1
|
Mazzitelli M, Kiritoshi T, Presto P, Hurtado Z, Antenucci N, Ji G, Neugebauer V. BDNF Signaling and Pain Modulation. Cells 2025; 14:476. [PMID: 40214430 PMCID: PMC11987912 DOI: 10.3390/cells14070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important neuromodulator of nervous system functions and plays a key role in neuronal growth and survival, neurotransmission, and synaptic plasticity. The effects of BDNF are mainly mediated by the activation of tropomyosin receptor kinase B (TrkB), expressed in both the peripheral and central nervous system. BDNF has been implicated in several neuropsychiatric conditions such as schizophrenia and anxio-depressive disorders, as well as in pain states. This review summarizes the evidence for a critical role of BDNF throughout the pain system and describes contrasting findings of its pro- and anti-nociceptive effects. Different cellular sources of BDNF, its influence on neuroimmune signaling in pain conditions, and its effects in different cell types and regions are described. These and endogenous BDNF levels, downstream signaling mechanisms, route of administration, and approaches to manipulate BDNF functions could explain the bidirectional effects in pain plasticity and pain modulation. Finally, current knowledge gaps concerning BDNF signaling in pain are discussed, including sex- and pathway-specific differences.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Zachary Hurtado
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
2
|
Wang Y, Li GW, Zhu SL, Xu TT, Qin YW, Cheng CQ, Zheng QW, He C, Zhou BD, Fang SQ. NMDAR2B/PKA/CREB signaling pathway contributes to esophageal neuropathic pain in gastroesophageal reflux disease. World J Gastroenterol 2025; 31:98974. [PMID: 40124269 PMCID: PMC11924000 DOI: 10.3748/wjg.v31.i11.98974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/10/2024] [Accepted: 02/17/2025] [Indexed: 03/13/2025] Open
Abstract
BACKGROUND Esophageal hypersensitivity is an important cause of refractory gastroesophageal reflux disease, in which patients do not respond to standard acid-suppressive therapy and suffer from continuous noncardiac chest pain and regurgitation. The N-methyl-D-aspartate receptor (NMDAR) may play a crucial role in the development of visceral hypersensitivity in functional gastrointestinal disorders. However, the specific mechanisms of visceral hypersensitivity in upper digestive tract diseases remain poorly understood. AIM To investigate the role of the NMDAR2B/protein kinase A (PKA)/cAMP-response element binding protein (CREB) signaling pathway in the development of esophageal neuropathic pain associated with gastroesophageal reflux disease (GERD). METHODS Thirty-six 6-week-old specific pathogen free rats were randomly assigned to six groups: the control, model, model + NMDAR agonist, model + NMDAR antagonist, model + PKA antagonist, and model + NMDAR antagonist + PKA agonist groups, with six rats in each group. The model was induced via an intraperitoneal injection of ovalbumin for sensitization along with local esophageal stimulation. Immunohistochemistry and Western blotting were utilized to assess the expression levels of NMDAR2B signaling pathway-related proteins in the cingulate gyrus, dorsal thalamus, spinal dorsal horn, and peripheral esophageal tissues. RT-PCR was used to measure the corresponding mRNA expression, and ELISA was used to determine the serum brain-derived neurotrophic factor (BDNF) concentration. Behavioral scoring was performed during balloon distention and acid perfusion of the lower esophagus. RESULTS Compared with the control group, the model group presented significantly increased expression levels of the NMDAR2B, PKA, CREB, BDNF, substance P, and calcitonin gene-related peptide proteins and mRNAs in the cingulate gyrus, dorsal thalamus, spinal dorsal horn, and lower esophagus (P < 0.05). Compared with the model group, the model + NMDAR agonist group exhibited even higher expression levels of these proteins and mRNAs (P < 0.05), whereas the model + NMDAR antagonist and model + PKA antagonist groups presented lower expression levels (P < 0.05). The model + NMDAR antagonist + PKA agonist group presented higher expression levels than did the model + NMDAR antagonist group (P < 0.05). The changes in the serum BDNF concentration and behavioral score during balloon distention and acid perfusion were consistent with these changes in expression. CONCLUSION The NMDAR2B signaling pathway plays a critical role in the development of neuropathic pain in GERD through the PKA/CREB/BDNF pathway.
