1
|
Da Silva E, Scott MGH, Enslen H, Marullo S. Control of CCR5 Cell-Surface Targeting by the PRAF2 Gatekeeper. Int J Mol Sci 2023; 24:17438. [PMID: 38139265 PMCID: PMC10744302 DOI: 10.3390/ijms242417438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The cell-surface targeting of neo-synthesized G protein-coupled receptors (GPCRs) involves the recruitment of receptors into COPII vesicles budding at endoplasmic reticulum exit sites (ERESs). This process is regulated for some GPCRs by escort proteins, which facilitate their export, or by gatekeepers that retain the receptors in the ER. PRAF2, an ER-resident four trans- membrane domain protein with cytoplasmic extremities, operates as a gatekeeper for the GB1 protomer of the heterodimeric GABAB receptor, interacting with a tandem di-leucine/RXR retention motif in the carboxyterminal tail of GB1. PRAF2 was also reported to interact in a two-hybrid screen with a peptide corresponding to the carboxyterminal tail of the chemokine receptor CCR5 despite the absence of RXR motifs in its sequence. Using a bioluminescence resonance energy transfer (BRET)-based subcellular localization system, we found that PRAF2 inhibits, in a concentration-dependent manner, the plasma membrane export of CCR5. BRET-based proximity assays and Co-IP experiments demonstrated that PRAF2/CCR5 interaction does not require the presence of a receptor carboxyterminal tail and involves instead the transmembrane domains of both proteins. The mutation of the potential di-leucine/RXR motif contained in the third intracellular loop of CCR5 does not affect PRAF2-mediated retention. It instead impairs the cell-surface export of CCR5 by inhibiting CCR5's interaction with its private escort protein, CD4. PRAF2 and CD4 thus display opposite roles on the cell-surface export of CCR5, with PRAF2 inhibiting and CD4 promoting this process, likely operating at the level of CCR5 recruitment into COPII vesicles, which leave the ER.
Collapse
Affiliation(s)
| | | | | | - Stefano Marullo
- CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France; (E.D.S.); (M.G.H.S.); (H.E.)
| |
Collapse
|
2
|
Sweet Taste Signaling: The Core Pathways and Regulatory Mechanisms. Int J Mol Sci 2022; 23:ijms23158225. [PMID: 35897802 PMCID: PMC9329783 DOI: 10.3390/ijms23158225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Sweet taste, a proxy for sugar-derived calories, is an important driver of food intake, and animals have evolved robust molecular and cellular machinery for sweet taste signaling. The overconsumption of sugar-derived calories is a major driver of obesity and other metabolic diseases. A fine-grained appreciation of the dynamic regulation of sweet taste signaling mechanisms will be required for designing novel noncaloric sweeteners with better hedonic and metabolic profiles and improved consumer acceptance. Sweet taste receptor cells express at least two signaling pathways, one mediated by a heterodimeric G-protein coupled receptor encoded by taste 1 receptor members 2 and 3 (TAS1R2 + TAS1R3) genes and another by glucose transporters and the ATP-gated potassium (KATP) channel. Despite these important discoveries, we do not fully understand the mechanisms regulating sweet taste signaling. We will introduce the core components of the above sweet taste signaling pathways and the rationale for having multiple pathways for detecting sweet tastants. We will then highlight the roles of key regulators of the sweet taste signaling pathways, including downstream signal transduction pathway components expressed in sweet taste receptor cells and hormones and other signaling molecules such as leptin and endocannabinoids.
Collapse
|
3
|
Anderson RC, Hanyroup S, Song YB, Mohamed-Moosa Z, van den Bout I, Schwulst AC, Kaiser UB, Millar RP, Newton CL. Functional Rescue of Inactivating Mutations of the Human Neurokinin 3 Receptor Using Pharmacological Chaperones. Int J Mol Sci 2022; 23:ijms23094587. [PMID: 35562976 PMCID: PMC9100388 DOI: 10.3390/ijms23094587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
G protein-coupled receptors (GPCRs) facilitate the majority of signal transductions across cell membranes in humans, with numerous diseases attributed to inactivating GPCR mutations. Many of these mutations result in misfolding during nascent receptor synthesis in the endoplasmic reticulum (ER), resulting in intracellular retention and degradation. Pharmacological chaperones (PCs) are cell-permeant small molecules that can interact with misfolded receptors in the ER and stabilise/rescue their folding to promote ER exit and trafficking to the cell membrane. The neurokinin 3 receptor (NK3R) plays a pivotal role in the hypothalamic–pituitary–gonadal reproductive axis. We sought to determine whether NK3R missense mutations result in a loss of cell surface receptor expression and, if so, whether a cell-permeant small molecule NK3R antagonist could be repurposed as a PC to restore function to these mutants. Quantitation of cell surface expression levels of seven mutant NK3Rs identified in hypogonadal patients indicated that five had severely impaired cell surface expression. A small molecule NK3R antagonist, M8, increased cell surface expression in four of these five and resulted in post-translational receptor processing in a manner analogous to the wild type. Importantly, there was a significant improvement in receptor activation in response to neurokinin B (NKB) for all four receptors following their rescue with M8. This demonstrates that M8 may have potential for therapeutic development in the treatment of hypogonadal patients harbouring NK3R mutations. The repurposing of existing small molecule GPCR modulators as PCs represents a novel and therapeutically viable option for the treatment of disorders attributed to mutations in GPCRs that cause intracellular retention.
