1
|
Guo Q, Xie M, Wang X, Han C, Gao G, Wang QN, Li J, Duan L, Bao X. Multi-omic serum analysis reveals ferroptosis pathways and diagnostic molecular signatures associated with Moyamoya diseases. J Neuroinflammation 2025; 22:123. [PMID: 40301939 PMCID: PMC12042548 DOI: 10.1186/s12974-025-03446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease in humans. Although early revascularization can improve symptoms, it cannot reverse the progression of the disease. The current diagnosis still relies on traditional a Digital Subtraction Angiography (DSA) examination, which is invasive and expensive, leading to delayed diagnosis and affecting treatment timing and patient prognosis. The ability to diagnose MMD early and develop personalized treatment plans can significantly improve the prognosis of patients. Here, we have introduced the research on MMD biomarkers. By integrating proteomics and metabolomics data, we have successfully identified over 1700 features from more than 60 serum samples collected at the onset of symptoms in MMD patients. We use multiple computational strategies to interpret complex information in serum, providing a comprehensive perspective for early diagnosis of MMD. Diagnostic ability of our biomarker is significantly better than previous studies, especially when used in combination. In the study of molecular mechanisms, we found that the ferroptosis pathway was significant disruption in MMD patients, which was also confirmed by transcriptomics data. Finally, we validated the metabolites and proteins associated with ferroptosis pathways, as well as the biomarkers screened by machine learning, using another independent MMD cohort. Our research provides important clues for the diagnosis of MMD, and this assay can identify MMD early, thereby promoting stronger monitoring and intervention.
Collapse
Affiliation(s)
- Qingbao Guo
- Department of Neurosurgery, XI'AN NO.9 HOSPITAL, Shaanxi, 710054, China.
| | - Manli Xie
- Department of Occupational Diseases, Xi'an Central Hospital, Shaanxi, 710003, China
| | - Xiaopeng Wang
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Cong Han
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China
| | - Gan Gao
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Qian-Nan Wang
- Department of Neurosurgery, the Eighth Medical Centre, Chinese PLA General Hospital, Beijing, 100089, China
| | - Jingjie Li
- Medical School of Chinese PLA, Beijing, 100039, China
| | - Lian Duan
- Department of Neurosurgery, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiangyang Bao
- Department of Neurosurgery, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
2
|
Liu Y, Ge X, Wu X, Guan L. Enhanced Corneal Repair with Hyaluronic Acid/Proanthocyanidins Nanoparticles. ACS OMEGA 2025; 10:2222-2230. [PMID: 39866601 PMCID: PMC11755175 DOI: 10.1021/acsomega.4c09159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
This study investigates the therapeutic potential of hyaluronic acid/proanthocyanidin (HA/PAC) nanoparticles in treating alkali-induced corneal burns. Alkali burns are common ocular emergencies that can lead to severe vision impairment if not promptly and properly treated. The low water solubility of proanthocyanidins (PACs), which are potent antioxidant and anti-inflammatory agents, limits their bioavailability and therapeutic efficacy. To overcome this, hyaluronic acid (HA) was utilized as a carrier to form HA/PAC nanoparticles, enhancing PAC's solubility and bioavailability. The HA/PAC nanoparticles were characterized for morphology, granulometric distribution, hemolysis, and cytotoxicity, demonstrating high blood compatibility and noncytotoxicity. The in vitro antioxidant and anti-inflammatory capacities of HA/PAC were evaluated, showing enhanced activity compared to PAC alone. In vivo studies on C57 mice confirmed the accelerated healing of corneal injuries and reduced corneal opacity with HA/PAC treatment. Histopathological analysis and cytokine quantification further supported the anti-inflammatory and proregenerative effects of HA/PAC, suggesting its potential as an effective treatment for corneal alkali burns.
Collapse
Affiliation(s)
- Yalu Liu
- The
Affiliated Xuzhou Municipal
Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Department
of Ophthalmology, Xuzhou First People’s
Hospital, Xuzhou 221002, China
- Eye
Disease Prevention and Treatment Institute of Xuzhou, Xuzhou 221002, China
| | - Xing Ge
- The
Affiliated Xuzhou Municipal
Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Department
of Ophthalmology, Xuzhou First People’s
Hospital, Xuzhou 221002, China
- Eye
Disease Prevention and Treatment Institute of Xuzhou, Xuzhou 221002, China
| | - Xiaochen Wu
- Department
of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lina Guan
- The
Affiliated Xuzhou Municipal
Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Department
of Ophthalmology, Xuzhou First People’s
Hospital, Xuzhou 221002, China
- Eye
Disease Prevention and Treatment Institute of Xuzhou, Xuzhou 221002, China
| |
Collapse
|
3
|
Valdés-Arias D, Locatelli EVT, Sepulveda-Beltran PA, Mangwani-Mordani S, Navia JC, Galor A. Recent United States Developments in the Pharmacological Treatment of Dry Eye Disease. Drugs 2024; 84:549-563. [PMID: 38652355 PMCID: PMC11189955 DOI: 10.1007/s40265-024-02031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Dry eye disease (DED) can arise from a variety of factors, including inflammation, meibomian gland dysfunction (MGD), and neurosensory abnormalities. Individuals with DED may exhibit a range of clinical signs, including tear instability, reduced tear production, and epithelial disruption, that are driven by different pathophysiological contributors. Those affected often report a spectrum of pain and visual symptoms that can impact physical and mental aspects of health, placing an overall burden on an individual's well-being. This cumulative impact of DED on an individual's activities and on society underscores the importance of finding diverse and effective management strategies. Such management strategies necessitate an understanding of the underlying pathophysiological mechanisms that contribute to DED in the individual patient. Presently, the majority of approved therapies for DED address T cell-mediated inflammation, with their tolerability and effectiveness varying across different studies. However, there is an emergence of treatments that target additional aspects of the disease, including novel inflammatory pathways, abnormalities of the eyelid margin, and neuronal function. These developments may allow for a more nuanced and precise management strategy for DED. This review highlights the recent pharmacological advancements in DED therapy in the United States. It discusses the mechanisms of action of these new treatments, presents key findings from clinical trials, discusses their current stage of development, and explores their potential applicability to different sub-types of DED. By providing a comprehensive overview of products in development, this review aims to contribute valuable insights to the ongoing efforts in enhancing the therapeutic options available to individuals suffering from DED.
Collapse
Affiliation(s)
- David Valdés-Arias
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
| | - Elyana V T Locatelli
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
- Surgical Services, Miami Veterans Affairs Medical Center, 1201 Northwest 16th Street, Miami, FL, 33125, USA
| | | | | | - Juan Carlos Navia
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, 900 NW 17th St, Miami, FL, 33136, USA.