Collapse
Affiliation(s)
- Yi Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guan-Wu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Sheng-Liang Zhu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ting-Ting Xu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yi-Wen Qin
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chuan-Qi Cheng
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qin-Wei Zheng
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Cong He
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Bing-Duo Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Sheng-Quan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
3
|
Greco R, Francavilla M, Facchetti S, Demartini C, Zanaboni AM, Antonangeli MI, Maffei M, Cattani F, Aramini A, Allegretti M, Tassorelli C, De Filippis L. Intranasal administration of recombinant human BDNF as a potential therapy for some primary headaches. J Headache Pain 2024; 25:184. [PMID: 39455939 PMCID: PMC11515342 DOI: 10.1186/s10194-024-01890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In addition to its critical role in neurogenesis, brain-derived neurotrophic factor (BDNF) modulates pain and depressive behaviors. METHODS In a translational perspective, we tested the anti-migraine activity of highly purified and characterized recombinant human BDNF (rhBDNF) in an animal model of cephalic pain based on the chronic and intermittent NTG administration (five total injections over nine days), used to mimic recurrence of attacks over a given period. To achieve this, we assessed the effects of two doses of rhBDNF (40 and 80 µg/kg) administered intranasally to adult male Sprague-Dawley rats, on trigeminal hyperalgesia (by orofacial formalin test), gene expression (by rt-PCR) of neuropeptides and inflammatory cytokines in specific areas of the brain related to migraine pain. Serum levels of CGRP, PACAP, and VIP (by ELISA) were also evaluated. The effects of rhBDNF were compared with those of sumatriptan (5 mg/kg i.p), administered 1 h before the last NTG administration. RESULTS Both doses of rhBDNF significantly reduced NTG-induced nocifensive behavior in Phase II of the orofacial formalin test. The anti-hyperalgesic effect of intranasal high-dose rhBDNF administration in the NTG-treated animals was associated with a significant modulation of mRNA levels of neuropeptides (CGRP, PACAP, VIP) and cytokines (IL-1beta, IL-10) in the trigeminal ganglion, medulla-pons, and hypothalamic area. Of note, the effects of rhBNDF treatment were comparable to those induced by the administration of sumatriptan. rhBDNF administration at both doses significantly reduced serum levels of PACAP, while the higher dose also significantly reduced serum levels of VIP. CONCLUSIONS The findings suggest that intranasal rhBDNF has the potential to be a safe, non-invasive and effective therapeutic approach for the treatment of primary headache, particularly migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
| | - Miriam Francavilla
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sara Facchetti
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Chiara Demartini
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | | | - Cristina Tassorelli
- Section of Translational Neurovascular Research, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
4
|
Wu D, Li F, Yang F, Liu J. Validity of Plasma Neuropeptide Y in Combination with Clinical Factors in Predicting Neuralgia Following Herpes Zoster. Int J Gen Med 2024; 17:4805-4814. [PMID: 39440102 PMCID: PMC11495191 DOI: 10.2147/ijgm.s480411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background Numerous lines of evidence suggest that neuropeptide Y (NPY) is critically involved in the modulation of neuropathic pain. Postherpetic neuralgia (PHN) is characterized by prolonged duration, severe pain, and significant treatment resistance, substantially impairing patients' quality of life. This study aims to evaluate the potential of plasma NPY levels in patients with PHN as a predictive biomarker for the development of this condition. Methods Between February 2022 and December 2023, 182 patients with herpes zoster (HZ) were recruited. Thirty-eight volunteers with no history of HZ were also recruited as controls. Clinical factors, NPY, brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were assessed within 3 days of healing. Logistic regression analysis was used to predict the development of PHN. Results NPY levels were lower and BDNF and NGF were higher in HZ patients than those in controls. Only NPY levels were lower in patients with PHN (n = 59) compared with those without PHN (n = 123). Age, acute pain severity, and rash area were independent predictors of PHN, as were NPY levels. The area under the curve (AUC) to predict the development of PHN based on the combination of NPY levels and clinical factors was 0.873 (95% CI: 0.805 to 0.940), and the AUC was 0.804 based on only clinical factors (AUC: 0.804, 95% CI: 0.728 to 0.881). Conclusion Low plasma NPY levels are a predictor of developing PHN in patients with HZ. Combining clinical predictors with NPY levels may improve predictive accuracy.
