalence of CoW variations and their pathological significance.
Collapse
Affiliation(s)
- Ali Reza Eftekhari Moghadam
- Department of Anatomical Science, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Forouzan Absalan
- Medical Faculty, Abadan University of Medical Sciences, Abadan, Iran
- Medical Faculty, Taleghani Hospital, Abadan, Iran
| | - Ehsan Khatavian
- Medical Faculty, Abadan University of Medical Sciences, Abadan, Iran
| | - Milad Jalilian
- Department of Neuroscience, Neuroimaging and Addiction Studies, Schools of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Maghsoudi
- Medical Faculty, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
3
|
Kitamura E, Imai N. Molecular and Cellular Neurobiology of Spreading Depolarization/Depression and Migraine: A Narrative Review. Int J Mol Sci 2024; 25:11163. [PMID: 39456943 PMCID: PMC11508361 DOI: 10.3390/ijms252011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine is a prevalent neurological disorder, particularly among individuals aged 20-50 years, with significant social and economic impacts. Despite its high prevalence, the pathogenesis of migraine remains unclear. In this review, we provide a comprehensive overview of cortical spreading depolarization/depression (CSD) and its close association with migraine aura, focusing on its role in understanding migraine pathogenesis and therapeutic interventions. We discuss historical studies that have demonstrated the role of CSD in the visual phenomenon of migraine aura, along with modern imaging techniques confirming its propagation across the occipital cortex. Animal studies are examined to indicate that CSD is not exclusive to migraines; it also occurs in other neurological conditions. At the cellular level, we review how CSD is characterized by ionic changes and excitotoxicity, leading to neuronal and glial responses. We explore how CSD activates the trigeminal nervous system and upregulates the expression of calcitonin gene-related peptides (CGRP), thereby contributing to migraine pain. Factors such as genetics, obesity, and environmental conditions that influence the CSD threshold are discussed, suggesting potential therapeutic targets. Current treatments for migraine, including prophylactic agents and CGRP-targeting drugs, are evaluated in the context of their expected effects on suppressing CSD activity. Additionally, we highlight emerging therapies such as intranasal insulin-like growth factor 1 and vagus nerve stimulation, which have shown promise in reducing CSD susceptibility and frequency. By elucidating the molecular and cellular mechanisms of CSD, this review aims to enhance the understanding of migraine pathogenesis and support the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Eiji Kitamura
- Department of Neurology, Kitasato University School of Medicine, Sagamihara 252-0329, Japan;
| | - Noboru Imai
- Department of Neurology and Headache Center, Japanese Red Cross Shizuoka Hospital, Shizuoka 420-0853, Japan
| |
Collapse
|
4
|
Takizawa T, Ihara K, Unekawa M, Iba C, Kagawa S, Watanabe N, Nakayama S, Sakurai K, Miyazaki N, Ishida N, Takemura R, Shibata M, Izawa Y, Chubachi S, Fukunaga K, Nakahara J. Effects of passive smoking on cortical spreading depolarization in male and female mice. J Headache Pain 2024; 25:162. [PMID: 39354357 PMCID: PMC11445983 DOI: 10.1186/s10194-024-01867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Patients with migraine are typically advised to avoid passive smoking because it may aggravate headaches and other health conditions. However, there is insufficient high-quality evidence on the association between passive smoking and migraine, which warrants further investigation using animal models. Therefore, using a mouse model, we examined the effect of passive smoking on susceptibility to cortical spreading depolarization (CSD), the biological basis of migraine with aura. FINDINGS Fifty C57BL/6 mice (25 males and 25 females) were exposed for one hour to cigarette smoke or room air. Subsequently, potassium chloride (KCl) was administered under isoflurane anesthesia to induce CSD, and the CSD threshold, frequency of induction, and propagation velocity were determined. The threshold to induce CSD (median [interquartile range (IQR)]) was significantly lower in female mice (adjusted p = 0.01) in the smoking group (0.05 [0.05, 0.088]) than in the sham group (0.125 [0.1, 0.15]); however, there was no significant difference in the male mice (adjusted p = 0.77). CSD frequency or propagation velocity did not differ significantly between the two groups for either sex. CONCLUSIONS Female mice in the smoking group showed lower CSD threshold compared to the sham group, suggesting a potential sex-specific difference in the effect of smoking on the pathogenesis of CSD and migraine with aura. This finding may contribute to the understanding of migraine pathophysiology in association with passive smoking and sex difference.