- Surgical Services, Miami Veterans Affairs Medical Center, 1201 Northwest 16th Street, Miami, FL, 33125, USA.
| |
Collapse
|
4
|
Buonfiglio F, Wasielica-Poslednik J, Pfeiffer N, Gericke A. Diabetic Keratopathy: Redox Signaling Pathways and Therapeutic Prospects. Antioxidants (Basel) 2024; 13:120. [PMID: 38247544 PMCID: PMC10812573 DOI: 10.3390/antiox13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Diabetes mellitus, the most prevalent endocrine disorder, not only impacts the retina but also significantly involves the ocular surface. Diabetes contributes to the development of dry eye disease and induces morphological and functional corneal alterations, particularly affecting nerves and epithelial cells. These changes manifest as epithelial defects, reduced sensitivity, and delayed wound healing, collectively encapsulated in the context of diabetic keratopathy. In advanced stages of this condition, the progression to corneal ulcers and scarring further unfolds, eventually leading to corneal opacities. This critical complication hampers vision and carries the potential for irreversible visual loss. The primary objective of this review article is to offer a comprehensive overview of the pathomechanisms underlying diabetic keratopathy. Emphasis is placed on exploring the redox molecular pathways responsible for the aberrant structural changes observed in the cornea and tear film during diabetes. Additionally, we provide insights into the latest experimental findings concerning potential treatments targeting oxidative stress. This endeavor aims to enhance our understanding of the intricate interplay between diabetes and ocular complications, offering valuable perspectives for future therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| |
Collapse
|
5
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
6
|
Zhang T, Xiang Z, Liu L, Ma Z, Panteleev M, Ataullakhanov FI, Shi Q. Bioinspired Platelet-Anchored Electrospun Meshes for Tight Inflammation Manipulation and Chronic Diabetic Wound Healing. Macromol Biosci 2023; 23:e2300036. [PMID: 37259884 DOI: 10.1002/mabi.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Indexed: 06/02/2023]
Abstract
Tight manipulation of the initial leukocytes infiltration and macrophages plasticity toward the M2 phenotype remain a challenge for diabetic wound healing. Inspired by the platelet function and platelet-macrophage interaction, a platelet-anchored polylactic acid-b-polyethylene glycol-b-polylactic acid (PLA-PEG-PLA) electrospun dressing is developed for inflammatory modulation and diabetic wounds healing acceleration. PLA-PEG-PLA electrospun meshes encapsulated with thymosin β4 (Tβ4) and CaCl2 is fabricated with electrospinning, followed by immersion of electrospun mesh in platelet-rich plasma to firmly anchor the platelets. It is demonstrated that the anchored platelets on electrospun mesh can enhance the initial macrophage recruitment and control the Tβ4 release from electrospun meshes to facilitate the macrophages polarization to the M2 phenotype. The inflammatory regulation promotes the expression of vascular endothelial growth factor and the migration of vascular endothelial cells for angiogenesis, resulting in accelerated diabetic wounds healing. Therefore, this work paved a new way to design platelet-inspired electrospun meshes for inflammation manipulation and diabetic wound healing.
Collapse
Affiliation(s)
- Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Mikhail Panteleev
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| | - Fazly I Ataullakhanov
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Sun CC, Lee SY, Chen LH, Lai CH, Shen ZQ, Chen NN, Lai YS, Tung CY, Tzeng TY, Chiu WT, Tsai TF. Targeting Ca 2+-dependent pathways to promote corneal epithelial wound healing induced by CISD2 deficiency. Cell Signal 2023:110755. [PMID: 37315750 DOI: 10.1016/j.cellsig.2023.110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Chronic epithelial defects of the cornea, which are usually associated with severe dry eye disease, diabetes mellitus, chemical injuries or neurotrophic keratitis, as well as aging, are an unmet clinical need. CDGSH Iron Sulfur Domain 2 (CISD2) is the causative gene for Wolfram syndrome 2 (WFS2; MIM 604928). CISD2 protein is significantly decreased in the corneal epithelium of patients with various corneal epithelial diseases. Here we summarize the most updated publications and discuss the central role of CISD2 in corneal repair, as well as providing new results describing how targeting Ca2+-dependent pathways can improve corneal epithelial regeneration. This review mainly focuses on the following topics. Firstly, an overview of the cornea and of corneal epithelial wound healing. The key players involved in this process, such as Ca2+, various growth factors/cytokines, extracellular matrix remodeling, focal adhesions and proteinases, are briefly discussed. Secondly, it is well known that CISD2 plays an essential role in corneal epithelial regeneration via the maintenance of intracellular Ca2+ homeostasis. CISD2 deficiency dysregulates cytosolic Ca2+, impairs cell proliferation and migration, decreases mitochondrial function and increases oxidative stress. As a consequence, these abnormalities bring about poor epithelial wound healing and this, in turn, will lead to persistent corneal regeneration and limbal progenitor cell exhaustion. Thirdly, CISD2 deficiency induces three distinct Ca2+-dependent pathways, namely the calcineurin, CaMKII and PKCα signaling pathways. Intriguingly, inhibition of each of the Ca2+-dependent pathways seems to reverse cytosolic Ca2+ dysregulation and restore cell migration during corneal wound healing. Notably, cyclosporin, an inhibitor of calcineurin, appears to have a dual effect on both inflammatory and corneal epithelial cells. Finally, corneal transcriptomic analyses have revealed that there are six major functional groupings of differential expression genes when CISD2 deficiency is present: (1) inflammation and cell death; (2) cell proliferation, migration and differentiation; (3) cell adhesion, junction and interaction; (4) Ca2+ homeostasis; (5) wound healing and extracellular matrix; and (6) oxidative stress and aging. This review highlights the importance of CISD2 in corneal epithelial regeneration and identifies the potential of repurposing venerable FDA-approved drugs that target Ca2+-dependent pathways for new uses, namely treating chronic epithelial defects of the cornea.