Collapse
Affiliation(s)
- Ross C. Anderson
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Correspondence:
| | - Sharika Hanyroup
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Yong Bhum Song
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.B.S.); (U.B.K.)
- Division of Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Korea
| | - Zulfiah Mohamed-Moosa
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Department of Anatomy and Physiology, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Pretoria 0110, South Africa
| | - Iman van den Bout
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Alexis C. Schwulst
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
| | - Ursula B. Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Y.B.S.); (U.B.K.)
| | - Robert P. Millar
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
- School of Medicine, Medical and Biological Sciences Building, University of St Andrews, St Andrews KY16 9TF, UK
| | - Claire L. Newton
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa; (S.H.); (Z.M.-M.); (I.v.d.B.); (A.C.S.); (R.P.M.); (C.L.N.)
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0031, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK
| |
Collapse
|
4
|
Grassi ES, Lábadi A, Vezzoli V, Ghiandai V, Bonomi M, Persani L. Thyrotropin Receptor p.N432D Retained Variant Is Degraded Through an Alternative Lysosomal/Autophagosomal Pathway and Can Be Functionally Rescued by Chemical Chaperones. Thyroid 2021; 31:1030-1040. [PMID: 33446056 DOI: 10.1089/thy.2020.0415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background: Loss-of-function mutations of thyrotropin receptor (TSHR) are one of the main causes of congenital hypothyroidism. As for many disease-associated G-protein coupled receptors (GPCRs), these mutations often affect the correct trafficking and maturation of the receptor, thus impairing the expression on the cell surface. Several retained GPCR mutants are able to effectively bind their ligands and to transduce signals when they are forced to the cell surface by degradation inhibition or by treatment with chaperones. Despite the large number of well-characterized retained TSHR mutants, no attempts have been made for rescue. Further, little is known about TSHR degradation pathways. We hypothesize that, similar to other GPCRs, TSHR retained mutants may be at least partially functional if their maturation and membrane expression is facilitated by chaperones or degradation inhibitors. Methods: We performed in silico predictions of the functionality of known TSHR variants and compared the results with available in vitro data. Western blot, confocal microscopy, enzyme-linked immunosorbent assays, and dual luciferase assays were used to investigate the effects of degradation pathways inhibition and of chemical chaperone treatments on TSHR variants' maturation and functionality. Results: We found a high discordance rate between in silico predictions and in vitro data for retained TSHR variants, a fact indicative of a conserved potential to initiate signal transduction if these mutants were expressed on the cell surface. We show experimentally that some maturation defective TSHR mutants are able to effectively transduce Gs/cAMP signaling if their maturation and expression are enhanced by using chemical chaperones. Further, through the characterization of the intracellular retained p.N432D variant, we provide new insights on the TSHR degradation mechanism, as our results suggest that aggregation-prone mutant can be directed toward the autophagosomal pathway instead of the canonical proteasome system. Conclusions: Our study reveals alternative pathways for TSHR degradation. Retained TSHR variants can be functional when expressed on the cell surface membrane, thus opening the possibility of further studies on the pharmacological modulation of TSHR expression and functionality in patients in whom TSHR signaling is disrupted.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Arpad Lábadi
- Department of Laboratory Medicine, University of Pécs, Pécs, Hungary
| | - Valeria Vezzoli
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Viola Ghiandai
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
5
|
Pandey A, LeBlanc DM, Parmar HB, Phạm TTT, Sarker M, Xu L, Duncan R, Liu XQ, Rainey JK. Structure, amphipathy, and topology of the membrane-proximal helix 8 influence apelin receptor plasma membrane localization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183036. [PMID: 31394100 DOI: 10.1016/j.bbamem.2019.183036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/08/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
Abstract
G-protein coupled receptors (GPCRs) typically have an amphipathic helix ("helix 8") immediately C-terminal to the transmembrane helical bundle. To date, a number of functional roles have been associated with GPCR helix 8 segments, but structure-function analysis for this region remains limited. Here, we examine helix 8 of the apelin receptor (AR or APJ), a class A GPCR with wide physiological and pathophysiological relevance. The 71 residue C-terminal tail of the AR is primarily intrinsically disordered, with a detergent micelle-induced increase in helical character. This helicity was localized to the helix 8 region, in good agreement with the recent AR crystal structure. A series of helix 8 mutants were made to reduce helicity, remove amphipathy, or flip the hydrophobic and hydrophilic faces. Each mutant AR was tested both biophysically, in the isolated C-terminal tail, and functionally in HEK 293 T cells, for full-length AR. In all instances, micelle interactions were maintained, and steady-state AR expression was efficient. However, removal of amphipathy or helical character led to a significant decrease in cell surface localization. Flipping of helix 8 amphipathic topology restored cell surface localization to some degree, but still was significantly reduced relative to wild-type. Structural integrity, amphipathy to drive membrane association, and correct topology of helix 8 membrane association all thus appear important for cell surface localization of the AR. This behavior correlates well to GPCR C-terminal tail sequence motifs, implying that these serve to specify key topological features of helix 8 and its proximity to the transmembrane domain.