Collapse
Affiliation(s)
- Dan Wu
- Department of Dermatology, Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, 750011, People’s Republic of China
| | - Fang Li
- Department of Pathology, Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, 750011, People’s Republic of China
| | - Feifei Yang
- Department of Dermatology, Tongzhou Maternal & Child Health Hospital of Beijing, Beijing City, 101101, People’s Republic of China
| | - Jun Liu
- Department of Critical Care Medicine, the First People’s Hospital of Yinchuan, Yinchuan City, Ningxia Hui Autonomous Region, 750001, People’s Republic of China
| |
Collapse
|
5
|
Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules 2024; 14:539. [PMID: 38785946 PMCID: PMC11118093 DOI: 10.3390/biom14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| |
Collapse
|
6
|
Lee H, Tae G, Hwang S, Wee S, Ha Y, Lee HL, Shin D. Heparin-Based Hydrogel Micropatches with Human Adipose-Derived Stem Cells: A Promising Therapeutic Approach for Neuropathic Pain Relief. Biomedicines 2023; 11:1436. [PMID: 37239107 PMCID: PMC10216470 DOI: 10.3390/biomedicines11051436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
This study explores the therapeutic efficacy of heparin-based hydrogel micropatches containing human adipose-derived stem cells (hASCs) in treating neuropathic pain caused by nerve damage. Our results showed that hASCs exhibited neuroregenerative and pain-relieving effects when used with heparin-based hydrogel micropatches in the neuropathic pain animal model. The use of this combination also produced enhanced cell viability and nerve regeneration. We conducted various neurological behavioral tests, dynamic plantar tests, histological examinations, and neuroelectrophysiological examinations to confirm the therapeutic effect. Our findings suggest that this approach could maximize therapeutic efficacy and improve the quality of life for patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
| | - GiYoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea;
| | - SaeYeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - SungWon Wee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
| | - Yoon Ha
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
| | - DongAh Shin
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea; (H.L.); (S.H.); (S.W.); (Y.H.)
| |
Collapse
|
7
|
Carozzi VA, Salio C, Rodriguez-Menendez V, Ciglieri E, Ferrini F. 2D <em>vs</em> 3D morphological analysis of dorsal root ganglia in health and painful neuropathy. Eur J Histochem 2021; 65. [PMID: 34664808 PMCID: PMC8547168 DOI: 10.4081/ejh.2021.3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Dorsal root ganglia (DRGs) are clusters of sensory neurons that transmit the sensory information from the periphery to the central nervous system, and satellite glial cells (SGCs), their supporting trophic cells. Sensory neurons are pseudounipolar neurons with a heterogeneous neurochemistry reflecting their functional features. DRGs, not protected by the blood brain barrier, are vulnerable to stress and damage of different origin (i.e., toxic, mechanical, metabolic, genetic) that can involve sensory neurons, SGCs or, considering their intimate intercommunication, both cell populations. DRG damage, primary or secondary to nerve damage, produces a sensory peripheral neuropathy, characterized by neurophysiological abnormalities, numbness, paraesthesia and dysesthesia, tingling and burning sensations and neuropathic pain. DRG stress can be morphologically detected by light and electron microscope analysis with alterations in cell size (swelling/atrophy) and in different subcellular compartments (i.e., mitochondria, endoplasmic reticulum, and nucleus) of neurons and/or SGCs. In addition, neurochemical changes can be used to portray abnormalities of neurons and SGC. Conventional immunostaining, i.e., immunohistochemical detection of specific molecules in tissue slices, can be employed to detect, localize and quantify particular markers of damage in neurons (i.e., nuclear expression of ATF3) or SGCs (i.e., increased expression of GFAP), markers of apoptosis (i.e., caspases), markers of mitochondrial suffering and oxidative stress (i.e., 8-OHdG), markers of tissue inflammation (i.e., CD68 for macrophage infiltration) etc. However classical (2D) methods of immunostaining disrupt the overall organization of the DRG, thus resulting in the loss of some crucial information. Whole-mount (3D) methods have been recently developed to investigate DRG morphology and neurochemistry without tissue slicing, giving the opportunity to study the intimate relationship between SGCs and sensory neurons in health and disease. Here, we aim to compare classical (2D) vs whole-mount (3D) approaches to highlight “pros” and “cons” of the two methodologies when analysing neuropathy-induced alterations in DRGs.
