1
|
Molla Desta G, Birhanu AG. Advancements in single-cell RNA sequencing and spatial transcriptomics: transforming biomedical research. Acta Biochim Pol 2025; 72:13922. [PMID: 39980637 PMCID: PMC11835515 DOI: 10.3389/abp.2025.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
In recent years, significant advancements in biochemistry, materials science, engineering, and computer-aided testing have driven the development of high-throughput tools for profiling genetic information. Single-cell RNA sequencing (scRNA-seq) technologies have established themselves as key tools for dissecting genetic sequences at the level of single cells. These technologies reveal cellular diversity and allow for the exploration of cell states and transformations with exceptional resolution. Unlike bulk sequencing, which provides population-averaged data, scRNA-seq can detect cell subtypes or gene expression variations that would otherwise be overlooked. However, a key limitation of scRNA-seq is its inability to preserve spatial information about the RNA transcriptome, as the process requires tissue dissociation and cell isolation. Spatial transcriptomics is a pivotal advancement in medical biotechnology, facilitating the identification of molecules such as RNA in their original spatial context within tissue sections at the single-cell level. This capability offers a substantial advantage over traditional single-cell sequencing techniques. Spatial transcriptomics offers valuable insights into a wide range of biomedical fields, including neurology, embryology, cancer research, immunology, and histology. This review highlights single-cell sequencing approaches, recent technological developments, associated challenges, various techniques for expression data analysis, and their applications in disciplines such as cancer research, microbiology, neuroscience, reproductive biology, and immunology. It highlights the critical role of single-cell sequencing tools in characterizing the dynamic nature of individual cells.
Collapse
Affiliation(s)
- Getnet Molla Desta
- College of Veterinary Medicine, Jigjiga University, Jigjiga, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
2
|
Genolet R, Bobisse S, Chiffelle J, Arnaud M, Petremand R, Queiroz L, Michel A, Reichenbach P, Cesbron J, Auger A, Baumgaertner P, Guillaume P, Schmidt J, Irving M, Kandalaft LE, Speiser DE, Coukos G, Harari A. TCR sequencing and cloning methods for repertoire analysis and isolation of tumor-reactive TCRs. CELL REPORTS METHODS 2023; 3:100459. [PMID: 37159666 PMCID: PMC10163020 DOI: 10.1016/j.crmeth.2023.100459] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
T cell receptor (TCR) technologies, including repertoire analyses and T cell engineering, are increasingly important in the clinical management of cellular immunity in cancer, transplantation, and other immune diseases. However, sensitive and reliable methods for repertoire analyses and TCR cloning are still lacking. Here, we report on SEQTR, a high-throughput approach to analyze human and mouse repertoires that is more sensitive, reproducible, and accurate as compared with commonly used assays, and thus more reliably captures the complexity of blood and tumor TCR repertoires. We also present a TCR cloning strategy to specifically amplify TCRs from T cell populations. Positioned downstream of single-cell or bulk TCR sequencing, it allows time- and cost-effective discovery, cloning, screening, and engineering of tumor-specific TCRs. Together, these methods will accelerate TCR repertoire analyses in discovery, translational, and clinical settings and permit fast TCR engineering for cellular therapies.
Collapse
Affiliation(s)
- Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Corresponding author
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marion Arnaud
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Rémy Petremand
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Lise Queiroz
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandra Michel
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Patrick Reichenbach
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Julien Cesbron
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Aymeric Auger
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Petra Baumgaertner
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Lana E. Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniel E. Speiser
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Corresponding author
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
- Corresponding author
| |
Collapse
|
3
|
Kim JMH, Camarena A, Walker C, Lin MY, Wolseley V, Souaiaia T, Thornton M, Grubbs B, Chow RH, Evgrafov OV, Knowles JA. Robust RNA-Seq of aRNA-amplified single cell material collected by patch clamp. Sci Rep 2020; 10:1979. [PMID: 32029778 PMCID: PMC7004989 DOI: 10.1038/s41598-020-58715-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
Most single cell RNA sequencing protocols start with single cells dispersed from intact tissue. High-throughput processing of the separated cells is enabled using microfluidics platforms. However, dissociation of tissue results in loss of information about cell location and morphology and potentially alters the transcriptome. An alternative approach for collecting RNA from single cells is to re-purpose the electrophysiological technique of patch clamp recording. A hollow patch pipette is attached to individual cells, enabling the recording of electrical activity, after which the cytoplasm may be extracted for single cell RNA-Seq ("Patch-Seq"). Since the tissue is not disaggregated, the location of cells is readily determined, and the morphology of the cells is maintained, making possible the correlation of single cell transcriptomes with cell location, morphology and electrophysiology. Recent Patch-Seq studies utilizes PCR amplification to increase amount of nucleic acid material to the level required for current sequencing technologies. PCR is prone to create biased libraries - especially with the extremely high degrees of exponential amplification required for single cell amounts of RNA. We compared a PCR-based approach with linear amplifications and demonstrate that aRNA amplification (in vitro transcription, IVT) is more sensitive and robust for single cell RNA collected by a patch clamp pipette.
