1
|
Ntetsika T, Catrina SB, Markaki I. Understanding the link between type 2 diabetes mellitus and Parkinson's disease: role of brain insulin resistance. Neural Regen Res 2025; 20:3113-3123. [PMID: 39715083 PMCID: PMC11881720 DOI: 10.4103/nrr.nrr-d-23-01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 03/03/2024] [Indexed: 12/25/2024] Open
Abstract
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden. Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms. Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes. The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease, with emphasis on brain insulin resistance, is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
Collapse
Affiliation(s)
- Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Center for Neurology, Academic Specialist Center, Stockholm, Sweden
| |
Collapse
|
2
|
Loera-Lopez AL, Lord MN, Noble EE. Astrocytes of the hippocampus and responses to periprandial neuroendocrine hormones. Physiol Behav 2025; 295:114913. [PMID: 40209869 PMCID: PMC12066093 DOI: 10.1016/j.physbeh.2025.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Astrocytes have risen as stars in the field of energy homeostasis and neurocognitive function, acting as a bridge of communication between the periphery and the brain, providing metabolic support, signaling via gliotransmitters, and altering synaptic communication. Dietary factors and energy state have a profound influence on hippocampal function, and the hippocampus is critical for appropriate behavioral responses associated with feeding and internal hunger cues (being in the fasted or full state), but how the hippocampus senses periprandial status and is impacted by diet is largely unknown. Periprandial hormones act within the hippocampus to modulate processes involved in hippocampal-dependent learning and memory function and astrocytes likely play an important role in modulating this signaling. In addition to periprandial hormones, astrocytes are positioned to respond to changes in circulating nutrients like glucose. Here, we review literature investigating how astrocytes mediate changes in hippocampal function, highlighting astrocyte location, morphology, and function in the context of integrating glucose metabolism, neuroendocrine hormone action, and/or cognitive function in the hippocampus. Specifically, we discuss research findings on the effects of insulin, ghrelin, leptin, and GLP-1 on glucose homeostasis, neural activity, astrocyte function, and behavior in the hippocampus. Because obesogenic diets impact neuroendocrine hormones, astrocytes, and cognitive function, we also discuss the effects of diet and diet-induced obesity on these parameters.
Collapse
Affiliation(s)
- Ana L Loera-Lopez
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Magen N Lord
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Emily E Noble
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA.
| |
Collapse
|
3
|
Natale F, Spinelli M, Rinaudo M, Gulisano W, Nifo Sarrapochiello I, Aceto G, Puzzo D, Fusco S, Grassi C. Inhibition of zDHHC7-driven protein S-palmitoylation prevents cognitive deficits in an experimental model of Alzheimer's disease. Proc Natl Acad Sci U S A 2024; 121:e2402604121. [PMID: 39589870 PMCID: PMC11626176 DOI: 10.1073/pnas.2402604121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/04/2024] [Indexed: 11/28/2024] Open
Abstract
Protein post-translational modifications (PTM) play a crucial role in the modulation of synaptic function and their alterations are involved in the onset and progression of neurodegenerative disorders. S-palmitoylation is a PTM catalyzed by zinc finger DHHC domain containing (zDHHC) S-acyltransferases that affects both localization and activity of proteins regulating synaptic plasticity and amyloid-β (Aβ) metabolism. Here, we found significant increases of both zDHHC7 expression and protein S-palmitoylation in hippocampi of both 3×Tg-AD mice and post-mortem Alzheimer's disease (AD) patients. Chronic intranasal administration of the S-palmitoylation inhibitor 2-bromopalmitate counteracted synaptic plasticity and cognitive deficits, reduced the Aβ deposition in the hippocampus and extended the lifespan of both male and female 3×Tg-AD mice. Moreover, hippocampal silencing of zDHHC7 prevented the onset of cognitive deficits in the same experimental model. We also identified a FoxO1-mediated epigenetic mechanism inducing zDHHC7 expression, which was triggered by brain insulin resistance in 3×Tg-AD mice. Finally, in hippocampi of AD patients S-palmitoylation levels of Beta-Secretase 1 were associated with Aβ 1 to 42 load and they inversely correlated with Mini Mental State Examination scores. Our data reveal a key role of both zDHHC7 overexpression and protein hyperpalmitoylation in the onset and progression of AD-related alterations of synaptic plasticity and memory.