Collapse
Affiliation(s)
- Valentina Alda Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza (MB).
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| | | | | | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| |
Collapse
|
8
|
Pierre O, Fouchard M, Le Goux N, Buscaglia P, Leschiera R, Lewis RJ, Mignen O, Fluhr JW, Misery L, Le Garrec R. Pacific-Ciguatoxin-2 and Brevetoxin-1 Induce the Sensitization of Sensory Receptors Mediating Pain and Pruritus in Sensory Neurons. Mar Drugs 2021; 19:387. [PMID: 34356812 PMCID: PMC8306505 DOI: 10.3390/md19070387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/24/2022] Open
Abstract
Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also in CFP. No curative treatment is available and the pathophysiology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2) and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of responding cells and/or the response amplitude to their pharmacological agonists). In addition, we studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2, MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting that those neurotrophins could contribute to the sensitization of the aforementioned receptors and channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in the induction or persistence of sensory disturbances in CFP syndrome.
Collapse
Affiliation(s)
- Ophélie Pierre
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Maxime Fouchard
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Nelig Le Goux
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
| | - Paul Buscaglia
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Raphaël Leschiera
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Olivier Mignen
- Lymphocytes B et Autoimmunité, Faculty of Medicine and Health Sciences, University of Brest, Inserm, UMR1227, F-29200 Brest, France; (N.L.G.); (P.B.); (O.M.)
| | - Joachim W. Fluhr
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
- Department of Dermatology and Allergology, Universitaetsmedizin Charité Berlin, D-10117 Berlin, Germany
| | - Laurent Misery
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
- Department of Dermatology, University Hospital of Brest, F-29200 Brest, France
| | - Raphaële Le Garrec
- Laboratoire Interactions Epithéliums-Neurones (LIEN), University of Brest, EA4685, F-29200 Brest, France; (M.F.); (R.L.); (J.W.F.); (L.M.); (R.L.G.)
| |
Collapse
|
9
|
Ferrini F, Salio C, Boggio EM, Merighi A. Interplay of BDNF and GDNF in the Mature Spinal Somatosensory System and Its Potential Therapeutic Relevance. Curr Neuropharmacol 2021; 19:1225-1245. [PMID: 33200712 PMCID: PMC8719296 DOI: 10.2174/1570159x18666201116143422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The growth factors BDNF and GDNF are gaining more and more attention as modulators of synaptic transmission in the mature central nervous system (CNS). The two molecules undergo a regulated secretion in neurons and may be anterogradely transported to terminals where they can positively or negatively modulate fast synaptic transmission. There is today a wide consensus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripheral and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superficial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full. This review resumes the current literature on the interplay between BDNF and GDNF in the regulation of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between the two factors in nociceptive pathways. The development of small molecules specifically targeting BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we will finally consider the molecules of (potential) pharmacological relevance for tackling normal and pathological pain.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elena M. Boggio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- National Institute of Neuroscience, Grugliasco, Italy
| |
Collapse
|
10
|
de Brito RN, Ludtke DD, de Oliveira BH, de Oliveira Galassi T, Fernandes PF, Van Den Berge S, Salgado ASI, Cidral-Filho FJ, Horewicz VV, Bobinski F, Martins DF. Balneotherapy decreases mechanical hyperalgesia by reversing BDNF and NOS2 immunocontent in spinal cord of mice with neuropathic pain. J Neuroimmunol 2020; 348:577360. [PMID: 32862113 DOI: 10.1016/j.jneuroim.2020.577360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
In the last decades, balneotherapy or thermalism has been used for health promotion and in the treatment of inflammatory and chronic processes. We found that balneotherapy reduced mechanical hyperalgesia, as well the increase of BDNF and NOS2 levels in the spinal cord, while increased BDNF and NOS1 in the paw. The data presented herein demonstrated for the first time in a murine model of neuropathic pain, the analgesic effect of balneotherapy with the water from the natural springs of Santo Amaro da Imperatriz-Brazil. Nevertheless, future clinical trials should be conducted to test the effectiveness of balneotherapy in neuropathic pain patients.