Collapse
Affiliation(s)
- Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 204, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Shao-Yun Lee
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Li-Hsien Chen
- Department of Pharmacology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Hui Lai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Nan-Ni Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Chien-Yi Tung
- Genomics Center for Clinical and Biotechnological Applications, Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Tsai-Yu Tzeng
- Genomics Center for Clinical and Biotechnological Applications, Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan; Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
| |
Collapse
|
8
|
Sosne G, Berger EA. Thymosin beta 4: A potential novel adjunct treatment for bacterial keratitis. Int Immunopharmacol 2023; 118:109953. [PMID: 37018981 PMCID: PMC10403815 DOI: 10.1016/j.intimp.2023.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 04/05/2023]
Abstract
Microbial keratitis is a rapidly progressing, visually debilitating infection of the cornea that can lead to corneal scarring, endophthalmitis, and perforation. Corneal opacification or scarring, a complication of keratitis, is among the leading causes of legal blindness worldwide, second to cataracts.Pseudomonas aeruginosaandStaphylococcus aureusare the two bacteria most commonly associated with this type of infection. Risk factors include patients who are immunocompromised, those who have undergone refractive corneal surgery, and those with prior penetrating keratoplasty, as well as extended wear contact lens users. Current treatment of microbial keratitis primarily addresses the pathogen using antibiotics. Bacterial clearance is of utmost importance yet does not guarantee good visual outcome. Clinicians are often left to rely upon the eye's innate ability to heal itself, as there are limited options beyond antibiotics and corticosteroids for treating patients with corneal infection. Beyond antibiotics, agents in use, such as lubricating ointments, artificial tears, and anti-inflammatory drops, do not fully accommodate clinical needs and have many potential harmful complications. To this end, treatments are needed that both regulate the inflammatory response and promote corneal wound healing to resolve visual disturbances and improve quality of life. Thymosin beta 4 is a small, naturally occurring 43-amino-acid protein that promotes wound healing and reduces corneal inflammation and is currently in Phase 3 human clinical trials for dry eye disease. Our previous work has shown that topical Tβ4 as an adjunct to ciprofloxacin treatment reduces inflammatory mediators and inflammatory cell infiltrates (neutrophils/PMN and macrophages) while enhancing bacterial killing and wound healing pathway activation in an experimental model ofP. aeruginosa-induced keratitis. Adjunctive thymosin beta 4 treatment holds novel therapeutic potential to regulate and, optimally, resolve disease pathogenesis in the cornea and perhaps other infectious and immune-based inflammatory disease. We plan to establish the importance of thymosin beta 4 as a therapeutic agent in conjunction with antibiotics with high impact for immediate clinical development.
Collapse
Affiliation(s)
- Gabriel Sosne
- Department of Ophthalmology, Visual & Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI 48201, USA.
| | - Elizabeth A Berger
- Department of Ophthalmology, Visual & Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
9
|
Bako P, Lippai B, Nagy J, Kramer S, Kaszas B, Tornoczki T, Bock-Marquette I. Thymosin beta-4 - A potential tool in healing middle ear lesions in adult mammals. Int Immunopharmacol 2023; 116:109830. [PMID: 38706788 PMCID: PMC11068331 DOI: 10.1016/j.intimp.2023.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Acute tympanic membrane perforations primarily occur due to injury or infection in humans. In acute cases, nearly 80-94 % of the perforations heal spontaneously. In chronic cases, non-surgical treatment becomes significantly limited, and the perforation can be restored only by myringoplasty. In addition to classical grafts such as the fascia or cartilage, promising results have been reported with various biological materials including silk or acellular collagen. However, despite of all the efforts, healing remains insufficient. Consequentially, a need for substances which actively promote tympanic cell migration and proliferation is deemed essential. In our study, we utilized Thymosin beta-4 (TB4), a 43aa peptide possessing many regenerative properties in various organ systems. Our aim was to reveal the impact of externally administered TB4 regarding impairments of the middle ear, particularly the tympanic membrane. We harvested tympanic membranes from adult mice and treated these with TB4 or PBS on both collagen gel matrixes and in the form of floating, ex vivo explants. Cell migration and proliferation was measured, while immunocytochemical analyses were performed to determine cell type and the nature of the targeted molecules. We discovered the peptide affects the behavior of epidermal and epithelial cells of the tympanic membrane in vitro. Moreover, as our initial results imply, it is not the differentiated, yet most likely the local epidermal progenitor cells which are the primary targets of the molecule. Our present results unveil a new, thus far undiscovered field regarding clinical utilization for TB4 in the future.
Collapse
Affiliation(s)
- Peter Bako
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pecs, Medical School, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Balint Lippai
- Department of Biochemistry and Medical Chemistry University of Pecs, Medical School, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Jazmin Nagy
- Szentagothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Sofie Kramer
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pecs, Medical School, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| | - Balint Kaszas
- Department of Pathology, University of Pecs, Medical School, H-7624 Pecs, Hungary
| | - Tamas Tornoczki
- Department of Pathology, University of Pecs, Medical School, H-7624 Pecs, Hungary
| | - Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry University of Pecs, Medical School, H-7624 Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, H-7624 Pecs, Hungary
| |
Collapse
|
10
|
0.1% RGN-259 (Thymosin ß4) Ophthalmic Solution Promotes Healing and Improves Comfort in Neurotrophic Keratopathy Patients in a Randomized, Placebo-Controlled, Double-Masked Phase III Clinical Trial. Int J Mol Sci 2022; 24:ijms24010554. [PMID: 36613994 PMCID: PMC9820614 DOI: 10.3390/ijms24010554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022] Open
Abstract
We determined the efficacy and safety of 0.1% RGN-259 ophthalmic solution (containing the regenerative protein thymosin ß4) in promoting the healing of persistent epithelial defects in patients with Stages 2 and 3 neurotrophic keratopathy. Complete healing occurred after 4 weeks in 6 of the 10 RGN-259-treated subjects and in 1 of the 8 placebo-treated subjects (p = 0.0656), indicating a strong efficacy trend. Additional efficacy was seen in the significant healing (p = 0.0359) with no recurrent defects observed at day 43, two weeks after cessation of treatment, while the one healed placebo-treated subject at day 28 suffered a recurrence at day 43. The Mackie classification disease stage improved in the RGN-259-treated group at Days 29, 36, and 43 (p = 0.0818, 0.0625, and 0.0467, respectively). Time to complete healing also showed a trend towards efficacy (p = 0.0829, Kaplan-Meier) with 0.1% RGN-259. RGN-259-treated subjects had significant improvements at multiple time points in ocular discomfort, foreign body sensation, and dryness which were not seen in the placebo group. No significant adverse effects were observed. In summary, the use of 0.1% RGN-259 promotes rapid healing of epithelial defects in neurotrophic keratopathy, improves ocular comfort, and is safe for treating this challenging population of patients.
Collapse
|
11
|
Shannon AH, Adelman SA, Hisey EA, Potnis SS, Rozo V, Yung MW, Li JY, Murphy CJ, Thomasy SM, Leonard BC. Antimicrobial Peptide Expression at the Ocular Surface and Their Therapeutic Use in the Treatment of Microbial Keratitis. Front Microbiol 2022; 13:857735. [PMID: 35722307 PMCID: PMC9201425 DOI: 10.3389/fmicb.2022.857735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial keratitis is a common cause of ocular pain and visual impairment worldwide. The ocular surface has a relatively paucicellular microbial community, mostly found in the conjunctiva, while the cornea would be considered relatively sterile. However, in patients with microbial keratitis, the cornea can be infected with multiple pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, and Fusarium sp. Treatment with topical antimicrobials serves as the standard of care for microbial keratitis, however, due to high rates of pathogen resistance to current antimicrobial medications, alternative therapeutic strategies must be developed. Multiple studies have characterized the expression and activity of antimicrobial peptides (AMPs), endogenous peptides with key antimicrobial and wound healing properties, on the ocular surface. Recent studies and clinical trials provide promise for the use of AMPs as therapeutic agents. This article reviews the repertoire of AMPs expressed at the ocular surface, how expression of these AMPs can be modulated, and the potential for harnessing the AMPs as potential therapeutics for patients with microbial keratitis.