Collapse
Affiliation(s)
- Jae Mun Hugo Kim
- Zhilka Neurogenetic institute, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA.
- University of California, San Diego 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Adrian Camarena
- Zhilka Neurogenetic institute, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA
- University of Chicago, Pritzker School of Medicine 924 E 57th St Suite 104, Chicago, IL, 60637, USA
| | - Christopher Walker
- Zhilka Neurogenetic institute, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA
| | - Ming Yi Lin
- Zhilka Neurogenetic institute, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA
| | - Victoria Wolseley
- Zhilka Neurogenetic institute, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA
| | - Tade Souaiaia
- Zhilka Neurogenetic institute, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA
- SUNY Downstate Medical Center 450 Clarkson Ave, Brooklyn, NY, 11203, USA
| | - Matthew Thornton
- Zhilka Neurogenetic institute, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA
| | - Brendan Grubbs
- Zhilka Neurogenetic institute, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA
| | - Robert H Chow
- Zhilka Neurogenetic institute, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA
| | - Oleg V Evgrafov
- Zhilka Neurogenetic institute, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA
- SUNY Downstate Medical Center 450 Clarkson Ave, Brooklyn, NY, 11203, USA
| | - James A Knowles
- Zhilka Neurogenetic institute, University of Southern California, 1501 San Pablo St, Los Angeles, CA, 90033, USA.
- SUNY Downstate Medical Center 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| |
Collapse
|
4
|
Chen T, Romesberg FE. Polymerase Chain Transcription: Exponential Synthesis of RNA and Modified RNA. J Am Chem Soc 2017; 139:9949-9954. [DOI: 10.1021/jacs.7b03981] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tingjian Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Koo B, Jin CE, Lee TY, Lee JH, Park MK, Sung H, Park SY, Lee HJ, Kim SM, Kim JY, Kim SH, Shin Y. An isothermal, label-free, and rapid one-step RNA amplification/detection assay for diagnosis of respiratory viral infections. Biosens Bioelectron 2017; 90:187-194. [PMID: 27894035 PMCID: PMC7127409 DOI: 10.1016/j.bios.2016.11.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022]
Abstract
Recently, RNA viral infections caused by respiratory viruses, such as influenza, parainfluenza, respiratory syncytial virus, coronavirus, and Middle East respiratory syndrome-coronavirus (MERS-CoV), and Zika virus, are a major public health threats in the world. Although myriads of diagnostic methods based on RNA amplification have been developed in the last decades, they continue to lack speed, sensitivity, and specificity for clinical use. A rapid and accurate diagnostic method is needed for appropriate control, including isolation and treatment of the patients. Here, we report an isothermal, label-free, one-step RNA amplification and detection system, termed as iROAD, for the diagnosis of respiratory diseases. It couples a one-step isothermal RNA amplification method and a bio-optical sensor for simultaneous viral RNA amplification/detection in a label-free and real-time manner. The iROAD assay offers a one-step viral RNA amplification/detection example to rapid analysis (<20min). The detection limit of iROAD assay was found to be 10-times more sensitive than that of real-time reverse transcription-PCR method. We confirmed the clinical utility of the iROAD assay by detecting viral RNAs obtained from 63 human respiratory samples. We envision that the iROAD assay will be useful and potentially adaptable for better diagnosis of emerging infectious diseases including respiratory diseases.
Collapse
Affiliation(s)
- Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Tae Yoon Lee
- Department of Technology Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, 447-1 Wolgye, Nowon, Seoul 136-791, Republic of Korea
| | - Mi Kyoung Park
- One BioMed Pte Ltd, 60 Biopolis street, Genome #02-01, Singapore 138672, Singapore
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Se Yoon Park
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea; Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Sun Mi Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea.