Collapse
Affiliation(s)
- Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania95131, Italy
| | | | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania95131, Italy
- Oasi Research Institute-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Troina94018, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome00168, Italy
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome00168, Italy
| |
Collapse
|
4
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Bahaa MM, Alibrahim F, Batiha GE. New insight on the potential detrimental effect of metabolic syndrome on the Alzheimer disease neuropathology: Mechanistic role. J Cell Mol Med 2024; 28:e70118. [PMID: 39644152 PMCID: PMC11624485 DOI: 10.1111/jcmm.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 12/09/2024] Open
Abstract
The metabolic syndrome or syndrome X is a clustering of different components counting insulin resistance (IR), glucose intolerance, visceral obesity, hypertension and dyslipidemia. It has been shown that IR and dysregulation of insulin signalling play a critical role in the development of metabolic syndrome by initiating the pathophysiology of metabolic syndrome through induction of glucolipotoxicity, impairment of glucose disposal and triggering of pro-inflammatory response. Furthermore, metabolic syndrome unfavourably affects the cognitive function and the development of different neurodegenerative diseases such as Alzheimer disease (AD) by inducing oxidative stress, neuroinflammation and brain IR. These changes together with brain IR impair cerebrovascular reactivity leading to cognitive impairment. In addition, metabolic syndrome increases the risk for the development of AD. However, the central mechanisms by which metabolic syndrome amplify AD risk are not completely elucidated. Consequently, this narrative review aims to revise from published articles the association between metabolic syndrome and AD regarding cellular and subcellular pathways. In conclusion, metabolic syndrome is regarded as a potential risk factor for the induction of AD neuropathology by different signalling pathways such as initiation of brain IR, activation of inflammatory signalling pathways and neuroinflammation.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Research & DevelopmentFunogenAthensGreece
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of PharmacyHorus UniversityNew DamiettaEgypt
| | - Fawaz Alibrahim
- Division of NeurologyKing Abdulaziz Medical City, Ministry of the National Guard Health AffairsRiyadhSaudi Arabia
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
5
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
6
|
Spinelli M, Spallotta F, Cencioni C, Natale F, Re A, Dellaria A, Farsetti A, Fusco S, Grassi C. High fat diet affects the hippocampal expression of miRNAs targeting brain plasticity-related genes. Sci Rep 2024; 14:19651. [PMID: 39179650 PMCID: PMC11343842 DOI: 10.1038/s41598-024-69707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Metabolic disorders such as insulin resistance and type 2 diabetes are associated with brain dysfunction and cognitive deficits, although the underpinning molecular mechanisms remain elusive. Epigenetic factors, such as non-coding RNAs, have been reported to mediate the molecular effects of nutrient-related signals. Here, we investigated the changes of miRNA expression profile in the hippocampus of a well-established experimental model of metabolic disease induced by high fat diet (HFD). In comparison to the control group fed with standard diet, we observed 69 miRNAs exhibiting increased expression and 63 showing decreased expression in the HFD mice's hippocampus. Through bioinformatics analysis, we identified numerous potential targets of the dysregulated miRNAs, pinpointing a subset of genes regulating neuroplasticity that were targeted by multiple differentially modulated miRNAs. We also validated the expression of these synaptic and non-synaptic proteins, confirming the downregulation of Synaptotagmin 1 (SYT1), calcium/calmodulin dependent protein kinase I delta (CaMK1D), 2B subunit of N-methyl-D-aspartate glutamate receptor (GRIN2B), the DNA-binding protein Special AT-Rich Sequence-Binding Protein 2 (SATB2), and RNA-binding proteins Cytoplasmic polyadenylation element-binding protein 1 (CPEB1) and Neuro-oncological ventral antigen 1 (NOVA1) in the hippocampus of HFD mice. In summary, our study offers a snapshot of the HFD-related miRNA landscape potentially involved in the alterations of brain functions associated with metabolic disorders. By shedding light on the specific miRNA-mRNA interactions, our research contributes to a deeper understanding of the molecular mechanisms underlying the effects of HFD on the synaptic function.
