1
|
Cao N, Merchant W, Gautron L. Limited evidence for anatomical contacts between intestinal GLP-1 cells and vagal neurons in male mice. Sci Rep 2024; 14:23666. [PMID: 39390033 PMCID: PMC11467209 DOI: 10.1038/s41598-024-74000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
The communication between intestinal Glucagon like peptide 1 (GLP-1)-producing cells and the peripheral nervous system has garnered renewed interest considering the availability of anti-obesity and anti-diabetic approaches targeting GLP-1 signaling. While it is well-established that intestinal GLP-1 cells can exert influence through paracrine mechanisms, recent evidence suggests the possible existence of synaptic-like connections between GLP-1 cells and peripheral neurons, including those of the vagus nerve. In this study, using a reporter Phox2b-Cre-Tomato mouse model and super-resolution confocal microscopy, we demonstrated that vagal axons made apparent contacts with less than 0.5% of GLP-1 cells. Moreover, immunohistochemistry combined with super-resolution confocal microscopy revealed abundant post-synaptic density 95 (PSD-95) immunoreactivity within the enteric plexus of the lower intestines of C57/BL6 mice, with virtually none in its mucosa. Lastly, utilizing RNAScope in situ hybridization in the lower intestines of mice, we observed that GLP-1 cells expressed generic markers of secretory cells such as Snap25 and Nefm, but neither synaptic markers such as Syn1 and Nrxn2, nor glutamatergic markers such as Slc17a7. Through theoretical considerations and a critical review of the literature, we concluded that intestinal GLP-1 cells primarily communicate with vagal neurons through paracrine mechanisms, rather than synaptic-like contacts.
Collapse
Affiliation(s)
- Newton Cao
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Warda Merchant
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laurent Gautron
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Zhang Y, Thanou M, Vllasaliu D. Exploiting disease-induced changes for targeted oral delivery of biologics and nanomedicines in inflammatory bowel disease. Eur J Pharm Biopharm 2020; 155:128-138. [PMID: 32853696 DOI: 10.1016/j.ejpb.2020.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/21/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive disorder with destructive inflammation in the gastrointestinal tract (GIT). Biologics have changed the management of IBD, but have serious limitations, which is associated with their systemic administration via injection. Oral administration is the most accepted route of drug administration. However, the physiological barriers of the GIT pose significant challenges for oral administration of biologics, making this route of administration currently unavailable. The status of tissue barriers to oral drug delivery is altered in IBD. This may bring more challenges, but also present opportunities for oral delivery of biologics. This article provides an overview of disease-induced alterations of GIT barriers in IBD and discusses challenges, opportunities and commonly-utilised strategies for oral delivery of complex therapeutics, including biologics and nanomedicines.
Collapse
Affiliation(s)
- Yunyue Zhang
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, United Kingdom.
| | - Maya Thanou
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, United Kingdom.
| | - Driton Vllasaliu
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
3
|
Li J, Gao W. Fabrication and characterization of 3D microtubular collagen scaffolds for peripheral nerve repair. J Biomater Appl 2019; 33:541-552. [PMID: 30326800 DOI: 10.1177/0885328218804338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the structure-function relationship in biomaterial constructs is critical in optimizing biological outcomes. For ensheathed structures such as peripheral nerve, engineering implantable tissue substitutes has been challenging. This is due to a unique geometry of thin-walled microtube arrays composed mostly of basement membrane. In this work, we propose a sacrificial templating method to create Matrigel scaffolds that resemble endogenous peripheral nerve. These paralleled microtube constructs possess high void space and membrane-like walls. Additionally, we investigated the effect of chemical crosslinking in altering the physical, mechanical, and biologic properties of Matrigel. Results show that both glutaraldehyde and genipin increased the modulus and failure stress of Matrigel while also improving degradation resistance. However, glutaraldehyde crosslinking induced some cytotoxicity whereas genipin showed good biocompatibility. PC-12 cells, Schwann cells, and primary chick dorsal root ganglia cultured onto microtube scaffolds demonstrated viability up to 10 days. Strong cellular alignment along the channels was observed in Schwann cells whereas neurite outgrowth in primary chick dorsal root ganglia was also biased along the major axis of the microtubes. This suggests that the microtubes may mediate cell orientation and axon pathfinding. This proof of concept study provides a tunable workflow that may be adapted to other collagen types.