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Danielle M LeBlanc
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Hirendrasinh B Parmar
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Trần Thanh Tâm Phạm
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Muzaddid Sarker
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Lingling Xu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Roy Duncan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
6
|
Jain AR, Stradley SH, Robinson AS. The A2aR C-terminus provides improved total and active expression yields for adenosine receptor chimeras. AIChE J 2018. [DOI: 10.1002/aic.16398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Abhinav R. Jain
- Dept. of Chemical and Biomolecular Engineering; Tulane University; New Orleans LA 70118
| | - Steven H. Stradley
- Dept. of Chemical and Biomolecular Engineering; Tulane University; New Orleans LA 70118
| | - Anne S. Robinson
- Dept. of Chemical and Biomolecular Engineering; Tulane University; New Orleans LA 70118
| |
Collapse
|
7
|
Geithe C, Protze J, Kreuchwig F, Krause G, Krautwurst D. Structural determinants of a conserved enantiomer-selective carvone binding pocket in the human odorant receptor OR1A1. Cell Mol Life Sci 2017; 74:4209-4229. [PMID: 28656349 PMCID: PMC11107518 DOI: 10.1007/s00018-017-2576-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/29/2017] [Accepted: 06/16/2017] [Indexed: 12/17/2022]
Abstract
Chirality is a common phenomenon within odorants. Most pairs of enantiomers show only moderate differences in odor quality. One example for enantiomers that are easily discriminated by their odor quality is the carvones: humans significantly distinguish between the spearmint-like (R)-(-)-carvone and caraway-like (S)-(+)-carvone enantiomers. Moreover, for the (R)-(-)-carvone, an anosmia is observed in about 8% of the population, suggesting enantioselective odorant receptors (ORs). With only about 15% de-orphaned human ORs, the lack of OR crystal structures, and few comprehensive studies combining in silico and experimental approaches to elucidate structure-function relations of ORs, knowledge on cognate odorant/OR interactions is still sparse. An adjusted homology modeling approach considering OR-specific proline-caused conformations, odorant docking studies, single-nucleotide polymorphism (SNP) analysis, site-directed mutagenesis, and subsequent functional studies with recombinant ORs in a cell-based, real-time luminescence assay revealed 11 amino acid positions to constitute an enantioselective binding pocket necessary for a carvone function in human OR1A1 and murine Olfr43, respectively. Here, we identified enantioselective molecular determinants in both ORs that discriminate between minty and caraway odor. Comparison with orthologs from 36 mammalian species demonstrated a hominid-specific carvone binding pocket with about 100% conservation. Moreover, we identified loss-of-function SNPs associated with the carvone binding pocket of OR1A1. Given carvone enantiomer-specific receptor activation patterns including OR1A1, our data suggest OR1A1 as a candidate receptor for constituting a carvone enantioselective phenotype, which may help to explain mechanisms underlying a (R)-(-)-carvone-specific anosmia in humans.
Collapse
Affiliation(s)
- Christiane Geithe
- Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institut (DFA), Freising, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Franziska Kreuchwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Dietmar Krautwurst
- Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institut (DFA), Freising, Germany.
| |
Collapse
|
8
|
Bartuzi D, Kaczor AA, Matosiuk D. Signaling within Allosteric Machines: Signal Transmission Pathways Inside G Protein-Coupled Receptors. Molecules 2017; 22:molecules22071188. [PMID: 28714871 PMCID: PMC6152049 DOI: 10.3390/molecules22071188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022] Open
Abstract
In recent years, our understanding of function of G protein-coupled receptors (GPCRs) has changed from a picture of simple signal relays, transmitting only a particular signal to a particular G protein heterotrimer, to versatile machines, capable of various responses to different stimuli and being modulated by various factors. Some recent reports provide not only the data on ligands/modulators and resultant signals induced by them, but also deeper insights into exact pathways of signal migration and mechanisms of signal transmission through receptor structure. Combination of these computational and experimental data sheds more light on underlying mechanisms of signal transmission and signaling bias in GPCRs. In this review we focus on available clues on allosteric pathways responsible for complex signal processing within GPCRs structures, with particular emphasis on linking compatible in silico- and in vitro-derived data on the most probable allosteric connections.
