1
|
Faccin M, O'Neill AM, Lawhon SD, Worthing KA, Wiener DJ, Gallo RL, Hoffmann AR. Staphylococcus felis C4 exhibits in vitro antimicrobial activity against methicillin-resistant Staphylococcus pseudintermedius in a novel canine skin explant model. Vet Dermatol 2025; 36:24-33. [PMID: 39450713 DOI: 10.1111/vde.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Canine superficial pyoderma is a common bacterial skin infection of dogs, generally caused by Staphylococcus pseudintermedius. The C4 strain of Staphylococcus felis was recently discovered to have strong antimicrobial activity against S. pseudintermedius in mice. OBJECTIVES We aimed to evaluate in vitro if this antimicrobial activity was maintained using a novel canine skin explant model. MATERIALS AND METHODS Punch biopsies (8 mm) of skin from recently euthanised dogs were collected and placed into six-well plates on top of an agarose pedestal. RESULTS Histological examination of the skin explants showed an intact dermal-epidermal organisation and a stratum corneum that was successfully colonised by S. pseudintermedius after topical application. The number of colony forming units of S. pseudintermedius showed a 2 log increase after 24 h colonisation, indicating that the explant supported bacterial growth. By contrast, co-treatment with S. felis C4 live bacteria and its sterile protein product significantly reduced the growth of a methicillin-susceptible (ST540, p = 0.0357) and a methicillin-resistant (MR) strain (ST71, p = 0.0143) of S. pseudintermedius. No detectable bacteria were recovered from or visualised on skin 24 h posttreatment with the S. felis C4 sterile protein product. CONCLUSIONS AND CLINICAL RELEVANCE Using a novel canine explant model, we demonstrate that the S. felis C4 strain inhibits the growth of S. pseudintermedius and that it is a promising candidate for a new probiotic therapy to treat cutaneous infections caused by S. pseudintermedius, including MR strains.
Collapse
Affiliation(s)
- Mayane Faccin
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alan M O'Neill
- Evotec (UK) Ltd., In Vitro Biology, Abingdon, Oxfordshire, UK
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Kate A Worthing
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- The University of Sydney Institute of Infectious Diseases, Sydney, New South Wales, Australia
| | - Dominique J Wiener
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Richard L Gallo
- Department of Dermatology, University of California-San Diego, San Diego, California, USA
| | - Aline Rodrigues Hoffmann
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Harman RM, Theoret CL, Van de Walle GR. The Horse as a Model for the Study of Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:381-399. [PMID: 34042536 DOI: 10.1089/wound.2018.0883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Significance: Cutaneous wounds are a major problem in both human and equine medicine. The economic cost of treating skin wounds and related complications in humans and horses is high, and in both species, particular types of chronic wounds do not respond well to current therapies, leading to suffering and morbidity. Recent Advances: Conventional methods for the treatment of cutaneous wounds are generic and have not changed significantly in decades. However, as more is learned about the mechanisms involved in normal skin wound healing, and how failure of these processes leads to chronic nonhealing wounds, novel therapies targeting the specific pathologies of hard-to-heal wounds are being developed and evaluated. Critical Issues: Physiologically relevant animal models are needed to (1) study the mechanisms involved in normal and impaired skin wound healing and (2) test newly developed therapies. Future Directions: Similarities in normal wound healing in humans and horses, and the natural development of distinct types of hard-to-heal chronic wounds in both species, make the horse a physiologically relevant model for the study of mechanisms involved in wound repair. Horses are also well-suited models to test novel therapies. In addition, studies in horses have the potential to benefit veterinary, as well as human medicine.
Collapse
Affiliation(s)
- Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
3
|
Abstract
The skin is a passive and active barrier which protects the body from the environment. Its health is essential for the accomplishment of this role. Since several decades, the skin has aroused a strong interest in various fields (for e.g. cell biology, medicine, toxicology, cosmetology, and pharmacology). In contrast to other organs, 3D models were mostly and directly elaborated in humans due to its architectural simplicity and easy accessibility. The development of these models benefited from the societal pressure to reduce animal experiments. In this review, we first describe human and mouse skin structure and the major differences with other mammals and birds. Next, we describe the different 3D human skin models and their main applications. Finally, we review the available models for domestic animals and discuss the current and potential applications.
Collapse
Affiliation(s)
- Laurent Souci
- ISP, INRAE, Université de Tours, Equipe BioVA, Centre Val de Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- ISP, INRAE, Université de Tours, Equipe BioVA, Centre Val de Loire, 37380, Nouzilly, France.
| |
Collapse
|
4
|
Zhang GY, Langan EA, Meier NT, Funk W, Siemers F, Paus R. Thyroxine (T4) may promote re-epithelialisation and angiogenesis in wounded human skin ex vivo. PLoS One 2019; 14:e0212659. [PMID: 30925152 PMCID: PMC6440638 DOI: 10.1371/journal.pone.0212659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
There is a pressing need for improved preclinical model systems in which to study human skin wound healing. Here, we report the development and application of a serum-free full thickness human skin wound healing model. Not only can re-epithelialization (epidermal repair) and angiogenesis be studied in this simple and instructive model, but the model can also be used to identify clinically relevant wound-healing promoting agents, and to dissect underlying candidate mechanisms of action in the target tissue. We present preliminary ex vivo data to suggest that Thyroxine (T4), which reportedly promotes skin wound healing in rodents in vivo, may promote key features of human skin wound healing. Namely, T4 stimulates re-epithelialisation and angiogenesis, and modulates both wound healing-associated epidermal keratin expression and energy metabolism in experimentally wound human skin. Functionally, the wound healing-promoting effects of T4 are at least partially mediated via fibroblast growth factor/fibroblast growth factor receptor-mediated signalling, since they could be significantly antagonized by bFGF-neutralizing antibody. Thus, this pragmatic, easy-to-use full-thickness human skin wound healing model provides a useful preclinical research tool in the search for clinically relevant candidate wound healing-promoting agents. These ex vivo data encourage further pre-clinical testing of topical T4 as a cost-efficient, novel agent in the management of chronic human skin wounds.