Collapse
Affiliation(s)
- Rômulo Nolasco de Brito
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna Hoffmann de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Taynah de Oliveira Galassi
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Paula Franson Fernandes
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Sarah Van Den Berge
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Afonso Shiguemi Inoue Salgado
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Integrative Physical therapy Residency, Centro Universitário Filadélfia, Londrina, Paraná, Brazil
| | - Francisco José Cidral-Filho
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Verônica Vargas Horewicz
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
11
|
Cappoli N, Tabolacci E, Aceto P, Dello Russo C. The emerging role of the BDNF-TrkB signaling pathway in the modulation of pain perception. J Neuroimmunol 2020; 349:577406. [PMID: 33002723 DOI: 10.1016/j.jneuroim.2020.577406] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
The brain derived neurotrophic factor (BDNF) is a crucial neuromodulator in pain transmission both in peripheral and central nervous system (CNS). Despite evidence of a pro-nociceptive role of BDNF, recent studies have reported contrasting results, including anti-nociceptive and anti-inflammatory activities. Moreover, BDNF polymorphisms can interfere with BDNF role in pain perception. In Val66Met carriers, the Met allele may have a dual role, with anti-nociceptive actions in normal condition and pro-nociceptive effects during chronic pain. In order to elucidate the main effects of BDNF in nociception, we reviewed the main characteristics of this neurotrophin, focusing on its involvement in pain.
Collapse
Affiliation(s)
- Natalia Cappoli
- Università Cattolica del Sacro Cuore, Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Rome, Italy
| | - Elisabetta Tabolacci
- Università Cattolica del Sacro Cuore, Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Aceto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Rome, Italy; Università Cattolica del Sacro Cuore, Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Rome, Italy.
| | - Cinzia Dello Russo
- Università Cattolica del Sacro Cuore, Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
12
|
Ciglieri E, Vacca M, Ferrini F, Atteya MA, Aimar P, Ficarra E, Di Cataldo S, Merighi A, Salio C. Cytoarchitectural analysis of the neuron-to-glia association in the dorsal root ganglia of normal and diabetic mice. J Anat 2020; 237:988-997. [PMID: 32579747 DOI: 10.1111/joa.13252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/28/2022] Open
Abstract
Dorsal root ganglia (DRGs) host the somata of sensory neurons which convey information from the periphery to the central nervous system. These neurons have heterogeneous size and neurochemistry, and those of small-to-medium size, which play an important role in nociception, form two distinct subpopulations based on the presence (peptidergic) or absence (non-peptidergic) of transmitter neuropeptides. Few investigations have so far addressed the spatial relationship between neurochemically different subpopulations of DRG neurons and glia. We used a whole-mount mouse lumbar DRG preparation, confocal microscopy and computer-aided 3D analysis to unveil that IB4+ non-peptidergic neurons form small clusters of 4.7 ± 0.26 cells, differently from CGRP+ peptidergic neurons that are, for the most, isolated (1.89 ± 0.11 cells). Both subpopulations of neurons are ensheathed by a thin layer of satellite glial cells (SGCs) that can be observed after immunolabeling with the specific marker glutamine synthetase (GS). Notably, at the ultrastructural level we observed that this glial layer was discontinuous, as there were patches of direct contact between the membranes of two adjacent IB4+ neurons. To test whether this cytoarchitectonic organization was modified in the diabetic neuropathy, one of the most devastating sensory pathologies, mice were made diabetic by streptozotocin (STZ). In diabetic animals, cluster organization of the IB4+ non-peptidergic neurons was maintained, but the neuro-glial relationship was altered, as STZ treatment caused a statistically significant increase of GS staining around CGRP+ neurons but a reduction around IB4+ neurons. Ultrastructural analysis unveiled that SGC coverage was increased at the interface between IB4+ cluster-forming neurons in diabetic mice, with a 50% reduction in the points of direct contacts between cells. These observations demonstrate the existence of a structural plasticity of the DRG cytoarchitecture in response to STZ.
