1
|
Liu H, Ren Q, Gong M, Zuo F, Li Q, Huo D, Yuan Y, Zhang Y, Kong Y, Liu X, Lu C, Wu X. Enforced activation of the CREB/KDM2B axis prevents alcohol-induced embryonic developmental delay. Cell Rep 2024; 43:115075. [PMID: 39661511 DOI: 10.1016/j.celrep.2024.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
Unintentional, early pregnancy alcohol consumption affects embryonic development. During the peri-implantation stage, coinciding with the transition from naive to primed pluripotency, the long isoform of KDM2B (KDM2BLF) underlies the de novo establishment of polycomb repressive complex (PRC) functions at promoters after fertilization. However, it remains unclear whether and how ethanol exposure affects this spatiotemporal chromatin setting. Here, we show that exposing peri-implantation mouse embryos to ethanol leads to impaired post-implantation development, mirrored by the delayed exit of naive pluripotency in acetaldehyde-treated embryonic stem cells. Remarkably, these abnormalities are linked to inadequate KDM2BLF expression and compromised deposition of PRC marks, which arise from cAMP response element-binding protein (CREB) inactivation. Accordingly, pharmacological activation of CREB effectively restores pluripotency transition partly dependent on KDM2BLF in vitro and ameliorates post-implantation embryonic defects in vivo. Therefore, our study highlights the pivotal role of the CREB/KDM2B axis in chromatin configuration and developmental programming, proposing potential preventive strategies against ethanol exposure-induced detrimental effects.
Collapse
Affiliation(s)
- Hang Liu
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Qiyu Ren
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100081, China
| | - Meihan Gong
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Feifei Zuo
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Dawei Huo
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Liangzhu Laboratory, Institute of Hematology, Zhejiang University, Hangzhou 311113, China
| | - Ye Yuan
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Yutong Zhang
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100081, China
| | - Yu Kong
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin 300450, China
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100081, China.
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road 22, Tianjin 300070, China; Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin 300450, China.
| |
Collapse
|
2
|
Das U, Thomas JD, Tarale P, Soja J, Inkelis S, Chambers C, Sarkar DK. Altered circadian expression of clock genes and clock-regulatory epigenetic modifiers in saliva of children with fetal alcohol spectrum disorders. Sci Rep 2024; 14:19886. [PMID: 39191924 DOI: 10.1038/s41598-024-71023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
Prenatal alcohol-exposed (AE) infants and children often demonstrate disrupted sleep patterns, including more frequent awakenings, reduced total sleep time, and more night-to-night sleep variability. Despite the strong connection between sleep patterns and circadian rhythmicity, relatively little is known about circadian rhythm disruptions in individuals with AE. Recently, several reports demonstrated that evaluating the expression patterns of human clock genes in biological fluids could reveal an individual's circadian phenotype. Human saliva offers an emerging and easily available physiological sample that can be collected non-invasively for core-clock gene transcript analyses. We compared the expression patterns of core-clock genes and their regulatory genes in salivary samples of children aged 6-10 years-old with and without AE during the light cycle between ZT0-ZT11. We isolated the RNA from the samples and measured the expression patterns of core clock genes and clock regulating genes using the human specific primers with quantitative real-time PCR. Analysis of core clock genes expression levels in saliva samples from AE children indicates significantly altered levels in expression of core-clock BMAL1, CLOCK, PER1-3 and CRY1,2, as compared to those in age-matched control children. We did not find any sex difference in levels of clock genes in AE and control groups. Cosinor analysis was used to evaluate the rhythmic pattern of these clock genes, which identified circadian patterns in the levels of core clock genes in the control group but absent in the AE group. The gene expression profile of a salivary circadian biomarker ARRB1 was rhythmic in saliva of control children but was arhythmic in AE children. Altered expression patterns were also observed in clock regulatory genes: NPAS2, NFL3, NR1D1, DEC1, DEC2, and DBP, as well as chromatin modifiers: MLL1, P300, SIRT1, EZH2, HDAC3, and ZR1D1, known to maintain rhythmic expression of core-clock genes. Overall, these findings provide the first evidence that AE disturbs the circadian patten expression of core clock genes and clock-regulatory chromatin modifiers in saliva.