Collapse
Affiliation(s)
- Jianming Li
- Center for Paralysis Research, Purdue University, West Lafayette, IN USA
| | - Wen Gao
- Center for Paralysis Research, Purdue University, West Lafayette, IN USA
| |
Collapse
|
4
|
Engineering Biomimetic Gelatin Based Nanostructures as Synthetic Substrates for Cell Culture. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a need for synthetic substrates that replicate the natural environment for in vitro intestinal models. Electrospinning is one of the most versatile and cost-effective techniques to produce nanofibrous scaffolds mimicking the basement membrane topography. In this study, three different novel electrospun nanofibrous scaffolds made of a polycaprolactone (PCL), gelatin, and poloxamer 188 (P188) blend were produced and compared with PCL and PCL/gelatin fibers produced using the same solvent system and electrospinning parameters. Each polymer solution used in this experiment was electrospun at four different voltages to study its influence on fiber diameter. The morphology and physical characteristics of the fibers were studied using scanning electron microscopy and atomic force microscopy. The average fiber diameter of all scaffolds was within 200–600 nm and no significant decrease in diameter with an increase in voltage was observed. Attenuated total reflection Fourier transform infrared spectroscopy was used to determine the chemical characteristics of the nanofibrous scaffold. The conductivity of the polymer solutions was also analyzed. Biocompatibility of the scaffolds was determined by a cell proliferation study performed using colorectal carcinoma (Caco-2) cells. PCL/gelatin/P188 scaffolds exhibited higher cell proliferation compared to PCL, PCL/gelatin scaffolds, and the control (tissue culture multi-well plate) with PCL/gelatin/P188 80:10:10 sample showing the highest cell proliferation.
Collapse
|
5
|
Mantaj J, Abu-Shams T, Enlo-Scott Z, Swedrowska M, Vllasaliu D. Role of the Basement Membrane as an Intestinal Barrier to Absorption of Macromolecules and Nanoparticles. Mol Pharm 2018; 15:5802-5808. [PMID: 30380896 DOI: 10.1021/acs.molpharmaceut.8b01053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Full understanding of the barrier property of mucosal tissues is imperative for development of successful mucosal drug delivery strategies, particularly for biologics and nanomedicines. The contribution of the mucosal basement membrane (BM) to this barrier is currently not fully appreciated. This work examined the role of the BM as a barrier to intestinal absorption of model macromolecules (5 and 10 kDa dextrans) and 100 nm polystyrene nanoparticles. Dextrans and nanoparticles were applied either directly to BM-coated inserts or to an intestinal model, namely, differentiated intestinal epithelial monolayers (Caco-2) cultured on BM-modified inserts. The work shows that the BM per se does not impact the diffusion of dextran macromolecules but severely hinders the movement of nanoparticles. However, importantly, Caco-2 monolayers cultured on BM-coated inserts, which show a remarkably different morphology, display a significantly larger barrier to the translocation of one dextran, as well as nanoparticle systems compared to cells cultured on unmodified inserts. Therefore, this work shows that, in addition to presenting a direct physical barrier to the movement of nanoparticles, the BM also exerts an indirect barrier effect, likely due to its influence on epithelial cell physiology. This work is important as it highlights the currently unmet need to consider and further study the barrier properties of the BM in mucosal delivery of biologics and nanomedicines.