Collapse
Affiliation(s)
- Allison H. Shannon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sara A. Adelman
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erin A. Hisey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sanskruti S. Potnis
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Vanessa Rozo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Madeline W. Yung
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jennifer Y. Li
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Zhou L, Guan J, Wang L, Li X, Pan Z. Germinal peptide eye drop promotes corneal epithelial and stromal defect healing in rabbit model. Semin Ophthalmol 2022; 37:643-650. [PMID: 35389769 DOI: 10.1080/08820538.2022.2053726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Corneal defect is a common disease in ophthalmology caused by trauma, inflammation, drug toxicity, or surgery. To investigate the effect of germinal peptide eye drop on corneal epithelial and stromal defects after lamellar keratectomy in rabbit model. METHODS Eighty-five male New Zealand white rabbits were divided into five groups: Germinal Peptide eye drop at three different concentration groups, normal saline (negative control group), recombinant human epidermal growth factor (rh-EGF) eye drop (positive control group). Corneal epithelial and stromal defects of around 150-200 μm in depth were created with an 8 mm diameter trephine in the center of the right eyes of all animals. RESULTS Germinal peptide eye drop with the concentration of 0.001%, 0.002%, and 0.004% and rh-EGF eye drop were more effective in promoting healing, reducing opacity, and edema during the process of corneal epithelial and stromal defect regeneration compared with 0.9% normal saline. No significant difference was observed among the three different doses of germinal peptide eye drop. Compared with the saline control group, the structures of the regenerated corneas were more orderly and less inflammatory cell infiltration was observed in the germinal peptide eye drop groups and the rh-EGF eye drop group. CONCLUSION Germinal peptide eye drop (0.001%, 0.002%, and 0.004%) can significantly stimulate the regeneration of corneal epithelia and stroma and reduce corneal opacity and edema. Dose dependency was not observed in the current study.
Collapse
Affiliation(s)
- Lijia Zhou
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, FI, China
| | - Jieying Guan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, FI, China
| | - Li Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, FI, China
| | - Xiaoyi Li
- Department of Medicine, Zhaoke (Guangzhou) Ophthalmology Pharmaceutical Ltd, Guangzhou, FI, China
| | - Zhiqiang Pan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, FI, China
| |
Collapse
|
13
|
Wang Y, Carion TW, Ebrahim AS, Sosne G, Berger EA. Adjunctive Thymosin Beta-4 Treatment Influences MΦ Effector Cell Function to Improve Disease Outcome in Pseudomonas aeruginosa-Induced Keratitis. Int J Mol Sci 2021; 22:ijms222011016. [PMID: 34681676 PMCID: PMC8537948 DOI: 10.3390/ijms222011016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Our previous work has shown that topical thymosin beta 4 (Tβ4) as an adjunct to ciprofloxacin treatment reduces inflammatory mediators and inflammatory cell infiltrates (neutrophils/PMN and macrophages/MΦ) while enhancing bacterial killing and wound healing pathway activation in an experimental model of P. aeruginosa-induced keratitis. This study aimed to mechanistically examine how Tβ4 influences MΦ function in particular, leading to reduced inflammation and enhanced host defense following P. aeruginosa-induced infection of the cornea. Flow cytometry was conducted to profile the phenotype of infiltrating MΦ after infection, while generation of reactive nitrogen species and markers of efferocytosis were detected to assess functional activity. In vitro studies were performed utilizing RAW 264.7 cells to verify and extend the in vivo findings. Tβ4 treatment decreases MΦ infiltration and regulates the activation state in response to infected corneas. MΦ functional data demonstrated that the adjunctive Tβ4 treatment group significantly downregulated reactive nitrogen species (RNS) production and efferocytotic activity. In addition, the in vitro studies showed that both Tβ4 alone and adjunctive Tβ4 treatment influenced MΦ cellular function following LPS stimulation. Collectively, these data provide further evidence that adjunctive Tβ4 + ciprofloxacin treatment offers a more efficacious option for treating bacterial keratitis. Not only does the adjunctive therapy address both the infectious pathogen and corneal wound healing response, but it also influences MΦ infiltration, activation, and function, as revealed by the current study.
Collapse
|
14
|
Current and future therapies for persistent corneal epithelial defects and neurotrophic keratopathy. Curr Opin Ophthalmol 2021; 32:262-267. [PMID: 33630785 DOI: 10.1097/icu.0000000000000749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The corneal epithelium is a crucial barrier against pathogens, and when disrupted in the setting of certain underlying risk factors such as neurotrophic keratopathy (NK), may result in persistent epithelial defects (PEDs) of the cornea. Management is challenging and may require a variety of different approaches ranging from conservative medical therapy to surgical intervention. The purpose of this review is to provide an update on current and potential future therapeutic options for PEDs and NK. RECENT FINDINGS Recent research has yielded promising results for numerous novel therapies aimed at treating PEDs. Many of these attempt to stimulate healing at the cellular level, via signaling of corneal epithelial differentiation, migration, and proliferation. Considerable advances have also been made regarding medical and surgical promotion of corneal re-innervation and restoration of corneal sensitivity to directly address the underlying NK condition. SUMMARY Together with the current well established therapeutic options available for PEDs and NK, growing research on newer alternatives suggest increasing potential for both more effective and more convenient therapies for these difficult situations.
Collapse
|
15
|
Giannaccare G, Pellegrini M, Bolognesi F, Fogagnolo P, Lupardi E, Allevi F, Bernabei F, Lozza A, Plazza C, Marchetti C, Scorcia V, Biglioli F. Spotlight on corneal neurotization. EXPERT REVIEW OF OPHTHALMOLOGY 2021. [DOI: 10.1080/17469899.2021.1895751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Marco Pellegrini
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria Di Bologna, University of Bologna, Bologna, Italy
| | - Federico Bolognesi
- Division of Oral and Maxillofacial Surgery, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Fogagnolo
- Eye Clinic, Head and Neck Department, ASST Santi Paolo E Carlo Hospital, University of Milan, Milan, Italy
| | - Enrico Lupardi
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria Di Bologna, University of Bologna, Bologna, Italy
| | - Fabiana Allevi
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo E Carlo Hospital, University of Milan, Milan, Italy
| | - Federico Bernabei
- Ophthalmology Unit, Azienda Ospedaliero-Universitaria Di Bologna, University of Bologna, Bologna, Italy
| | | | - Christian Plazza
- Department of Aviation Medicine, Italian Air Force, Milan, Italy
| | - Claudio Marchetti
- Division of Oral and Maxillofacial Surgery, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Federico Biglioli
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo E Carlo Hospital, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Gumus K. On the Horizon: Biologics and Nutrients for Neurotrophic Keratitis. Eye Contact Lens 2021; 47:154-156. [PMID: 33156130 DOI: 10.1097/icl.0000000000000757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
ABSTRACT Neurotrophic keratitis (NK), a potentially sight-threatening corneal disease, still does not have a specific treatment. The reduction or complete loss of corneal sensation, the most important factor in its pathogenesis, is one of the most important factors that complicate the treatment of corneal wound healing. In addition, the visual outcome may be adversely affected because of aggressive stromal fibrosis in severe NK cases. Basically, the current management of NK aims to accelerate wound healing and prevent the progression. However, new therapeutic agents, particularly developed depending on cell type-specific healing mechanisms are required for better visual outcomes. In recent years, several studies have started to use new promising areas of translational research, including gene therapy, stem cell therapy, miRNA, and bioengineering. Evidence has emerged that future treatment strategies for NK will be designed by the results of these studies. In this review, it is aimed to summarize scientific data of new treatment modalities for NK.