Collapse
Affiliation(s)
- Elisa Ciglieri
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy.,Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Maurizia Vacca
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy.,Department of Psychiatry & Neuroscience, Université Laval, Québec, QC, Canada
| | - Mona A Atteya
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Patrizia Aimar
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elisa Ficarra
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| | - Santa Di Cataldo
- Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy.,National Institute of Neuroscience, Grugliasco, Italy
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| |
Collapse
|
13
|
Luo D, Luo L, Lin R, Lin L, Lin Q. Brain-derived neurotrophic factor and Glial cell line-derived neurotrophic factor expressions in the trigeminal root entry zone and trigeminal ganglion neurons of a trigeminal neuralgia rat model. Anat Rec (Hoboken) 2020; 303:3014-3023. [PMID: 31922368 DOI: 10.1002/ar.24364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
Microvascular compression on the trigeminal root entry zone (TREZ) is the main etiology of trigeminal neuralgia (TN) patients. To investigate brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in the trigeminal ganglion (TG) and TREZ, immunofluorescence staining and Western blot were used in a rat TN model. Both BDNF and GDNF were observed in the TG neurons and TREZ. The expression of the BDNF dimer in the TG was increased in the TN group, while GDNF expression was decreased after compression injury. The BDNF dimer/pro-BDNF ratio in the TREZ of the TN group was higher than that in the sham group, but the GDNF expression in the TREZ was significantly lower than that in the sham group. These results suggested that compression injury in the TREZ of rats induced dynamic changes in BDNF and GDNF in both the TG and TREZ, and these changes are involved in the nociceptive transmission of the TN animal model.
Collapse
Affiliation(s)
- Daoshu Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, China
| | - Lili Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ren Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, China
| | - Ling Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qing Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou, China
| |
Collapse
|
14
|
Primary Afferent-Derived BDNF Contributes Minimally to the Processing of Pain and Itch. eNeuro 2018; 5:eN-NWR-0402-18. [PMID: 30627644 PMCID: PMC6325548 DOI: 10.1523/eneuro.0402-18.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022] Open
Abstract
BDNF is a critical contributor to neuronal growth, development, learning, and memory. Although extensively studied in the brain, BDNF is also expressed by primary afferent sensory neurons in the peripheral nervous system. Unfortunately, anatomical and functional studies of primary afferent-derived BDNF have been limited by the availability of appropriate molecular tools. Here, we used targeted, inducible molecular approaches to characterize the expression pattern of primary afferent BDNF and the extent to which it contributes to a variety of pain and itch behaviors. Using a BDNF-LacZ reporter mouse, we found that BDNF is expressed primarily by myelinated primary afferents and has limited overlap with the major peptidergic and non-peptidergic subclasses of nociceptors and pruritoceptors. We also observed extensive neuronal, but not glial, expression in the spinal cord dorsal horn. In addition, because BDNF null mice are not viable and even Cre-mediated deletion of BDNF from sensory neurons could have developmental consequences, here we deleted BDNF selectively from sensory neurons, in the adult, using an advillin-Cre-ER line crossed to floxed BDNF mice. We found that BDNF deletion in the adult altered few itch or acute and chronic pain behaviors, beyond sexually dimorphic phenotypes in the tail immersion, histamine, and formalin tests. Based on the anatomical distribution of sensory neuron-derived BDNF and its limited contribution to pain and itch processing, we suggest that future studies of primary afferent-derived BDNF should examine behaviors evoked by activation of myelinated primary afferents.