Collapse
Affiliation(s)
- Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies Charles Darwin, Sapienza University, 00185, Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00185, Rome, Italy
| | - Chiara Cencioni
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (CNR-IASI), Rome, Italy
| | - Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Agnese Re
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (CNR-IASI), Rome, Italy
- Dipartimento di Scienze Laboratoristiche ed Infettivologiche, UOC Chimica, Biochimica e Biologia Molecolare Clinica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Alice Dellaria
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (CNR-IASI), Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
7
|
Zago AM, Carvalho FB, Rahmeier FL, Santin M, Guimarães GR, Gutierres JM, da C Fernandes M. Exendin-4 Prevents Memory Loss and Neuronal Death in Rats with Sporadic Alzheimer-Like Disease. Mol Neurobiol 2024; 61:2631-2652. [PMID: 37919602 DOI: 10.1007/s12035-023-03698-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
This study investigated the neuroprotective effects of exendin-4 (EXE-4), an analog of the glucagon-like peptide 1 receptor (GLP-1R) on memory and on the neuronal populations that constitute the hippocampus of rats submitted to a sporadic dementia of Alzheimer's type (SDAT). Male Wistar rats received streptozotocin (STZ icv, 3 mg/kg diluted in aCFS, 5 µl/ventricle) and were treated for 21 days with EXE-4 (10 µg/kg, ip; saline as the vehicle). Four groups were formed: vehicle, EXE-4, STZ, and STZ + EXE-4. The groups were submitted to Y-Maze (YM), object recognition (ORT), and object displacement tasks (ODT) to assess learning and memory. The brains were used for immunohistochemical and immunofluorescent techniques with antibodies to NeuN, cleaved caspase-3 (CC3), PCNA, doublecortin (DCX), synaptophysin (SYP), and insulin receptor (IR). STZ worsened spatial memory in the YMT, as well as short-term (STM) and long-term (LTM) memories in the ORT and ODT, respectively. EXE-4 protected against memory impairment in STZ animals. STZ reduced mature neuron density (NeuN) and increased cell apoptosis (CC3) in the DG, CA1, and CA3. EXE-4 protected against neuronal death in all regions. EXE-4 increased PCNA+ cells in all regions of the hippocampus, and STZ attenuated this effect. STZ reduced neurogenesis in DG per se as well as synaptogenesis induced by EXE-4. EXE-4 increased immunoreactivity to IR in the CA1. From these findings, EXE-4 showed a beneficial effect on hippocampal pyramidal and granular neurons in the SDAT showing anti-apoptotic properties and promoting cell proliferation. In parallel, EXE-4 preserved the memory of SDAT rats. EXE-4 appears to enhance synapses at CA3 and DG. In conclusion, these data indicate that agonists to GLP-1R have a beneficial effect on hippocampal neurons in AD.
Collapse
Affiliation(s)
- Adriana M Zago
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Fabiano B Carvalho
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| | - Francine L Rahmeier
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marta Santin
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Giuliano R Guimarães
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Jessié M Gutierres
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil
| | - Marilda da C Fernandes
- Graduate Program in Pathology, Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514, Building 3. CEP 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Evlice A, Över F, Balal M, Ateş E, Aslan-Kara K. Which factors affect phenoconversion in isolated rapid eye movement sleep behavior disorder? Sleep Med 2024; 113:152-156. [PMID: 38016361 DOI: 10.1016/j.sleep.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
AIM Isolated REM sleep behavior disorder (IRBD) is characterized by loss of the normal atonia of REM sleep. Patients with IRBD are at substantial risk of developing the synuclein-related neurodegenerative diseases (NDD). Few predictors of phenoconversion (from IRBD to NDD) have been identified such as age >65 years, hyposmia, constipation, elevated Epworth sleepiness scale (ESS). We aimed to detect rate and risk factors of phenoconversion. METHOD The study designed as retrospectively. NDD was developed in 18 (27.27%) patients while NDD wasn't developed in 48 (72.73%) patients after ten years. The data of the first visit (age, gender, hyposmia, constipation, ESS, comorbidities, physical/neurological examinations, laboratory, and polysomnography) were compared between NDD (n:18) and IRBD (46) groups. The statistical program IBM SPSS Statistics Version 20.0 was used for all analyzes. The threshold for statistical significance for each test was set at 0.05. RESULTS Although, most first-visit data (age, gender, hyposmia, constipation, ESS, laboratory, polysomnography) were not different between NDD (n:18) and IRBD (n:48) groups, diabetes mellitus (DM) frequency (p:0.021), mean duration of DM (0.027), chest circumference (p:0.017), and hip circumference (p:0.045) were found higher in NDD than IRBD. If the risk of phenoconversion calculated by logistic regression analysis was different only in terms of DM frequency (p:0.030) [odds ratio: 4.909 (1.17-20.19)]. CONCLUSION The present study showed that the phenoconversion rate for ten years is 27.27%, and IRBD patients with diabetes mellitus increase the phenoconversion risk nearly five times.