Collapse
Affiliation(s)
- Koray Gumus
- Ophthalmology, Memorial Ankara Hospital, Eye Clinic, Ankara, Turkey
| |
Collapse
|
17
|
Corneal Neurotization and Novel Medical Therapies for Neurotrophic Keratopathy. CURRENT OPHTHALMOLOGY REPORTS 2020. [DOI: 10.1007/s40135-020-00254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Purpose of Review
Neurotrophic keratopathy (NK) is a degenerative corneal disease characterized by decreased corneal sensibility and impaired corneal healing. In this article, we review surgical techniques for corneal neurotization (CN) and novel medical therapies for the treatment of NK.
Recent Findings
In recent decades, there has been a paradigm shift in the treatment strategies for NK. New minimally invasive direct and indirect CN approaches have demonstrated efficacy at improving best-corrected visual acuity and central corneal sensation while decreasing surgical morbidity. In addition, several targeted medical therapies, such as recombinant human nerve growth factor (rhNGF), regenerating agents (RGTA), and nicergoline, have shown promise in improving corneal epithelial healing. Of these options, cenegermin (Oxervate®, Dompé), a topical biologic medication, has emerged as an approved medical treatment for moderate to severe NK.
Summary
NK is a challenging condition caused by alterations in corneal nerves, leading to impairment in sensory and trophic function with subsequent breakdown of the cornea. Conventional therapy for NK depends on the severity of disease and focuses primarily on protecting the ocular surface. In recent years, numerous CN techniques and novel medical treatments have been developed that aim to restore proper corneal innervation and promote ocular surface healing. Further studies are needed to better understand the long-term efficacy of these treatment options, their target populations, and the potential synergistic efficacy of combined medical and surgical treatments.
Collapse
|
18
|
Guan J, Zhou L, Wang L, Li X, Pan Z. Germinal peptide eye drops promote corneal wound healing and decrease inflammation after alkali injury. Exp Eye Res 2020; 199:108191. [PMID: 32810484 DOI: 10.1016/j.exer.2020.108191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Germinal peptide is being developed to treat corneal injuries. The purpose of this study was to investigate its effect on corneal epithelial cells in vitro and its ability to promote healing in an alkali injury model in vivo. Cultured rabbit corneal epithelial cells were treated with germinal peptide at three concentrations. Cell proliferation and migration were assessed and compared with the effect of recombinant human epidermal growth factor (rh-EGF). In vivo, the corneas of New Zealand albino rabbits were chemically burned with 1 mol/l NaOH for 30 s. The injured eyes were topically treated with germinal peptide (10, 20, and 40 μg/ml), rh-EGF, or phosphate-buffered saline thrice daily. At fixed time points post injury, the healing of the cornea and its histopathology were evaluated. There was no difference in the effect of germinal peptide on cultured cell proliferation. However, cell migration was significantly higher than that in the control groups, with germinal peptide at concentrations of 20 and 40 μg/ml being the most efficacious. In vivo, 20 and 40 μg/ml germinal peptide significantly alleviated corneal opacity and edema. By day 21, the areas of corneal neovascularization in the germinal peptide-treated groups were smaller than those in the rh-EGF and control groups. The repaired corneas in the germinal peptide- and rh-EGF-treated groups also had more corneal epithelial layers and fewer inflammatory cells than the controls. Germinal peptide may be developed as a novel topical treatment agent for corneal wound healing in clinical settings.
Collapse
Affiliation(s)
- Jieying Guan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China; Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Lijia Zhou
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Li Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Xiaoyi Li
- Zhaoke (Guangzhou) Ophthalmology Pharmaceutical Ltd., Guangzhou, 510000, China.
| | - Zhiqiang Pan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
19
|
Zhang X, Muddana S, Kumar SR, Burton JN, Labroo P, Shea J, Stocking P, Siegl C, Archer B, Agarwal J, Ambati BK. Topical Pergolide Enhance Corneal Nerve Regrowth Following Induced Corneal Abrasion. Invest Ophthalmol Vis Sci 2020; 61:4. [PMID: 31999819 PMCID: PMC7205105 DOI: 10.1167/iovs.61.1.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Neurotrophic keratopathy is a degenerative disease that may be improved by nerve growth factor (NGF). Our aim was to investigate the use of pergolide, a dopamine (D1 and D2) receptor agonist known to increase the synthesis and release of NGF for regeneration of damaged corneal nerve fibers. Methods Pergolide function was evaluated by measuring axon length and NGF levels by enzyme-linked immunosorbent assay in cultured chicken dorsal root ganglion (DRG) cells with serial doses of pergolide (10, 25, 50, 150, and 300 µg/ml) and with different concentrations of a D1 antagonist. Pergolide function was further evaluated by cornea nerve fiber density and wound healing in a cornea scratch mouse model. Results Pergolide increased DRG axon length significantly at a dose between 50 and 300 µg/ml. Different concentrations of D1 antagonist (12, 24, 48, and 96 µg/ml) inhibited DRG axon length growth with pergolide (300 µg/ml). Pergolide (50 µg/ml) upregulated NGF expression in DRG cells at both 24 hours and 48 hours. Pergolide improved cornea nerve fiber density at both 1 week and 2 weeks. Pergolide also improved cornea wound healing. Conclusions We demonstrated that pergolide can act to promote an increase in NGF which promotes corneal nerve regeneration and would therefore improve corneal sensation and visual acuity in eyes with peripheral neurotrophic keratopathy.