Collapse
|
15
|
Zhang MD, Su J, Adori C, Cinquina V, Malenczyk K, Girach F, Peng C, Ernfors P, Löw P, Borgius L, Kiehn O, Watanabe M, Uhlén M, Mitsios N, Mulder J, Harkany T, Hökfelt T. Ca2+-binding protein NECAB2 facilitates inflammatory pain hypersensitivity. J Clin Invest 2018; 128:3757-3768. [PMID: 29893745 DOI: 10.1172/jci120913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/06/2018] [Indexed: 01/02/2023] Open
Abstract
Pain signals are transmitted by multisynaptic glutamatergic pathways. Their first synapse between primary nociceptors and excitatory spinal interneurons gates the sensory load. In this pathway, glutamate release is orchestrated by Ca2+-sensor proteins, with N-terminal EF-hand Ca2+-binding protein 2 (NECAB2) being particular abundant. However, neither the importance of NECAB2+ neuronal contingents in dorsal root ganglia (DRGs) and spinal cord nor the function determination by NECAB2 has been defined. A combination of histochemical analyses and single-cell RNA-sequencing showed NECAB2 in small- and medium-sized C- and Aδ D-hair low-threshold mechanoreceptors in DRGs, as well as in protein kinase C γ excitatory spinal interneurons. NECAB2 was downregulated by peripheral nerve injury, leading to the hypothesis that NECAB2 loss of function could limit pain sensation. Indeed, Necab2-/- mice reached a pain-free state significantly faster after peripheral inflammation than did WT littermates. Genetic access to transiently activated neurons revealed that a mediodorsal cohort of NECAB2+ neurons mediates inflammatory pain in the mouse spinal dorsal horn. Here, besides dampening excitatory transmission in spinal interneurons, NECAB2 limited pronociceptive brain-derived neurotrophic factor (BDNF) release from sensory afferents. Hoxb8-dependent reinstatement of NECAB2 expression in Necab2-/- mice then demonstrated that spinal and DRG NECAB2 alone could control inflammation-induced sensory hypersensitivity. Overall, we identify NECAB2 as a critical component of pronociceptive pain signaling, whose inactivation offers substantial pain relief.
Collapse
Affiliation(s)
- Ming-Dong Zhang
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jie Su
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Valentina Cinquina
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Fatima Girach
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Changgeng Peng
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Peter Löw
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lotta Borgius
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Kiehn
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mathias Uhlén
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas Mitsios
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Mulder
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tibor Harkany
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
17
|
Sensory neuronal P2RX4 receptors controls BDNF signaling in inflammatory pain. Sci Rep 2018; 8:964. [PMID: 29343707 PMCID: PMC5772667 DOI: 10.1038/s41598-018-19301-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 12/27/2017] [Indexed: 11/09/2022] Open
Abstract
Chronic inflammatory and neuropathic pains are major public health concerns. Potential therapeutic targets include the ATP-gated purinergic receptors (P2RX) that contribute to these pathological types of pain in several different cell types. The purinergic receptors P2RX2 and P2RX3 are expressed by a specific subset of dorsal root ganglion neurons and directly shape pain processing by primary afferents. In contrast the P2RX4 and P2RX7 are mostly expressed in myeloid cells, where activation of these receptors triggers the release of various pro-inflammatory molecules. Here, we demonstrate that P2RX4 also controls calcium influx in mouse dorsal root ganglion neurons. P2RX4 is up-regulated in pain-processing neurons during long lasting peripheral inflammation and it co-localizes with Brain-Derived Neurotrophic Factor (BDNF). In the dorsal horn of the spinal cord, BDNF-dependent signaling pathways, phosphorylation of Erk1/2 and of the GluN1 subunit as well as the down regulation of the co-transporter KCC2, which are triggered by peripheral inflammation are impaired in P2RX4-deficient mice. Our results suggest that P2RX4, expressed by sensory neurons, controls neuronal BDNF release that contributes to hyper-excitability during chronic inflammatory pain and establish P2RX4 in sensory neurons as a new potential therapeutic target to treat hyperexcitability during chronic inflammatory pain.