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Efficient Genome-Wide Sequencing and Low-Coverage Pedigree Analysis from Noninvasively Collected Samples. Genetics 2016; 203:699-714. [PMID: 27098910 PMCID: PMC4896188 DOI: 10.1534/genetics.116.187492] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Abstract
Research on the genetics of natural populations was revolutionized in the 1990s by methods for genotyping noninvasively collected samples. However, these methods have remained largely unchanged for the past 20 years and lag far behind the genomics era. To close this gap, here we report an optimized laboratory protocol for genome-wide capture of endogenous DNA from noninvasively collected samples, coupled with a novel computational approach to reconstruct pedigree links from the resulting low-coverage data. We validated both methods using fecal samples from 62 wild baboons, including 48 from an independently constructed extended pedigree. We enriched fecal-derived DNA samples up to 40-fold for endogenous baboon DNA and reconstructed near-perfect pedigree relationships even with extremely low-coverage sequencing. We anticipate that these methods will be broadly applicable to the many research systems for which only noninvasive samples are available. The lab protocol and software (“WHODAD”) are freely available at www.tung-lab.org/protocols-and-software.html and www.xzlab.org/software.html, respectively.
Collapse
|
7
|
Hodne K, Weltzien FA. Single-Cell Isolation and Gene Analysis: Pitfalls and Possibilities. Int J Mol Sci 2015; 16:26832-49. [PMID: 26569222 PMCID: PMC4661855 DOI: 10.3390/ijms161125996] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/14/2015] [Accepted: 11/03/2015] [Indexed: 01/07/2023] Open
Abstract
During the last two decades single-cell analysis (SCA) has revealed extensive phenotypic differences within homogenous cell populations. These phenotypic differences are reflected in the stochastic nature of gene regulation, which is often masked by qualitatively and quantitatively averaging in whole tissue analyses. The ability to isolate transcripts and investigate how genes are regulated at the single cell level requires highly sensitive and refined methods. This paper reviews different strategies currently used for SCA, including harvesting, reverse transcription, and amplification of the RNA, followed by methods for transcript quantification. The review provides the historical background to SCA, discusses limitations, and current and future possibilities in this exciting field of research.
Collapse
Affiliation(s)
- Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences-Campus Adamstuen, 0033 Oslo, Norway.
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences-Campus Adamstuen, 0033 Oslo, Norway.
| |
Collapse
|
8
|
López-Aguilar C, Romero-López C, Espinosa M, Berzal-Herranz A, del Solar G. The 5'-tail of antisense RNAII of pMV158 plays a critical role in binding to the target mRNA and in translation inhibition of repB. Front Genet 2015; 6:225. [PMID: 26175752 PMCID: PMC4485353 DOI: 10.3389/fgene.2015.00225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/12/2015] [Indexed: 02/05/2023] Open
Abstract
Rolling-circle replication of streptococcal plasmid pMV158 is controlled by the concerted action of two trans-acting elements, namely transcriptional repressor CopG and antisense RNAII, which inhibit expression of the repB gene encoding the replication initiator protein. The pMV158-encoded antisense RNAII exerts its activity of replication control by inhibiting translation of the essential repB gene. RNAII is the smallest and simplest among the characterized antisense RNAs involved in control of plasmid replication. Structure analysis of RNAII revealed that it folds into an 8-bp-long stem containing a 1-nt bulge and closed by a 6-nt apical loop. This hairpin is flanked by a 17-nt-long single-stranded 5'-tail and an 8-nt-long 3'-terminal U-rich stretch. Here, the 3' and 5' regions of the 5'-tail of RNAII are shown to play a critical role in the binding to the target mRNA and in the inhibition of repB translation, respectively. In contrast, the apical loop of the single hairpin of RNAII plays a rather secondary role and the upper stem region hardly contributes to the binding or inhibition processes. The entire 5'-tail is required for efficient inhibition of repB translation, though only the 8-nt-long region adjacent to the hairpin seems to be essential for rapid binding to the mRNA. These results show that a "kissing" interaction involving base-pairing between complementary hairpin loops in RNAII and mRNA is not critical for efficient RNA/RNA binding or repB translation inhibition. A singular binding mechanism is envisaged whereby initial pairing between complementary single-stranded regions in the antisense and sense RNAs progresses upwards into the corresponding hairpin stems to form the intermolecular duplex.