Collapse
Affiliation(s)
- Ahmet Evlice
- Çukurova University, Faculty of Medicine, Department of Neurology, Adana, Turkey
| | - Fahreddin Över
- Çukurova University, Faculty of Medicine, Department of Neurology, Adana, Turkey
| | - Mehmet Balal
- Çukurova University, Faculty of Medicine, Department of Neurology, Adana, Turkey
| | - Elçin Ateş
- Çukurova University, Faculty of Medicine, Department of Neurology, Adana, Turkey
| | - Kezban Aslan-Kara
- Çukurova University, Faculty of Medicine, Department of Neurology, Adana, Turkey.
| |
Collapse
|
9
|
Wang X, Yu S, Liu W, Lv P, Zhao L, Wang Y, Fu C, Meng L, Yang Q, Wang X, Huang Y, Zuo Z, Liu X. Relationship between IL-22 and IL-22BP in diabetic cognitive dysfunction. Acta Diabetol 2023; 60:631-644. [PMID: 36717397 DOI: 10.1007/s00592-022-02024-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND CD4 + T helper (Th)22 cells play a regulatory role in autoimmune diseases such as type 1 diabetes mellitus. The Th22-related cytokine interleukin (IL)-22, the expression of which is increased in diabetes mellitus (DM), can act as a neurotrophic factor to protect neurons from apoptosis. Paradoxically, neuronal apoptosis and learning and memory decline occur in DM. In this study, we investigated the relationship between IL-22 and its receptors IL-22Rα1 and IL-22 binding protein (IL-22BP, a soluble inhibitor of IL-22) in diabetic encephalopathy (DE) and the effects of IL-22 on hippocampal neurons, learning and memory. METHODS A C57BL/6 mouse model of diabetes was constructed by intraperitoneal injection of streptozotocin. The mice were randomly divided into 4 groups: the control group, diabetes group, diabetes + recombinantIL-22 (rIL-22) group and diabetes + IL-22BP group. The Morris water maze test was used to evaluate learning and memory, the expression of IL-22 was measured by ELISA, and Evans Blue staining was used to evaluate blood-brain barrier permeability. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to measure the mRNA expression of IL-22 and IL-22Rα1 in the hippocampus. The morphology and number of hippocampal neurons were assessed by Nissl staining, and TUNEL staining was used to detect hippocampal neuronal apoptosis. Immunofluorescence was used to analyze IL-22Rα1 expression and localization in hippocampus, and Western blotting was used to evaluate the expression of IL-22, IL-22Rα1, IL-22BP, and the apoptosis related proteins Caspase-3 and C-caspase-3. RESULTS Compared with those in the control group, mice in the diabetes group showed cognitive decline; apoptosis of hippocampal neurons; increased expression of hippocampal Caspase-3, C-Caspase-3, IL-22, IL-22Rα1, and IL-22BP; and a decreased IL-22/IL-22BP ratio. Learning and memory were improved, neuronal apoptosis was attenuated, IL-22Rα1 expression and the IL-22/IL-22BP ratio were increased, and caspase-3 and C-caspase-3 expression was decreased in the rIL-22-treated group compared with the diabetes group. IL-22BP treatment aggravated diabetic cognitive dysfunction and pathological alterations in the hippocampus, decreased the IL-22/IL-22BP ratio, and increased the expression of caspase-3 and C-caspase-3 in mice with diabetes. CONCLUSION A decrease in the IL-22/IL-22BP ratio plays an important role in diabetic cognitive dysfunction, and rIL-22 can effectively alleviate DE. Herein, we shed light on the interaction between IL-22 and IL-22BP as therapeutic targets for DM.
Collapse
Affiliation(s)
- Xiaobai Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Shengxue Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Wenqiang Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Pan Lv
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lipan Zhao
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Yufei Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Cong Fu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lu Meng
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Qi Yang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xuehua Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Ying Huang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Zhongfu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, China.
| | - Xuezheng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
10
|
Huang XY, Xue LL, Chen TB, Huangfu LR, Wang TH, Xiong LL, Yu CY. Miracle fruit seed as a potential supplement for the treatment of learning and memory disorders in Alzheimer's disease. Front Pharmacol 2023; 13:1080753. [PMID: 36712676 PMCID: PMC9873977 DOI: 10.3389/fphar.2022.1080753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Currently, the treatment of Alzheimer's disease (AD) is still at the stage of symptomatic treatment due to lack of effective drugs. The research on miracle fruit seeds (MFSs) has focused on lipid-lowering and antidiabetic effects, but no therapeutic effects have been reported in AD. The purpose of this study was to provide data resources and a potential drug for treatment of AD. An AD mouse model was established and treated with MFSs for 1 month. The Morris water maze test was used to assess learning memory function in mice. Nissl staining was used to demonstrate histopathological changes. MFSs were