Collapse
|
20
|
Yang HM, Kang SW, Sung J, Kim K, Kleinman H. Purinergic Signaling Involvement in Thymosin β4-mediated Corneal Epithelial Cell Migration. Curr Eye Res 2020; 45:1352-1358. [PMID: 32223337 DOI: 10.1080/02713683.2020.1748891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Purpose: This study aimed to determine the effect of thymosin beta 4 (Tβ4) on human corneal epithelial cell migration and the downstream signaling pathways. Tβ4 has a role in tissue development, cell migration, inflammation, and wound healing. A previous study showed that Tβ4 directly binds to F0-F1 ATP synthase. Other studies reported the role of extracellular ATP and purinergic receptors in cell migration with several cell types. Despite advancing to the clinical stage for treatment of eye disorders, the effect of Tβ4 on human corneal epithelial cell (HCEC) migration and proliferation and the precise downstream signaling pathway(s) have not been identified. Methods: Various concentrations of Tβ4 were tested in vitro on human corneal epithelial cell proliferation using the CCK-8 Kit and on cell migration using the gap closure migration assay. Additionally, ATP levels at various time points were determined using the ATP Lite One-Step Kit. The Fluo 8 NO Wash Calcium Assay Kit was used to measure the intracellular Ca2+ concentration after treatment with various concentrations of Tβ4. P2X7 inhibitors were tested on ATP signaling and migration. Total- and phospho-ERK1/2 levels were determined in western blot. Results: Tβ4 enhanced HCEC proliferation and migration in a dose- and time-dependent manner. Moreover, these functions were related to increased extracellular ATP levels, intracellular Ca2+ influx, and ERK1/2 phosphorylation. Tβ4-mediated HCEC migration was inhibited by specific P2X7 purinergic receptor antagonists suggesting the role of this receptor in Tβ4-mediated human corneal epithelial cell migration. Conclusions: These results suggest that Tβ4-mediated HCEC proliferation and migration are associated with increased ATP levels, P2X7 R-mediated Ca2+ influx, and the ERK1/2 signaling pathway. This study begins to describe the mechanisms for Tβ4-mediated corneal healing and regeneration.
Collapse
Affiliation(s)
- Heung-Mo Yang
- Department of Medicine, Sungkyunkwan University School of Medicine , Gyeonggi, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center , Seoul, Republic of Korea
| | | | - Jihye Sung
- GtreeBNT Co., Ltd ., Seongnam-si, Republic of Korea
| | - Kyeongsoon Kim
- GtreeBNT Co., Ltd ., Seongnam-si, Republic of Korea.,Department of Pharmaceutical Engineering, Inje University , Gimhae-si, Republic of Korea
| | - Hynda Kleinman
- The Laboratory of Cell and Developmental Biology, NIH, NIDCR , Bethesda, Maryland, USA
| |
Collapse
|
21
|
Richdale K, Chao C, Hamilton M. Eye care providers' emerging roles in early detection of diabetes and management of diabetic changes to the ocular surface: a review. BMJ Open Diabetes Res Care 2020; 8:8/1/e001094. [PMID: 32299899 PMCID: PMC7199150 DOI: 10.1136/bmjdrc-2019-001094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
US adults visit eye care providers more often than primary healthcare providers, placing these doctors in a prime position to help identify and manage patients with prediabetes and diabetes. Currently, diabetes is identified in eye clinics in an advanced stage, only after visible signs of diabetic retinopathy. Recent ophthalmic research has identified multiple subclinical and clinical changes that occur in the anterior segment of the eye with metabolic disease. The corneal epithelium exhibits increased defects and poor healing, including an increased risk of neurotrophic keratitis. Increased thickness and stiffness of the cornea artificially alters intraocular pressure. There is damage to the endothelial cells and changes to the bacterial species on the ocular surface, both of which can increase risk of complications with surgery. Decreased corneal sensitivity due to a loss of nerve density predispose patients with metabolic disease to further neurotrophic complications. Patients with diabetes have increased Meibomian gland dysfunction, blepharitis and reduced tear production, resulting in increased rates of dry eye disease and discomfort. Early detection of metabolic disease may allow eye care providers to be more proactive in recommending referral and intervention in order to reduce the risk of blindness and other diabetes-related morbidity. Continued research is needed to better understand the time course of changes to the anterior segment and what can be done to better detect and diagnose patients with prediabetes or undiagnosed diabetes and provide improved care for these patients.
Collapse
Affiliation(s)
- Kathryn Richdale
- College of Optometry, University of Houston, Houston, Texas, USA
| | - Cecilia Chao
- College of Optometry, University of Houston, Houston, Texas, USA
- School of Optometry and Vision Science, University of New South Wales-Kensington Campus, Sydney, New South Wales, Australia
| | - Marc Hamilton
- Health and Human Performance, University of Houston, Houston, Texas, USA
- Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
22
|
Chen C, Li X, Wang L. Thymosinβ4 alleviates cholestatic liver fibrosis in mice through downregulating PDGF/PDGFR and TGFβ/Smad pathways. Dig Liver Dis 2020; 52:324-330. [PMID: 31542221 DOI: 10.1016/j.dld.2019.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Liver fibrosis is an important health problem without adequate and effective therapeutics. In this study, effects of thymosinβ4 (Tβ4) on hepatic fibrogenesis and the underlying molecular mechanisms were explored in bile duct ligation (BDL)-induced mice cholestatic liver fibrosis model. Results showed exogenous Tβ4 significantly reduced the mortality and liver/body weight ratio in BDL mice. Histological examinations and biochemical analyses demonstrated that BDL induced evident portal fibrosis and a significant increase in hepatic collagen contents. However, these changes were significantly attenuated by exogenous Tβ4. Quantitative real-time PCR assays showed that Tβ4 suppressed BDL-induced increases in many fibrotic genes expression including α-smooth muscle actin (α-SMA), collagen I, III and fibronectin, TGFβ1, TGFβR II, Smad2, Smad3, and PDGFRβ. Results from immunohistochemistry and Western blots also showed that Tβ4 reduced TGFβ1 and PDGFRβ protein levels in the liver tissues of BDL mice. In vitro studies using LX-2 cells demonstrated that Tβ4 could decrease PDGFRβ and TGFβR II levels in hepatic stellate cells. Taken together, findings in our present studies suggested that exogenous Tβ4 alleviated BDL-induced cholestatic liver fibrosis through downregulating PDGF/PDGFR and TGFβ/Smad pathways.