Collapse
Affiliation(s)
- Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Keiko Ihara
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Japanese Red Cross Ashikaga Hospital, Tochigi, Japan
| | - Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Chisato Iba
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Narumi Watanabe
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shingo Nakayama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaori Sakurai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Miyazaki
- Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Noriyuki Ishida
- Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Ryo Takemura
- Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Mamoru Shibata
- Department of Neurology, Tokyo Dental College Ichikawa General Hospital, Chiba, Japan
| | - Yoshikane Izawa
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
5
|
Li C, Yu Y, Li N, Yin YN, Zhang L, Xie K, Huang D. Calcitonin gene-related peptide: a possible biomarker in migraine patients with patent foramen ovale. BMC Neurol 2024; 24:126. [PMID: 38627623 PMCID: PMC11020291 DOI: 10.1186/s12883-024-03615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Serum CGRP has been found to increase during migraine attack. However, whether CGRP can identify MA with PFO subtypes in MA remains unknown. This study aimed to investigate the differential expression of calcitonin gene-related peptide (CGRP) between migraine (MA) patients with and without patent foramen ovale (PFO), and to evaluate the predictive value of CGRP for MA with PFO. METHODS A total of 153 patients with MA, 51 patients with PFO and 102 patients without. Venous blood was drawn and HIT-6 score was calculated during the onset of MA, and blood routine, inflammatory indexes and serum CGRP were detected. The differences in serum markers and HIT-6 scores were compared between the two groups, and the risk factors of MA with PFO were determined by univariate and multivariate logistics regression. Furthermore, the correlation between CGRP level with right-to-left shunt (RLS) grades and headache impact test-6 (HIT-6) score in MA patients with PFO were assessed. Independent risk factors were screened out by multivariate Logistic regression analysis. We used the receiver operating characteristic (ROC) curve to analyze the diagnostic value of these risk factors in MA complicated with PFO. RESULTS The serum CGRP level and HIT-6 scores in the MA with PFO group were significantly higher than those in the MA group (P < 0.001). Multivariate regression analysis showed that CGRP was an independent risk factor for MA with PFO (OR = 1.698, 95% CI = 1.325-2.179, P < 0.001). CGRP values increased with the increase of RLS grade(Spearmen rho = 0.703, P < 0.001). Furthermore, a positive correlation between CGRP and HIT-6 scores was found (Spearmen rho = 0.227; P = 0.016). ROC curve showed that the optimal cut-off value for diagnosing MA with PFO was 79 pg/mL, the area under the curve (AUC) for predicting MA with PFO was 0.845, with 72.55% sensitivity and 78.43% specificity. CONCLUSIONS MA patients with PFO have higher serum CGRP level. elevated CGRP concentration was associated with higher RLS grade and increased HIT-6 score. Higher serum CGRP level has certain clinical value in predicting PFO in MA patients. TRIAL REGISTRATION This study was approved by the Ethics Committee of Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine (Ethics batch number: 20,201,215,005).
Collapse
Affiliation(s)
- Chaojie Li
- People's Hospital of Xiangzhou District, Zhuhai, Guangdong province, 519000, China
- Department of cardiothoracic surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong province, 519000, China
| | - Yu Yu
- Department of Health Management Division, Zhuhai Maternal and Child Health Care Hospital, Zhuhai, Guangdong province, 519000, China
| | - Ningning Li
- Institute of Integrated Chinese and Western Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong province, 519000, China
| | - Ya-Na Yin
- Clinical Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong province, 510080, China
| | - Lianjun Zhang
- Department of cardiothoracic surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong province, 519000, China
| | - Kehang Xie
- Department of Preventive Medicine, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong province, 519000, China.
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, 208 Yuehua Road, Xiangzhou District, Zhuhai, Guangdong province, 519000, China.
| | - Donghui Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, 208 Yuehua Road, Xiangzhou District, Zhuhai, Guangdong province, 519000, China.
| |
Collapse
|
6
|
Chen SP. Migraine and treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023; 281:149-173. [PMID: 37806714 DOI: 10.1016/bs.pbr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Migraine and major depressive disorders (MDD) or treatment resistant depression (TRD) represent a significant global burden and are often comorbid, further complicating diagnosis and treatment. Epidemiological studies have demonstrated a bidirectional relationship between migraine and MDD/TRD, with patients suffering from one disorder exhibiting a heightened risk of developing the other. This association is believed to result from shared genetic factors, neurotransmitter dysregulation, inflammation, hormonal alteration, and other conditions comorbid with both disorders. Emerging evidence suggests that therapeutics targeting common pathways in both disorders may be beneficial for comorbid patients. Novel therapeutics for migraine or MDD/TRD, such as calcitonin gene-related peptide (CGRP)-targeting therapy, onabotulinumtoxinA, ketamine/esketamine, vagus nerve stimulation or transcranial magnetic stimulation, may be helpful in selected patients with comorbid migraine-MDD/TRD. Nevertheless, continued efforts are needed to improve early detection and intervention, to better understand the complex interplay between genetic, environmental, and psychosocial factors contributing to this comorbidity, to identify novel therapeutic targets, and ultimately, to alleviate the disease burden caused by this comorbidity.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Department of Medical Research & Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
7
|
Effect of Goreisan, a Japanese Traditional Medicine, on Cortical Spreading Depolarization in Mice. Int J Mol Sci 2022; 23:ijms232213803. [PMID: 36430280 PMCID: PMC9694318 DOI: 10.3390/ijms232213803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Goreisan, a traditional Japanese Kampo medicine, is often used to treat headaches, including migraines; however, the underlying mechanisms remain unknown. Therefore, we investigated whether chronic treatment with Goreisan affects cortical spreading depolarization (CSD) in migraines. CSD susceptibility was assessed in male and female C57BL/6 mice by comparing CSD threshold, propagation velocity, and CSD frequency between animals treated with Goreisan for approximately 3 weeks and the corresponding controls with a potassium-induced CSD model. No significant differences were observed in CSD susceptibility between mice that were chronically treated with Goreisan and the control mice. Additionally, no significant differences were observed in other physiological parameters, including body weight, blood gases, and blood pressure. CSD susceptibility was not affected by chronic treatment with Goreisan, which suggests that the drug treats headaches via mechanisms that do not involve CSD modulation.