found to have therapeutic implications in the AD mouse model, as evidenced by improved learning memory function and an increase in surviving neurons. To explore the mechanism of MFSs in treating AD, network pharmacological approaches, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and molecular docking studies were carried out. Based on the network pharmacology strategy, 74 components from MFS corresponded to 293 targets related to the AD pathology. Among these targets, AKT1, MAPK3, ESR1, PPARG, PTGS2, EGFR, PPARA, CNR1, ABCB1, and MAPT were identified as the core targets. According to the relevant number of core targets, cis-8-octadecenoic acid, cis-10-octadecenoic acid, 2-dodecenal, and tetradecane are likely to be highly correlated with MFS for AD. Enrichment analysis indicated the common targets mainly enriched in AD and the neurodegeneration-multiple disease signaling pathway. The molecular docking predictions showed that MFSs were stably bound to core targets, specifically AKT1, EGFR, ESR1, PPARA, and PPARG. MFSs may play a therapeutic role in AD by affecting the insulin signaling pathway and the Wnt pathway. The findings of this study provide potential possibilities and drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Xue-Yan Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lu-Lu Xue
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Ting-Bao Chen
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Li-Ren Huangfu
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Ting-Hua Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
- Laboratory Animal Department, Kunming Medical University, Kunming, Yunnan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chang-Yin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
11
|
Natale F, Spinelli M, Rinaudo M, Cocco S, Nifo Sarrapochiello I, Fusco S, Grassi C. Maternal High Fat Diet Anticipates the AD-like Phenotype in 3xTg-AD Mice by Epigenetic Dysregulation of Aβ Metabolism. Cells 2023; 12:cells12020220. [PMID: 36672155 PMCID: PMC9856666 DOI: 10.3390/cells12020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Maternal overnutrition has been reported to affect brain plasticity of the offspring by altering gene expression, regulating both synaptic plasticity and adult neurogenesis. However, whether perinatal metabolic stress may influence the accumulation of misfolded proteins and the development of neurodegeneration remains to be clarified. We investigated the impact of maternal high fat diet (HFD) in an experimental model of Alzheimer's disease (AD). The 3xTg-AD mice born to overfed mothers showed an impairment of synaptic plasticity and cognitive deficits earlier than controls. Maternal HFD also altered the expression of genes regulating amyloid-β-protein (Aβ) metabolism (i.e., Bace1, Ern1, Ide and Nicastrin) and enhanced Aβ deposition in the hippocampus. Finally, we found an epigenetic derangement and an aberrant recruitment of transcription factors NF-kB and STAT3 and chromatin remodeler HDAC2 on the regulatory sequences of the same genes. Collectively, our data indicate that early life metabolic stress worsens the AD phenotype via epigenetic alteration of genes regulating Aβ synthesis and clearance.
Collapse
Affiliation(s)
- Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Correspondence:
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
12
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
13
|
Askari S, Javadpour P, Rashidi FS, Dargahi L, Kashfi K, Ghasemi R. Behavioral and Molecular Effects of Thapsigargin-Induced Brain ER- Stress: Encompassing Inflammation, MAPK, and Insulin Signaling Pathway. Life (Basel) 2022; 12:life12091374. [PMID: 36143409 PMCID: PMC9500646 DOI: 10.3390/life12091374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulation of misfolded proteins, known as endoplasmic reticulum (ER) stress, is known to participate in Alzheimer’s disease (AD). AD is also correlated with impaired central insulin signaling. However, few studies have probed the relationship between memory, central ER stress, inflammation, hippocampal mitogen-activated protein kinase (MAPK) activity and insulin resistance. The present study aimed to investigate the causative role and underlying mechanisms of brain ER stress in memory impairment and develop a reliable animal model for ER-mediated memory loss. Thapsigargin (TG), a known ER stress activator, was centrally administered. The cognitive function of animals was evaluated by the Morris Water Maze (MWM). To verify the induction of central ER stress, we investigated the mRNA expression of UPR markers in the hippocampus. In addition, the activation of ER stress markers, including Bip, CHOP, and some related apoptosis and pro-inflammatory proteins, such as caspase-3, Bax, Bcl-2, TNF-α, MAPK, and insulin signaling markers, were assessed by Western-blots. The results demonstrated that TG impairs spatial cognition and hippocampal insulin signaling. Meanwhile, molecular results showed a concurrent increment of hippocampal UPR markers, apoptosis, P38 activity, and TNF-α. This study introduced TG-induced ER stress as a pharmacological model for memory impairment in rats and revealed some underlying mechanisms.