Collapse
|
18
|
Cortés D, Carballo-Molina OA, Castellanos-Montiel MJ, Velasco I. The Non-Survival Effects of Glial Cell Line-Derived Neurotrophic Factor on Neural Cells. Front Mol Neurosci 2017; 10:258. [PMID: 28878618 PMCID: PMC5572274 DOI: 10.3389/fnmol.2017.00258] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 01/23/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was first characterized as a survival-promoting molecule for dopaminergic neurons (DANs). Afterwards, other cells were also discovered to respond to GDNF not only as a survival factor but also as a protein supporting other cellular functions, such as proliferation, differentiation, maturation, neurite outgrowth and other phenomena that have been less studied than survival and are now more extendedly described here in this review article. During development, GDNF favors the commitment of neural precursors towards dopaminergic, motor, enteric and adrenal neurons; in addition, it enhances the axonal growth of some of these neurons. GDNF also induces the acquisition of a dopaminergic phenotype by increasing the expression of Tyrosine Hydroxylase (TH), Nurr1 and other proteins that confer this identity and promote further dendritic and electrical maturation. In motor neurons (MNs), GDNF not only promotes proliferation and maturation but also participates in regenerating damaged axons and modulates the neuromuscular junction (NMJ) at both presynaptic and postsynaptic levels. Moreover, GDNF modulates the rate of neuroblastoma (NB) and glioblastoma cancer cell proliferation. Additionally, the presence or absence of GDNF has been correlated with conditions such as depression, pain, muscular soreness, etc. Although, the precise role of GDNF is unknown, it extends beyond a survival effect. The understanding of the complete range of properties of this trophic molecule will allow us to investigate its broad mechanisms of action to accelerate and/or improve therapies for the aforementioned pathological conditions.
Collapse
Affiliation(s)
- Daniel Cortés
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Oscar A. Carballo-Molina
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - María José Castellanos-Montiel
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de MéxicoMéxico City, Mexico
- Laboratorio de Reprogramación Celular del IFC-UNAM, Instituto Nacional de Neurología y NeurologíaMéxico City, Mexico
| |
Collapse
|
19
|
Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons. Pathogens 2017; 6:pathogens6010005. [PMID: 28178213 PMCID: PMC5371893 DOI: 10.3390/pathogens6010005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons.
Collapse
|
20
|
Kozłowska A, Mikołajczyk A, Adamiak Z, Majewski M. Distribution and chemical coding of sensory neurons innervating the skin of the porcine hindlimb. Neuropeptides 2017; 61:1-14. [PMID: 27866657 DOI: 10.1016/j.npep.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to establish the origin and chemical phenotyping of neurons involved in skin innervation of the porcine hind leg. The dorsal root ganglia (DRGs) of the lumbar (L4-L6) and sacral (S1-S3) spinal nerves were visualized using the fluorescent tracer Fast Blue (FB). The morphometric analysis of FB-positive (FB+)neurons showed that in the L4, L5, S1 and S2 DRGs, the small-sized perikarya constituted the major population, whereas in the L6 and S3 DRGs the medium-sized cells made up the major population. In all these ganglia, large-sized FB+ perikarya constituted only a small percentage of all FB+ neurons. Immunohistochemistry revealed that small- and medium-sized FB+ perikarya contained sensory markers such as: substance P (SP), calcitonin gene related peptide (CGRP) and galanin (GAL); as well as various other factors such as somatostatin (SOM), calbindin-D28k (CB), pituitary adenylate cyclase-activating polypeptide (PACAP) and neuronal nitric oxide synthase (nNOS). Meanwhile large-sized FB+ perikarya usually expressed SP, CGRP or PACAP. In the lumbar DRGs, some large cells also contained SOM and CB. Double-labeling immunohistochemistry showed that SP-positive neurons co-expressed CGRP, GAL or PACAP; while PACAP-positive cells co-expressed GAL or nNOS. Neurons stained for SOM were also immunoreactive for CB or GAL, while neurons stained for nNOS were also immunoreactive for GAL. In conclusion, the present data has indicated that the distribution and chemical phenotyping of the porcine skin-projecting neurons are different within DRGs of the lumbar (forming a femoral nerve) and sacral (forming a sciatic nerve) spinal nerves.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Poland.
| | - Anita Mikołajczyk
- Department of Public Health, Epidemiology and Microbiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Poland
| | - Zbigniew Adamiak
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
| | - Mariusz Majewski
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|