Collapse
Affiliation(s)
- Julia Mantaj
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , King's College London , London , SE1 9NH , U.K
| | - Tamara Abu-Shams
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , King's College London , London , SE1 9NH , U.K
| | - Zachary Enlo-Scott
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , King's College London , London , SE1 9NH , U.K
| | - Magda Swedrowska
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , King's College London , London , SE1 9NH , U.K
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , King's College London , London , SE1 9NH , U.K
| |
Collapse
|
6
|
Vllasaliu D, Thanou M, Stolnik S, Fowler R. Recent advances in oral delivery of biologics: nanomedicine and physical modes of delivery. Expert Opin Drug Deliv 2018; 15:759-770. [PMID: 30033780 DOI: 10.1080/17425247.2018.1504017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Research into oral delivery of biologics has a long and rich history but has not produced technologies used in the clinic. The area has evolved in terms of strategies to promote oral biologics delivery from early chemical absorption enhancers to nanomedicine to devices. Continued activity in this area is justifiable considering the remarkable proliferation of biologics. AREAS COVERED The article discusses some physiological barriers to oral delivery of biologics, with a special focus on less characterized barriers such as the basement membrane. Recent progress in oral delivery of biologics via nanomedicine is subsequently covered. Finally, the emerging field of device-mediated gastrointestinal delivery of biotherapeutics is discussed EXPERT OPINION Oral delivery of biologics is considered a 'panacea' in drug delivery. Almost century-old approaches of utilizing chemical absorption enhancers have not produced clinically translated technologies. Nanomedicine for oral biologics delivery has demonstrated potential, but the field is relatively new, and technologies have not progressed to the clinic. Device-mediated oral biologics delivery (e.g. ultrasound or microneedles) is in its infancy. However, this space is likely to intensify owing to advances in electronics and materials, as well as the challenges and history related to clinical translation of alternative approaches.
Collapse
Affiliation(s)
- Driton Vllasaliu
- a School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , King's College London , London , United Kingdom
| | - Maya Thanou
- a School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , King's College London , London , United Kingdom
| | - Snjezana Stolnik
- b Division of Drug Delivery and Tissue Engineering, Boots Science Building , University of Nottingham , Nottingham , United Kingdom
| | - Robyn Fowler
- c SuccinctChoice Medical Communications , London , United Kingdom
| |
Collapse
|
7
|
Bannazadeh Baghi H, Nauwynck HJ. Effect of equine herpesvirus type 1 (EHV-1) infection of nasal mucosa epithelial cells on integrin alpha 6 and on different components of the basement membrane. Arch Virol 2015; 161:103-10. [PMID: 26497179 DOI: 10.1007/s00705-015-2643-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/08/2015] [Indexed: 02/03/2023]
Abstract
The respiratory mucosa is the common port of entry of equine herpesvirus type 1 (EHV-1) and several other alphaherpesviruses. An important prerequisite for successful host invasion of the virus is to cross the epithelial cell layer and the underlying basement membrane barrier. In the present study, an analysis was performed to see if an EHV-1 infection of nasal mucosa epithelial cells leads to damage of the underlying extracellular matrix proteins. Nasal mucosa explants were inoculated with EHV-1 and collected at 0, 24 and 48 hours post-inoculation (hpi). Then, double immunofluorescence staining was performed to detect viral-antigen-positive cells on the one hand and integrin alpha 6, laminin, collagen IV and collagen VII on the other hand. The area of these extracellular matrix proteins was measured in regions of interest (ROIs) at a magnification of 200X by means of the software imaging system ImageJ. ROIs were defined beneath uninfected and infected regions. In uninfected regions, 22-28 % of the ROI was stained for integrin alpha 6, 18-37 % for laminin, 14-38 % for collagen IV and 18-26 % for collagen VII. In infected regions, the percentage positive for integrin alpha 6 was significantly decreased to 0.1-9 % and 0.1-6 % after 24 and 48 hours of inoculation, respectively. Infection did not alter the percentages for laminin and collagen IV. For collagen VII, an increase in the percentage (from 18-26 % to 28-39 %) could be observed underneath EHV-1-infected plaques at 48 hours of inoculation. In conclusion, the results revealed a substantial impact of EHV-1 infection on integrin alpha 6 and collagen VII, two important components of the extracellular matrix, which are associated with the basement membrane and may facilitate virus penetration via hijacked leukocytes to underlying tissues.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Laboratory of Virology, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| |
Collapse
|
8
|