Collapse
Affiliation(s)
- Cai Chen
- Teaching and Research Centre, Faculty of Medicine, Xinyang Vocational and Technical College, Xinyang, China
| | - Xiankui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
| | - Lei Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Zhang Z, Liu S, Huang S. Effects of thymosin β4 on neuronal apoptosis in a rat model of cerebral ischemia‑reperfusion injury. Mol Med Rep 2019; 20:4186-4192. [PMID: 31545437 PMCID: PMC6797993 DOI: 10.3892/mmr.2019.10683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/30/2019] [Indexed: 01/15/2023] Open
Abstract
The aim of the present study was to investigate the protective effects of thymosin β4 (Tβ4) on neuronal apoptosis in rat middle cerebral artery occlusion ischemia/reperfusion (MCAO I/R) injury, and determine the mechanisms involved in this process. Forty-eight adult male Sprague-Dawley rats were randomly divided into three groups (n=16 per group): A sham control group, an ischemia/reperfusion group (I/R group), and a Tβ4 group. The focal cerebral I/R model was established by blocking the right MCA for 2 h, followed by reperfusion for 24 h. The Zea-Longa method was used to assess neurological deficits. Cerebral infarct volume was assessed using 2,3,5-triphenyltetrazolium chloride staining, and pathological changes were observed via hematoxylin and eosin staining. The terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay was used to detect apoptosis. The expression of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12 (CASP12) protein was assessed using immunohistochemistry and western blotting 24 h after reperfusion. Infarct volume and neuronal damage in the I/R and Tβ4 groups were significantly greater than those observed in the sham group. The Zea-Longa score, neuronal apoptosis, and expression of GRP78, CHOP, and CASP12 in the I/R and Tβ4 groups were significantly higher than those reported in the sham group. However, the Longa score and neuronal apoptosis were lower in the Tβ4 group compared to the I/R group. The expression of GRP78 was significantly increased, whereas that of CHOP and CASP12 was significantly decreased in the Tβ4 group compared to the I/R group. The present data revealed that Tβ4 can inhibit neuronal apoptosis by upregulating GRP78 and downregulating CHOP and CASP12, thereby reducing cerebral I/R injury.
Collapse
Affiliation(s)
- Zhongsheng Zhang
- Department of Neurology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Shuangfeng Liu
- Department of Neurology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Sichun Huang
- Department of Neurology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| |
Collapse
|
24
|
An Update on Corneal Biomechanics and Architecture in Diabetes. J Ophthalmol 2019; 2019:7645352. [PMID: 31275634 PMCID: PMC6589322 DOI: 10.1155/2019/7645352] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
In the last decade, we have witnessed substantial progress in our understanding of corneal biomechanics and architecture. It is well known that diabetes is a systemic metabolic disease that causes chronic progressive damage in the main organs of the human body, including the eyeball. Although the main and most widely recognized ocular effect of diabetes is on the retina, the structure of the cornea (the outermost and transparent tissue of the eye) can also be affected by the poor glycemic control characterizing diabetes. The different corneal structures (epithelium, stroma, and endothelium) are affected by specific complications of diabetes. The development of new noninvasive diagnostic technologies has provided a better understanding of corneal tissue modifications. The objective of this review is to describe the advances in the knowledge of the corneal alterations that diabetes can induce.
Collapse
|
25
|
Sensory nerve supports epithelial stem cell function in healing of corneal epithelium in mice: the role of trigeminal nerve transient receptor potential vanilloid 4. J Transl Med 2019; 99:210-230. [PMID: 30413814 DOI: 10.1038/s41374-018-0118-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023] Open
Abstract
In order to understand the pathobiology of neurotrophic keratopathy, we established a mouse model by coagulating the first branch of the trigeminal nerve (V1 nerve). In our model, the sensory nerve in the central cornea disappeared and remaining fibers were sparse in the peripheral limbal region. Impaired corneal epithelial healing in the mouse model was associated with suppression of both cell proliferation and expression of stem cell markers in peripheral/limbal epithelium as well as a reduction of transient receptor potential vanilloid 4 (TRPV4) expression in tissue. TRPV4 gene knockout also suppressed epithelial repair in mouse cornea, although it did not seem to directly modulate migration of epithelium. In a co-culture experiment, TRPV4-introduced KO trigeminal ganglion upregulated nerve growth factor (NGF) in cultured corneal epithelial cells, but ganglion with a control vector did not. TRPV4 gene introduction into a damaged V1 nerve rescues the impairment of epithelial healing in association with partial recovery of the stem/progenitor cell markers and upregulation of cell proliferation and of NGF expression in the peripheral/limbal epithelium. Gene transfer of TRPV4 did not accelerate the regeneration of nerve fibers. Sensory nerve TRPV4 is critical to maintain stemness of peripheral/limbal basal cells, and is one of the major mechanisms of homeostasis maintenance of corneal epithelium.
Collapse
|
26
|
Renga G, Oikonomou V, Stincardini C, Pariano M, Borghi M, Costantini C, Bartoli A, Garaci E, Goldstein AL, Romani L. Thymosin β4 limits inflammation through autophagy. Expert Opin Biol Ther 2019; 18:171-175. [PMID: 30063848 DOI: 10.1080/14712598.2018.1473854] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Thymosin β4 (Tβ4) is a thymic hormone with multiple and different intracellular and extracellular activities affecting wound healing, inflammation, fibrosis and tissue regeneration. As the failure to resolve inflammation leads to uncontrolled inflammatory pathology which underlies many chronic diseases, the endogenous pathway through which Tβ4 may promote inflammation resolution becomes of great interest. In this review, we discuss data highlighting the efficacy of Tβ4 in resolving inflammation by restoring autophagy. AREAS COVERED The authors provide an overview of the Tβ4's anti-inflammatory properties in several pathologies and provide preliminary evidence on the ability of Tβ4 to resolve inflammation via the promotion of non-canonical autophagy associated with the activation of the DAP kinase anti-inflammatory function. EXPERT OPINION Based on its multitasking activity in various animal studies, including tissue repair and prevention of chronic inflammation, Tβ4 may represent a potential, novel treatment for inflammatory diseases associated with defective autophagy.
Collapse
Affiliation(s)
- Giorgia Renga
- a Department of Experimental Medicine , University of Perugia , Perugia , Italy
| | - Vasilis Oikonomou
- a Department of Experimental Medicine , University of Perugia , Perugia , Italy
| | - Claudia Stincardini
- a Department of Experimental Medicine , University of Perugia , Perugia , Italy
| | - Marilena Pariano
- a Department of Experimental Medicine , University of Perugia , Perugia , Italy
| | - Monica Borghi
- a Department of Experimental Medicine , University of Perugia , Perugia , Italy
| | - Claudio Costantini
- a Department of Experimental Medicine , University of Perugia , Perugia , Italy
| | - Andrea Bartoli
- a Department of Experimental Medicine , University of Perugia , Perugia , Italy
| | - Enrico Garaci
- b University San Raffaele and IRCCS San Raffaele , Rome , Italy
| | - Allan L Goldstein
- c Department of Biochemistry and Molecular Medicine , the George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| | - Luigina Romani
- a Department of Experimental Medicine , University of Perugia , Perugia , Italy
| |
Collapse
|
27
|
Feng XW, Huo LJ, Yang MC, Wang JX, Shi XZ. Thymosins participate in antibacterial immunity of kuruma shrimp, Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:244-251. [PMID: 30292805 DOI: 10.1016/j.fsi.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/22/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Thymosins β are actin-binding proteins that play a variety of different functions in inflammatory responses, wound healing, cell migration, angiogenesis, and stem cell recruitment and differentiation. In crayfish, thymosins participate in antiviral immunology. However, the roles of thymosin during bacterial infection in shrimp remain unclear. In the present study, four thymosins were identified from kuruma shrimp, Marsupenaeus japonicus, and named as Mjthymosin2, Mjthymosin3, Mjthymosin4, and Mjthymosin5 according the number of their thymosin beta actin-binding motifs. Mjthymosin3 was selected for further study because its expression level was the highest in hemocytes. Expression analysis showed that Mjthymosin3 was upregulated in hemocytes after challenged by Vibrio anguillarum or Staphylococcus aureus. The recombinant Mjthymosin3 protein could inhibit the growth of certain bacteria in an in vitro antibacterial test. Mjthymosins could facilitate external bacterial clearance in shrimp, and were beneficial to shrimp survival post V. anguillarum or S. aureus infection. The results suggested that Mjthymosins played important roles in the antibacterial immune response of kuruma shrimp.