Collapse
Affiliation(s)
- Sahar Askari
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, New York, NY 10031, USA
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11151-19857, Iran
- Correspondence: ; Tel.: +98-21-22439971
| |
Collapse
|
14
|
Xu X, Qi P, Zhang Y, Sun H, Yan Y, Sun W, Liu S. Effect of Selenium Treatment on Central Insulin Sensitivity: A Proteomic Analysis in β-Amyloid Precursor Protein/Presenilin-1 Transgenic Mice. Front Mol Neurosci 2022; 15:931788. [PMID: 35875664 PMCID: PMC9302600 DOI: 10.3389/fnmol.2022.931788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Prior studies have demonstrated a close association between brain insulin resistance and Alzheimer’s disease (AD), while selenium supplementation was shown to improve insulin homeostasis in AD patients and to exert neuroprotective effects in a mouse model of AD. However, the mechanisms underlying the neuroprotective actions of selenium remain incompletely understood. In this study, we performed a label-free liquid chromatography-tandem mass spectrometry (LC–MS/MS) quantitative proteomics approach to analyze differentially expressed proteins (DEPs) in the hippocampus and cerebral cortex of Aβ precursor protein (APP)/presenilin-1 (PS1) mice following 2 months of treatment with sodium selenate. A total of 319 DEPs (205 upregulated and 114 downregulated proteins) were detected after selenium treatment. Functional enrichment analysis revealed that the DEPs were mainly enriched in processes affecting axon development, neuron differentiation, tau protein binding, and insulin/insulin-like growth factor type 1 (IGF1)-related pathways. These results demonstrate that a number of insulin/IGF1 signaling pathway-associated proteins are differentially expressed in ways that are consistent with reduced central insulin resistance, suggesting that selenium has therapeutic value in the treatment of neurodegenerative and metabolic diseases such as AD and non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Xia Xu
- Department of Nursing, School of Nursing, Shandong Xiehe University, Jinan, China
| | - Pishui Qi
- Department of Pharmacy, Shandong Rongjun General Hospital, Jinan, China
| | - Ying Zhang
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, China
| | - Huihuan Sun
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, China
| | - Yong Yan
- Department of Transfusion Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenxiu Sun
- Department of Pharmacy, Taishan Vocational College of Nursing, Taian, China
- *Correspondence: Wenxiu Sun,
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, China
- Shudong Liu,
| |
Collapse
|
15
|
Liu R, Bai L, Liu M, Wang R, Wu Y, Li Q, Ba Y, Zhang H, Zhou G, Yu F, Huang H. Combined exposure of lead and high-fat diet enhanced cognitive decline via interacting with CREB-BDNF signaling in male rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119200. [PMID: 35364187 DOI: 10.1016/j.envpol.2022.119200] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The health risks to populations induced by lead (Pb) and high-fat diets (HFD) have become a global public health problem. Pb and HFD often co-exist and are co-occurring risk factors for cognitive impairment. This study investigates effect of combined Pb and HFD on cognitive function, and explores the underlying mechanisms in terms of regulatory components of synaptic plasticity and insulin signaling pathway. We showed that the co-exposure of Pb and HFD further increased blood Pb levels, caused body weight loss and dyslipidemia. The results from Morris water maze (MWM) test and Nissl staining disclosed that Pb and HFD each contributed to cognitive deficits and neuronal damage and combined exposure enhanced this toxic injury. Pb and HFD decreased the levels of synapsin-1, GAP-43 and PSD-95 protein related to synaptic properties and SIRT1, NMDARs, phosphorylated CREB and BDNF related to synaptic plasticity regulatory, and these decreases was greater when combined exposure. Additionally, we revealed that Pb and HFD promoted IRS-1 phosphorylation and subsequently reduced downstream PI3K-Akt kinases phosphorylation in hippocampus and cortex of rats, and this process was aggravated when co-exposure. Collectively, our data suggested that combined exposure of Pb and HFD enhanced cognitive deficits, pointing to additive effects in rats than the individual stress effects related to multiple signaling pathways with CREB-BDNF signaling as the hub. This study emphasizes the need to evaluate the effects of mixed exposures on brain function in realistic environment and to better inform prevention of neurological disorders via modulating central pathway, such as CREB/BDNF signaling.
Collapse
Affiliation(s)
- Rundong Liu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Bai
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengchen Liu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruike Wang
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Wu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiong Li
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Ba
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huizhen Zhang
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guoyu Zhou
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangfang Yu
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Huang
- Department of Environmental Health &Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
16
|
Dysmetabolism and Neurodegeneration: Trick or Treat? Nutrients 2022; 14:nu14071425. [PMID: 35406040 PMCID: PMC9003269 DOI: 10.3390/nu14071425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests the existence of a strong link between metabolic syndrome and neurodegeneration. Indeed, epidemiologic studies have described solid associations between metabolic syndrome and neurodegeneration, whereas animal models contributed for the clarification of the mechanistic underlying the complex relationships between these conditions, having the development of an insulin resistance state a pivotal role in this relationship. Herein, we review in a concise manner the association between metabolic syndrome and neurodegeneration. We start by providing concepts regarding the role of insulin and insulin signaling pathways as well as the pathophysiological mechanisms that are in the genesis of metabolic diseases. Then, we focus on the role of insulin in the brain, with special attention to its function in the regulation of brain glucose metabolism, feeding, and cognition. Moreover, we extensively report on the association between neurodegeneration and metabolic diseases, with a particular emphasis on the evidence observed in animal models of dysmetabolism induced by hypercaloric diets. We also debate on strategies to prevent and/or delay neurodegeneration through the normalization of whole-body glucose homeostasis, particularly via the modulation of the carotid bodies, organs known to be key in connecting the periphery with the brain.