Generating and characterizing the mechanical properties of cell-derived matrices using atomic force microscopy. Methods 2015; 94:85-100. [PMID: 26439175 DOI: 10.1016/j.ymeth.2015.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/26/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
Mechanical interaction between cells and their surrounding extracellular matrix (ECM) controls key processes such as proliferation, differentiation and motility. For many years, two-dimensional (2D) models were used to better understand the interactions between cells and their surrounding ECM. More recently, variation of the mechanical properties of tissues has been reported to play a major role in physiological and pathological scenarios such as cancer progression. The 3D architecture of the ECM finely tunes cellular behavior to perform physiologically relevant tasks. Technical limitations prevented scientists from obtaining accurate assessment of the mechanical properties of physiologically realistic matrices. There is therefore a need for combining the production of high-quality cell-derived 3D matrices (CDMs) and the characterization of their topographical and mechanical properties. Here, we describe methods that allow to accurately measure the young modulus of matrices produced by various cellular types. In the first part, we will describe and review several protocols for generating CDMs matrices from endothelial, epithelial, fibroblastic, muscle and mesenchymal stem cells. We will discuss tools allowing the characterization of the topographical details as well as of the protein content of such CDMs. In a second part, we will report the methodologies that can be used, based on atomic force microscopy, to accurately evaluate the stiffness properties of the CDMs through the quantification of their young modulus. Altogether, such methodologies allow characterizing the stiffness and topography of matrices deposited by the cells, which is key for the understanding of cellular behavior in physiological conditions.
Collapse
|
9
|
Glentis A, Gurchenkov V, Matic Vignjevic D. Assembly, heterogeneity, and breaching of the basement membranes. Cell Adh Migr 2015; 8:236-45. [PMID: 24727304 DOI: 10.4161/cam.28733] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Basement membranes are thin sheets of self-assembled extracellular matrices that are essential for embryonic development and for the homeostasis of adult tissues. They play a role in structuring, protecting, polarizing, and compartmentalizing cells, as well as in supplying them with growth factors. All basement membranes are built from laminin and collagen IV networks stabilized by nidogen/perlecan bridges. The precise composition of basement membranes, however, varies between different tissues. Even though basement membranes represent physical barriers that delimit different tissues, they are breached in many physiological or pathological processes, including development, the immune response, and tumor invasion. Here, we provide a brief overview of the molecular composition of basement membranes and the process of their assembly. We will then illustrate the heterogeneity of basement membranes using two examples, the epithelial basement membrane in the gut and the vascular basement membrane. Finally, we examine the different strategies cells use to breach the basement membrane.
Collapse
|
10
|
Brody S, Anilkumar T, Liliensiek S, Last JA, Murphy CJ, Pandit A. Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design. TISSUE ENGINEERING 2006; 12:413-21. [PMID: 16548699 PMCID: PMC4820341 DOI: 10.1089/ten.2006.12.413] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A fully effective prosthetic heart valve has not yet been developed. A successful tissue-engineered valve prosthetic must contain a scaffold that fully supports valve endothelial cell function. Recently, topographic features of scaffolds have been shown to influence the behavior of a variety of cell types and should be considered in rational scaffold design and fabrication. The basement membrane of the aortic valve endothelium provides important parameters for tissue engineering scaffold design. This study presents a quantitative characterization of the topographic features of the native aortic valve endothelial basement membrane; topographical features were measured, and quantitative data were generated using scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and light microscopy. Optimal conditions for basement membrane isolation were established. Histological, immunohistochemical, and TEM analyses following decellularization confirmed basement membrane integrity. SEM and AFM photomicrographs of isolated basement membrane were captured and quantitatively analyzed. The basement membrane of the aortic valve has a rich, felt-like, 3-D nanoscale topography, consisting of pores, fibers, and elevations. All features measured were in the sub-100 nm range. No statistical difference was found between the fibrosal and ventricular surfaces of the cusp. These data provide a rational starting point for the design of extracellular scaffolds with nanoscale topographic features that mimic those found in the native aortic heart valve basement membrane.
Collapse
Affiliation(s)
- Sarah Brody
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|