Collapse
Affiliation(s)
- Xiao-Wu Feng
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Li-Jie Huo
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China.
| |
Collapse
|
28
|
Mandaliti W, Nepravishta R, Pica F, Vallebona PS, Garaci E, Paci M. Potential mechanism of thymosin-α1-membrane interactions leading to pleiotropy: experimental evidence and hypotheses. Expert Opin Biol Ther 2018; 18:33-42. [DOI: 10.1080/14712598.2018.1456527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Walter Mandaliti
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Rome, Italy
| | - Ridvan Nepravishta
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Rome, Italy
- School of Pharmacy, East Anglia University, Norwich, UK
| | - Francesca Pica
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Enrico Garaci
- San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, Rome, Italy
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
29
|
Affiliation(s)
- Gabriel Sosne
- Opthalmology and Anatomy/Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
30
|
Matteucci C, Argaw-Denboba A, Balestrieri E, Giovinazzo A, Miele M, D'Agostini C, Pica F, Grelli S, Paci M, Mastino A, Sinibaldi Vallebona P, Garaci E, Tomino C. Deciphering cellular biological processes to clinical application: a new perspective for Tα1 treatment targeting multiple diseases. Expert Opin Biol Ther 2018; 18:23-31. [PMID: 30063863 DOI: 10.1080/14712598.2018.1474198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/04/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Thymosin alpha 1 (Tα1) is a well-recognized immune response modulator in a wide range of disorders, particularly infections and cancer. The bioinformatic analysis of public databases allows drug repositioning, predicting a new potential area of clinical intervention. We aimed to decipher the cellular network induced by Tα1 treatment to confirm present use and identify new potential clinical applications. RESEARCH DESIGN AND METHODS We used the transcriptional profile of human peripheral blood mononuclear cells treated in vitro with Tα1 to perform the enrichment network analysis by the Metascape online tools and the disease enrichment analysis by the DAVID online tool. RESULTS Networked cellular responses reflected Tα1 regulated biological processes including immune and metabolic responses, response to compounds and oxidative stress, ion homeostasis, peroxisome biogenesis and drug metabolic process. Beyond cancer and infections, the analysis evidenced the association with disorders such as kidney chronic failure, diabetes, cardiovascular, chronic respiratory, neuropsychiatric, neurodegenerative and autoimmune diseases. CONCLUSIONS In addition to the known ability to promote immune response pathways, the network enrichment analysis demonstrated that Tα1 regulates cellular metabolic processes and oxidative stress response. Notable, the analysis highlighted the association with several diseases, suggesting new translational implication of Tα1 treatment in pathological conditions unexpected until now.
Collapse
Affiliation(s)
- Claudia Matteucci
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Ayele Argaw-Denboba
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Emanuela Balestrieri
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Alessandro Giovinazzo
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Martino Miele
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Cartesio D'Agostini
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Francesca Pica
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Sandro Grelli
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
| | - Maurizio Paci
- b Department of Chemical Sciences and Technologies , University of Rome "Tor Vergata" , Rome , Italy
| | - Antonio Mastino
- c Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
- d National Research Council , Institute of Translational Pharmacology , Rome , Italy
| | - Paola Sinibaldi Vallebona
- a Department of Experimental Medicine and Surgery , University of Rome "Tor Vergata" , Rome , Italy
- d National Research Council , Institute of Translational Pharmacology , Rome , Italy
| | | | - Carlo Tomino
- e Università San Raffaele Pisana , Roma , Italy
- f IRCSS San Raffaele Pisana , Scientific Institute for Research, Hospitalization and Health Care , Roma , Italy
| |
Collapse
|
31
|
Bikbova G, Oshitari T, Baba T, Bikbov M, Yamamoto S. Diabetic corneal neuropathy: clinical perspectives. Clin Ophthalmol 2018; 12:981-987. [PMID: 29872257 PMCID: PMC5973365 DOI: 10.2147/opth.s145266] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diabetic keratopathy is characterized by impaired innervation of the cornea that leads to decreased sensitivity, with resultant difficulties with epithelial wound healing. These difficulties in wound healing put patients at risk for ocular complications such as surface irregularities, corneal infections, and stromal opacification. Pathological changes in corneal innervations in diabetic patients are an important early indicator of diabetic neuropathy. The decrease in corneal sensitivity is strongly correlated with the duration of diabetes as well as the severity of the neuropathy. This review presents recent findings in assessing the ocular surface as well as the recent therapeutic strategies for optimal management of individuals with diabetes who are susceptible to developing diabetic neuropathy.
Collapse
Affiliation(s)
- Guzel Bikbova
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan.,Cornea and Refractive Surgery Department, Ufa Eye Research Institute, Ufa, Russia
| | - Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Baba
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mukharram Bikbov
- Cornea and Refractive Surgery Department, Ufa Eye Research Institute, Ufa, Russia
| | - Shuichi Yamamoto
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
32
|
Diabetic complications in the cornea. Vision Res 2017; 139:138-152. [PMID: 28404521 DOI: 10.1016/j.visres.2017.03.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
Diabetic corneal alterations, such as delayed epithelial wound healing, edema, recurrent erosions, neuropathy/loss of sensitivity, and tear film changes are frequent but underdiagnosed complications of both type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus. The disease affects corneal epithelium, corneal nerves, tear film, and to a lesser extent, endothelium, and also conjunctiva. These abnormalities may appear or become exacerbated following trauma, as well as various surgeries including retinal, cataract or refractive. The focus of the review is on mechanisms of diabetic corneal abnormalities, available animal, tissue and organ culture models, and emerging treatments. Changes of basement membrane structure and wound healing rates, the role of various proteinases, advanced glycation end products (AGEs), abnormal growth and motility factors (including opioid, epidermal, and hepatocyte growth factors) are analyzed. Experimental therapeutics under development, including topical naltrexone, insulin, inhibitors of aldose reductase, and AGEs, as well as emerging gene and cell therapies are discussed in detail.
Collapse
|