Collapse
|
17
|
Natale F, Leone L, Rinaudo M, Sollazzo R, Barbati SA, La Greca F, Spinelli M, Fusco S, Grassi C. Neural stem cell-derived extracellular vesicles counteract insulin resistance-induced senescence of neurogenic niche. Stem Cells 2022; 40:318-331. [DOI: 10.1093/stmcls/sxab026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/17/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Neural stem and progenitor cell (NSPC) depletion may play a crucial role in the cognitive impairment observed in many age-related non communicable diseases. Insulin resistance affects brain functions through a plethora of mechanisms that remain poorly understood. In an experimental model of insulin resistant NSPCs, we identified a novel molecular circuit relying on Insulin receptor substrate 1 (IRS1)/Forkhead box O (FoxO) signaling cascade and inhibiting the recruitment of transcription factors FoxO1 and FoxO3a on the promoters of genes regulating proliferation and self-renewal. Insulin resistance also epigenetically increased the expression of cyclin-dependent kinase inhibitor 1 (p21) and accelerated NSPC senescence. Of note, we found that stimulation of NSPCs with NSPC-derived exosomes (exo-NSPC) rescued IRS1/FoxO activation and counteracted both the reduced proliferation and senescence of stem cells. Accordingly, intranasal administration of exo-NSPC counteracted the high fat diet-dependent impairment of adult hippocampal neurogenesis in mice by restoring the balance between proliferating and senescent NSPCs in the hippocampus. Our findings suggest a novel mechanism underlying the metabolic control of NSPC fate potentially involved in the detrimental effects of metabolic disorders on brain plasticity. In addition, our data highlight the role of extracellular vesicle-mediated signals in the regulation of cell fate within the adult neurogenic niche.
Collapse
Affiliation(s)
- Francesca Natale
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Leone
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Raimondo Sollazzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Francesco La Greca
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Spinelli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
18
|
Motta C, Assogna M, Bonomi CG, Mascolo AP, De Lucia V, Semprini R, Mercuri NB, Koch G, Martorana A. Diabetes mellitus contributes to higher cerebrospinal fluid tau levels selectively in Alzheimer's disease patients with the APOE4 genotype. Eur J Neurol 2021; 28:3965-3971. [PMID: 34309155 DOI: 10.1111/ene.15039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Diabetes mellitus (DM) is considered a risk factor for Alzheimer's disease (AD) and shares some pathological pathways, such as activation of amyloid cascade and tau phosphorylation. The aim of the present study was to investigate to what extent DM could impact on neurodegeneration within the AD continuum, using β amyloid (A: Aβ1-42 ) and phosphorylated tau (T: p-tau) biomarkers to discriminate patients by Alzheimer's pathological change (A+/T-) and AD (A+/T+), according to the National Institute on Aging and Alzheimer's Association classification. In addition, we aimed to evaluate whether APOE genotype interacts with tau protein and glucose metabolism dysfunction to affect the pathological process. METHODS For this retrospective observational study, 1350 patients were recruited. The patients underwent a complete clinical investigation, neuropsychological assessment, lumbar puncture for cerebrospinal fluid (CSF) biomarkers analysis and APOE genotyping. RESULTS A total of 607 patients fulfilled the clinical criteria of mild cognitive impairment or early dementia. In A+T- patients (n = 350), DM did not influence CSF biomarker levels, while among A+T+ patients (n = 257) those with DM showed increased total tau (t-tau) levels compared to non-DM patients (DM: 919.4 ± 444 vs. non-DM: 773.1 ± 348.2; p = 0.04), but similar p-tau (p = 0.72) and Aβ1-42 levels (p = 0.83). Furthermore, multivariable regression analyses showed a significant association between DM and t-tau CSF levels, adjusting for age and sex, in APOE E4+ carriers (coefficient 222.83, 95% confidence interval 47.49-398.1; p = 0.01), but not in APOE E4- (p = 0.53). CONCLUSIONS The present study shows a clear dependency of CSF t-tau levels on DM for APOE E4+ AD patients, suggesting important differences between APOE E4-related and non-related disease, with key implications for AD pathophysiology and treatment.