Collapse
|
8
|
Crawford J, Liu S, Tao F. Gut microbiota and migraine. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100090. [PMID: 35464185 PMCID: PMC9018445 DOI: 10.1016/j.ynpai.2022.100090] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Migraine is a leading cause of disability among the adult population and is a significant burden on the economies of the world. Studies into the underlying causes of migraine have spanned centuries but its underlying mechanisms are still not fully understood. In recent years, accumulating evidence implicates that microbiota-mediated gut-brain crosstalk may contribute to the pathogenesis of migraine. This review provides a brief account of the history of migraine theories and summarizes the recent studies showing how gut microbiota is involved in the pathophysiology of migraine. Future research perspectives for better understanding the role of the gut microbiota in migraine are also discussed.
Collapse
Affiliation(s)
- Joshua Crawford
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
9
|
Eren-Koçak E, Dalkara T. Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 2021; 12:777607. [PMID: 34858192 PMCID: PMC8631474 DOI: 10.3389/fphar.2021.777607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Abstract
Migraine and major depression are debilitating disorders with high lifetime prevalence rates. Interestingly these disorders are highly comorbid and show significant heritability, suggesting shared pathophysiological mechanisms. Non-homeostatic function of ion channels and neuroinflammation may be common mechanisms underlying both disorders: The excitation-inhibition balance of microcircuits and their modulation by monoaminergic systems, which depend on the expression and function of membrane located K+, Na+, and Ca+2 channels, have been reported to be disturbed in both depression and migraine. Ion channels and energy supply to synapses not only change excitability of neurons but can also mediate the induction and maintenance of inflammatory signaling implicated in the pathophysiology of both disorders. In this respect, Pannexin-1 and P2X7 large-pore ion channel receptors can induce inflammasome formation that triggers release of pro-inflammatory mediators from the cell. Here, the role of ion channels involved in the regulation of excitation-inhibition balance, synaptic energy homeostasis as well as inflammatory signaling in migraine and depression will be reviewed.
Collapse
Affiliation(s)
- Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Psychiatry, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Malchow RP, Tchernookova BK, Choi JIV, Smith PJS, Kramer RH, Kreitzer MA. Review and Hypothesis: A Potential Common Link Between Glial Cells, Calcium Changes, Modulation of Synaptic Transmission, Spreading Depression, Migraine, and Epilepsy-H . Front Cell Neurosci 2021; 15:693095. [PMID: 34539347 PMCID: PMC8446203 DOI: 10.3389/fncel.2021.693095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
There is significant evidence to support the notion that glial cells can modulate the strength of synaptic connections between nerve cells, and it has further been suggested that alterations in intracellular calcium are likely to play a key role in this process. However, the molecular mechanism(s) by which glial cells modulate neuronal signaling remains contentiously debated. Recent experiments have suggested that alterations in extracellular H+ efflux initiated by extracellular ATP may play a key role in the modulation of synaptic strength by radial glial cells in the retina and astrocytes throughout the brain. ATP-elicited alterations in H+ flux from radial glial cells were first detected from Müller cells enzymatically dissociated from the retina of tiger salamander using self-referencing H+-selective microelectrodes. The ATP-elicited alteration in H+ efflux was further found to be highly evolutionarily conserved, extending to Müller cells isolated from species as diverse as lamprey, skate, rat, mouse, monkey and human. More recently, self-referencing H+-selective electrodes have been used to detect ATP-elicited alterations in H+ efflux around individual mammalian astrocytes from the cortex and hippocampus. Tied to increases in intracellular calcium, these ATP-induced extracellular acidifications are well-positioned to be key mediators of synaptic modulation. In this article, we examine the evidence supporting H+ as a key modulator of neurotransmission, review data showing that extracellular ATP elicits an increase in H+ efflux from glial cells, and describe the potential signal transduction pathways involved in glial cell-mediated H+ efflux. We then examine the potential role that extracellular H+ released by glia might play in regulating synaptic transmission within the vertebrate retina, and then expand the focus to discuss potential roles in spreading depression, migraine, epilepsy, and alterations in brain rhythms, and suggest that alterations in extracellular H+ may be a unifying feature linking these disparate phenomena.
Collapse
Affiliation(s)
- Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Boriana K. Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ji-in Vivien Choi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Stritch School of Medicine, Loyola University, Maywood, IL, United States
| | - Peter J. S. Smith
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Richard H. Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew A. Kreitzer
- Department of Biology, Indiana Wesleyan University, Marion, IN, United States
| |
Collapse
|
11
|
Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 2021; 246:1069-1083. [PMID: 33554649 DOI: 10.1177/1535370221989263] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer's disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)-leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Sheila Ms Sears
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|