Collapse
Affiliation(s)
- Ujjal Das
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Farm Lane, New Brunswick, NJ, USA
| | - Jennifer D Thomas
- Department of Psychology, College of Sciences, San Diego State University, San Diego, CA, USA
| | - Prashant Tarale
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Farm Lane, New Brunswick, NJ, USA
| | - Jackie Soja
- Department of Psychology, College of Sciences, San Diego State University, San Diego, CA, USA
| | - Sarah Inkelis
- Department of Psychology, College of Sciences, San Diego State University, San Diego, CA, USA
| | - Christina Chambers
- Department of Pediatrics at University of California at San Diego, and Rady Children's Hospital, San Diego, CA, USA
| | - Dipak K Sarkar
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Farm Lane, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Terracina S, Tarani L, Ceccanti M, Vitali M, Francati S, Lucarelli M, Venditti S, Verdone L, Ferraguti G, Fiore M. The Impact of Oxidative Stress on the Epigenetics of Fetal Alcohol Spectrum Disorders. Antioxidants (Basel) 2024; 13:410. [PMID: 38671857 PMCID: PMC11047541 DOI: 10.3390/antiox13040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal alcohol spectrum disorders (FASD) represent a continuum of lifelong impairments resulting from prenatal exposure to alcohol, with significant global impact. The "spectrum" of disorders includes a continuum of physical, cognitive, behavioral, and developmental impairments which can have profound and lasting effects on individuals throughout their lives, impacting their health, social interactions, psychological well-being, and every aspect of their lives. This narrative paper explores the intricate relationship between oxidative stress and epigenetics in FASD pathogenesis and its therapeutic implications. Oxidative stress, induced by alcohol metabolism, disrupts cellular components, particularly in the vulnerable fetal brain, leading to aberrant development. Furthermore, oxidative stress is implicated in epigenetic changes, including alterations in DNA methylation, histone modifications, and microRNA expression, which influence gene regulation in FASD patients. Moreover, mitochondrial dysfunction and neuroinflammation contribute to epigenetic changes associated with FASD. Understanding these mechanisms holds promise for targeted therapeutic interventions. This includes antioxidant supplementation and lifestyle modifications to mitigate FASD-related impairments. While preclinical studies show promise, further clinical trials are needed to validate these interventions' efficacy in improving clinical outcomes for individuals affected by FASD. This comprehensive understanding of the role of oxidative stress in epigenetics in FASD underscores the importance of multidisciplinary approaches for diagnosis, management, and prevention strategies. Continued research in this field is crucial for advancing our knowledge and developing effective interventions to address this significant public health concern.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, 00185 Rome, Italy;
| | | | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
- Pasteur Institute Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Sabrina Venditti
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185 Rome, Italy
| | - Loredana Verdone
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy (M.L.)
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
4
|
Gillis RF, Palmour RM. miRNA Expression Analysis of the Hippocampus in a Vervet Monkey Model of Fetal Alcohol Spectrum Disorder Reveals a Potential Role in Global mRNA Downregulation. Brain Sci 2023; 13:934. [PMID: 37371413 DOI: 10.3390/brainsci13060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNAs (miRNAs) are short-length non-protein-coding RNA sequences that post-transcriptionally regulate gene expression in a broad range of cellular processes including neuro- development and have previously been implicated in fetal alcohol spectrum disorders (FASD). In this study, we use our vervet monkey model of FASD to follow up on a prior multivariate (developmental age × ethanol exposure) mRNA analysis (GSE173516) to explore the possibility that the global mRNA downregulation we observed in that study could be related to miRNA expression and function. We report here a predominance of upregulated and differentially expressed miRNAs. Further, the 24 most upregulated miRNAs were significantly correlated with their predicted targets (Target Scan 7.2). We then explored the relationship between these 24 miRNAs and the fold changes observed in their paired mRNA targets using two prediction platforms (Target Scan 7.2 and miRwalk 3.0). Compared to a list of non-differentially expressed miRNAs from our dataset, the 24 upregulated and differentially expressed miRNAs had a greater impact on the fold changes of their corresponding mRNA targets across both platforms. Taken together, this evidence raises the possibility that ethanol-induced upregulation of specific miRNAs might contribute functionally to the general downregulation of mRNAs observed by multiple investigators in response to prenatal alcohol exposure.
Collapse
Affiliation(s)
- Rob F Gillis
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Roberta M Palmour
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Behavioural Science Foundation, Mansion KN 0101, Saint Kitts and Nevis
| |
Collapse
|
5
|
Derme M, Piccioni MG, Brunelli R, Crognale A, Denotti M, Ciolli P, Scomparin D, Tarani L, Paparella R, Terrin G, Di Chiara M, Mattia A, Nicotera S, Salomone A, Ceccanti M, Messina MP, Maida NL, Ferraguti G, Petrella C, Fiore M. Oxidative Stress in a Mother Consuming Alcohol during Pregnancy and in Her Newborn: A Case Report. Antioxidants (Basel) 2023; 12:1216. [PMID: 37371946 DOI: 10.3390/antiox12061216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a set of conditions resulting from prenatal alcohol exposure (PAE). FASD is estimated to affect between 2% and 5% of people in the United States and Western Europe. The exact teratogenic mechanism of alcohol on fetal development is still unclear. Ethanol (EtOH) contributes to the malfunctioning of the neurological system in children exposed in utero by decreasing glutathione peroxidase action, with an increase in the production of reactive oxygen species (ROS), which causes oxidative stress. We report a case of a mother with declared alcohol abuse and cigarette smoking during pregnancy. By analyzing the ethyl glucuronide (EtG, a metabolite of alcohol) and the nicotine/cotinine in the mother's hair and meconium, we confirmed the alcohol and smoking abuse magnitude. We also found that the mother during pregnancy was a cocaine abuser. As a result, her newborn was diagnosed with fetal alcohol syndrome (FAS). At the time of the delivery, the mother, but not the newborn, had an elevation in oxidative stress. However, the infant, a few days later, displayed marked potentiation in oxidative stress. The clinical complexity of the events involving the infant was presented and discussed, underlining also the importance that for cases of FASD, it is crucial to have more intensive hospital monitoring and controls during the initial days.
Collapse
Affiliation(s)
- Martina Derme
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Roberto Brunelli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Alba Crognale
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Marika Denotti
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Paola Ciolli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Debora Scomparin
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Roberto Paparella
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Gianluca Terrin
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Maria Di Chiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Alessandro Mattia
- Dipartimento Della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, Ministero dell'Interno, 00185 Roma, Italy
| | - Simona Nicotera
- Dipartimento Della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, Ministero dell'Interno, 00185 Roma, Italy
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Alberto Salomone
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento Dell'alcolismo e le sue Complicanze, 00185 Rome, Italy
| | - Marisa Patrizia Messina
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Nunzia La Maida
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|