Collapse
Affiliation(s)
- Caterina Motta
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Martina Assogna
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | | - Vincenzo De Lucia
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | | | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Neuroscience and Rehabilitation Department, Human Physiology Section, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
19
|
Role of insulin receptor substance-1 modulating PI3K/Akt insulin signaling pathway in Alzheimer's disease. 3 Biotech 2021; 11:179. [PMID: 33927970 DOI: 10.1007/s13205-021-02738-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, also regarded as "type 3 diabetes" for the last few years because of the brain insulin resistance (IR) and dysregulation of insulin signaling in the brain, which can further promote pathological progression of AD. IRS-1/PI3K/Akt insulin signaling pathway disorder and its downstream cascade reaction are responsible for cognitive decline in the brain. In recent years, a growing number of studies has documented that dysregulation of insulin signaling is a key feature of AD and has crucial correlations with serine/tyrosine (Ser/Tyr) phosphorylation of insulin receptor substance-1(IRS-1). Phosphorylation of this protein has been identified as an important molecule involved in the process of amyloid-β (Aβ) deposition into senile plaques (SPs) and tau hyperphosphorylation into neurofibrillary tangles (NFTs). In this paper, we review the links between IRS-1 and the PI3K/Akt insulin signaling pathway, and highlight phosphorylated IRS-1 which negatively regulated by downstream effector of Akt such as mTOR, S6K, and JNK, among others in AD. Furthermore, anti-diabetic drugs including metformin, thiazolidinediones, and glucagon-like peptide-1 (GLP-1) analogue could modulate IRS-1 phosphorylation, brain IR, PI3K/Akt insulin signaling pathway, and other pathologic processes of AD. The above suggest that anti-diabetic drugs may be promising strategies for AD disease-modifying treatments.
Collapse
|
20
|
Neural Stem Cell-Derived Exosomes Revert HFD-Dependent Memory Impairment via CREB-BDNF Signalling. Int J Mol Sci 2020; 21:ijms21238994. [PMID: 33256199 PMCID: PMC7729830 DOI: 10.3390/ijms21238994] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
Overnutrition and metabolic disorders impair cognitive functions through molecular mechanisms still poorly understood. In mice fed with a high fat diet (HFD) we analysed the expression of synaptic plasticity-related genes and the activation of cAMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signalling. We found that a HFD inhibited both CREB phosphorylation and the expression of a set of CREB target genes in the hippocampus. The intranasal administration of neural stem cell (NSC)-derived exosomes (exo-NSC) epigenetically restored the transcription of Bdnf, nNOS, Sirt1, Egr3, and RelA genes by inducing the recruitment of CREB on their regulatory sequences. Finally, exo-NSC administration rescued both BDNF signalling and memory in HFD mice. Collectively, our findings highlight novel mechanisms underlying HFD-related memory impairment and provide evidence of the potential therapeutic effect of exo-NSC against metabolic disease-related cognitive decline.
Collapse
|
21
|
Penna E, Pizzella A, Cimmino F, Trinchese G, Cavaliere G, Catapano A, Allocca I, Chun JT, Campanozzi A, Messina G, Precenzano F, Lanzara V, Messina A, Monda V, Monda M, Perrone-Capano C, Mollica MP, Crispino M. Neurodevelopmental Disorders: Effect of High-Fat Diet on Synaptic Plasticity and Mitochondrial Functions. Brain Sci 2020; 10:brainsci10110805. [PMID: 33142719 PMCID: PMC7694125 DOI: 10.3390/brainsci10110805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) include diverse neuropathologies characterized by abnormal brain development leading to impaired cognition, communication and social skills. A common feature of NDDs is defective synaptic plasticity, but the underlying molecular mechanisms are only partially known. Several studies have indicated that people’s lifestyles such as diet pattern and physical exercise have significant influence on synaptic plasticity of the brain. Indeed, it has been reported that a high-fat diet (HFD, with 30–50% fat content), which leads to systemic low-grade inflammation, has also a detrimental effect on synaptic efficiency. Interestingly, metabolic alterations associated with obesity in pregnant woman may represent a risk factor for NDDs in the offspring. In this review, we have discussed the potential molecular mechanisms linking the HFD-induced metabolic dysfunctions to altered synaptic plasticity underlying NDDs, with a special emphasis on the roles played by synaptic protein synthesis and mitochondrial functions.
Collapse
Affiliation(s)
- Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Ivana Allocca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Angelo Campanozzi
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Francesco Precenzano
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Valentina Lanzara
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (F.P.); (V.L.)
| | - Antonietta Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Vincenzo Monda
- Department of Experimental Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.M.); (M.M.)
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
- Correspondence: ; Tel.: +39-081-679990; Fax: +39-081-679233
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (F.C.); (G.T.); (G.C.); (A.C.); (I.A.); (M.C.)
| |
Collapse
|