Collapse
Affiliation(s)
- Guo-You Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ewan A. Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | | | | | - Frank Siemers
- Department of Plastic and Hand Surgery, BG Klinikum Bergmannstrost, Halle/Salle, Germany
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Jørgensen E, Lazzarini G, Pirone A, Jacobsen S, Miragliotta V. Normal microscopic anatomy of equine body and limb skin: A morphological and immunohistochemical study. Ann Anat 2018; 218:205-212. [PMID: 29730469 DOI: 10.1016/j.aanat.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Information on microscopic anatomy of equine skin is sparse. In horses, limb wounds often become chronic and/or non-healing whereas body wounds heal normally. These dissimilarities in healing patterns might be a product of different phenotypic characteristics of body and limb skin. The objective of this study was to investigate microscopic anatomy, epidermal thickness, keratinocyte proliferation and differentiation as well as the presence of mast cells in normal equine skin of body and limb. MATERIALS AND METHODS The study involved body and limb skin biopsies from six horses. Histological characteristics of the epidermis were assessed and epithelial thickness measured. Immunohistochemistry was performed to investigate epidermal differentiation patterns of cytokeratin (CK) 10, CK14, CK16, loricrin, and peroxisome proliferator-activated receptor alpha (PPAR-α), epidermal proliferation (Ki-67 immunostaining), and mast cells distribution in the skin. RESULTS The epidermis was significantly thicker in the limb skin compared to body skin (p<0.01). Epidermal proliferation and CK distribution did not show differences in the two anatomical areas. Loricrin presence was focally found in the spinous layer in four out of six limb skin samples but not in body skin samples. Tryptase positive mast cells were detected in the dermis and their density (cell/mm2) was not different between body and limb. DISCUSSION AND CONCLUSION Here we report for the first time about the normal distribution of CK10, CK14, CK16, PPAR-α, and loricrin in equine limb and body skin as well as about epidermal proliferation rate and mast cell count. It will be relevant to investigate the distribution of the investigated epithelial differentiation markers and the role of mast cells during equine wound healing and/or other skin diseases.
Collapse
Affiliation(s)
- Elin Jørgensen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Højbakkegaard Alle 5, DK-2630 Taastrup, Denmark
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Højbakkegaard Alle 5, DK-2630 Taastrup, Denmark
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, viale delle Piagge 2, 56124 Pisa, Italy.
| |
Collapse
|
6
|
Abramo F, Lazzarini G, Pirone A, Lenzi C, Albertini S, Della Valle MF, Schievano C, Vannozzi I, Miragliotta V. Ultramicronized palmitoylethanolamide counteracts the effects of compound 48/80 in a canine skin organ culture model. Vet Dermatol 2017; 28:456-e104. [PMID: 28585337 DOI: 10.1111/vde.12456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Ultramicronized palmitoylethanolamide (PEA-um) has been reported to reduce pruritus and skin lesions in dogs with moderate atopic dermatitis and pruritus. HYPOTHESIS/OBJECTIVES A canine ex vivo skin model was used to investigate the ability of PEA-um to counteract changes induced by compound 48/80, a well-known secretagogue that causes mast cell degranulation. ANIMALS Normal skin was obtained from three donor dogs subjected to surgery for reasons unrelated to the study. METHODS Cultured skin biopsy samples in triplicate were treated with 10 and 100 μg/mL compound 48/80, without or with 30 μM PEA-um. Mast cell (MC) degranulation, histamine release into the culture medium, local microvascular dilatation, epidermal thickness, keratinocyte proliferation and epidermal differentiation markers were evaluated. RESULTS Exposure of the skin organ culture to PEA-um 24 h before and 72 h concomitantly to compound 48/80 resulted in a significant decrease of degranulating MCs. PEA-um also reduced the histamine content in the culture medium by half, although the effect did not reach statistical significance. PEA-um significantly counteracted vasodilation induced by 100 μg/mL compound 48/80. Finally, PEA-um alone did not induce changes in epidermal thickness, differentiation markers, keratinocyte proliferation, MC density and/or degranulation. CONCLUSIONS AND CLINICAL IMPORTANCE Collectively, these results support the protective action PEA-um on the skin of dogs undergoing allergic changes.
Collapse
Affiliation(s)
- Francesca Abramo
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Carla Lenzi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Sonia Albertini
- Endocrinology Unit, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, Pisa, I-56100, Italy
| | - M Frederica Della Valle
- Science Information and Documentation Centre (CeDIS), Innovet Italia SRL, Via Egadi 7, Milano, I-20144, Italy
| | - Carlo Schievano
- Innovative Statistical Research SRL, Via Prato Della Valle 24, Padova, I-35123, Italy
| | - Iacopo Vannozzi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| | - Vincenzo Miragliotta
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, Pisa, I-56124, Italy
| |
Collapse
|