Collapse
Affiliation(s)
- Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, 4A Chodźki Str., Lublin PL20093, Poland.
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, 4A Chodźki Str., Lublin PL20093, Poland.
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, 4A Chodźki Str., Lublin PL20093, Poland.
| |
Collapse
|
9
|
Light-Driven Processes Control Both Rhodopsin Maturation and Recycling in Mosquito Photoreceptors. J Neurosci 2016; 36:11051-11058. [PMID: 27798185 DOI: 10.1523/jneurosci.1754-16.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/07/2016] [Indexed: 11/21/2022] Open
Abstract
Many invertebrates carry out a daily cycle of shedding and rebuilding of the photoreceptor's photosensitive rhabdomeric membranes. The mosquito Aedes aegypti shows a robust response, losing nearly all Aaop1 rhodopsin from the rhabdomeric membranes during the shedding process at dawn. Here, we made use of Aaop1 antibodies capable of distinguishing newly synthesized, glycosylated rhodopsin from mature nonglycosylated rhodopsin to characterize the fate of Aaop1 during the shedding and rebuilding processes. The rhabdomeric rhodopsin is moved into large cytoplasmic vesicles at dawn and is subsequently degraded during the standard 12 h daytime period. The endocytosed rhodopsin is trafficked back to the photosensitive membranes if animals are shifted back to dark conditions during the morning hours. During the daytime period, small vesicles containing newly synthesized and glycosylated Aaop1 rhodopsin accumulate within the cytoplasm. At dusk, these vesicles are lost as the newly synthesized Aaop1 is converted to the nonglycosylated form and deposited in the rhabdomeres. We demonstrate that light acts though a novel signaling pathway to block rhodopsin maturation, thus inhibiting the deglycosylation and rhabdomeric targeting of newly synthesized Aaop1 rhodopsin. Therefore, light controls two cellular processes responsible for the daily renewal of rhodopsin: rhodopsin endocytosis at dawn and inhibition of rhodopsin maturation until dusk. SIGNIFICANCE STATEMENT Organisms use multiple strategies to maximize visual capabilities in different light conditions. Many invertebrates show a daily cycle of shedding the photoreceptor's rhabdomeric membranes at dawn and rebuilding these during the following night. We show here that the Aedes aegypti mosquito possesses two distinct light-driven cellular signaling processes for modulating rhodopsin content during this cycle. One of these, endocytosis of rhabdomeric rhodopsin, has been described previously. The second, a light-activated cellular pathway acting to inhibit the anterograde movement of newly synthesized rhodopsin, is revealed here for the first time. The discovery of this cellular signaling pathway controlling a G-protein-coupled receptor is of broad interest due to the prominent role of this receptor family across all areas of neuroscience.
Collapse
|
10
|
Topogenesis and cell surface trafficking of GPR34 are facilitated by positive-inside rule that effects through a tri-basic motif in the first intracellular loop. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1534-51. [PMID: 27086875 DOI: 10.1016/j.bbamcr.2016.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 11/21/2022]
Abstract
Protein folding, topogenesis and intracellular targeting of G protein-coupled receptors (GPCRs) must be precisely coordinated to ensure correct receptor localization. To elucidate how different steps of GPCR biosynthesis work together, we investigated the process of membrane topology determination and how it relates to the acquisition of cell surface trafficking competence in human GPR34. By monitoring a fused FLAG-tag and a conformation-sensitive native epitope during the expression of GPR34 mutant panel, a tri-basic motif in the first intracellular loop was identified as the key topogenic signal that dictates the orientation of transmembrane domain-1 (TM1). Charge disruption of the motif perturbed topogenic processes and resulted in the conformational epitope loss, post-translational processing alteration, and trafficking arrest in the Golgi. The placement of a cleavable N-terminal signal sequence as a surrogate topogenic determinant overcame the effects of tri-basic motif mutations and rectified the TM1 orientation; thereby restored the conformational epitope, post-translational modifications, and cell surface trafficking altogether. Progressive N-tail truncation and site-directed mutagenesis revealed that a proline-rich segment of the N-tail and all four cysteines individually located in the four separate extracellular regions must simultaneously reside in the ER lumen to muster the conformational epitope. Oxidation of all four cysteines was necessary for the epitope formation, but the cysteine residues themselves were not required for the trafficking event. The underlying biochemical properties of the conformational epitope was therefore the key to understand mechanistic processes propelled by positive-inside rule that simultaneously regulate the topogenesis and intracellular trafficking of GPR34.
Collapse
|