Collapse
Affiliation(s)
- Celeste López-Aguilar
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas (CIB-CSIC)Madrid, Spain
| | - Cristina Romero-López
- Molecular Biology Department, Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC)Granada, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas (CIB-CSIC)Madrid, Spain
| | - Alfredo Berzal-Herranz
- Molecular Biology Department, Instituto de Parasitología y Biomedicina López-Neyra (IPBLN-CSIC)Granada, Spain
| | - Gloria del Solar
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas (CIB-CSIC)Madrid, Spain
| |
Collapse
|
9
|
Probing the sequence and structure of in vitro synthesized antisense and target RNAs from the replication control system of plasmid pMV158. Plasmid 2013; 70:94-103. [PMID: 23541653 DOI: 10.1016/j.plasmid.2013.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/21/2013] [Accepted: 02/28/2013] [Indexed: 12/30/2022]
Abstract
Antisense RNAII is a replication control element encoded by promiscuous plasmid pMV158. RNAII binds to its complementary sequence in the copG-repB mRNA, thus inhibiting translation of the replication initiator repB gene. In order to initiate the biochemical characterization of the pMV158 antisense RNA-mediated control system, conditions for in vitro transcription by T7RNA polymerase were set up that yielded large amounts of antisense and target run-off products able to bind to each other. The run-off antisense transcript was expected, and confirmed, to span the entire RNAII as synthesized by the bacterial RNA polymerase, including the intrinsic transcription terminator at its 3'-terminus. On the other hand, two different target transcripts, mRNA₆₀ and mRNA₈₀, were produced, characterized and tested for efficient binding to the antisense product. The mRNA₆₀ and mRNA₈₀ run-off transcripts supposedly spanned 60 and 80 nucleotides, respectively, on the copG-repB mRNA and lacked terminator-like structures at their 3'-termini. Probing of the sequence and conformation of the main products, along with modeling of their secondary structures, showed that both target transcripts were actually longer-than-expected, and contained a 3'-terminal hairpin wherein the extra nucleotides base-paired to the expected 3'-terminus of the corresponding run-off transcript. These longer products were proposed to arise from the RNA-dependent polymerizing activity of T7RNA polymerase on correct run-off transcripts primed by extremely short 3'-selfcomplementarity. Seizing of the target mRNA sequence complementary to the 5'-terminus of RNAII in a stable 3'-terminal hairpin generated by this activity seemed to cause a 3-fold decrease in the efficiency of binding to the antisense RNA.
Collapse
|
10
|
Wang Y, Hayatsu M, Fujii T. Extraction of bacterial RNA from soil: challenges and solutions. Microbes Environ 2012; 27:111-21. [PMID: 22791042 PMCID: PMC4036013 DOI: 10.1264/jsme2.me11304] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Detection of bacterial gene expression in soil emerged in the early 1990s and provided information on bacterial responses in their original soil environments. As a key procedure in the detection, extraction of bacterial RNA from soil has attracted much interest, and many methods of soil RNA extraction have been reported in the past 20 years. In addition to various RT-PCR-based technologies, new technologies for gene expression analysis, such as microarrays and high-throughput sequencing technologies, have recently been applied to examine bacterial gene expression in soil. These technologies are driving improvements in RNA extraction protocols. In this mini-review, progress in the extraction of bacterial RNA from soil is summarized with emphasis on the major difficulties in the development of methodologies and corresponding strategies to overcome them.
Collapse
Affiliation(s)
- Yong Wang
- Environmental Biofunction Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | |
Collapse
|
11
|
Quantitative single-cell ion-channel gene expression profiling through an improved qRT-PCR technique combined with whole cell patch clamp. J Neurosci Methods 2012; 209:227-34. [PMID: 22728251 DOI: 10.1016/j.jneumeth.2012.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/17/2012] [Accepted: 06/09/2012] [Indexed: 12/19/2022]
Abstract
Cellular excitability originates from a concerted action of different ion channels. The genomic diversity of ion channels (over 100 different genes) underlies the functional diversity of neurons in the central nervous system (CNS) and even within a specific type of neurons large differences in channel expression have been observed. Patch-clamp is a powerful technique to study the electrophysiology of excitability at the single cell level, allowing exploration of cell-to-cell variability. Only a few attempts have been made to link electrophysiological profiling to mRNA transcript levels and most suffered from experimental noise precluding conclusive quantitative correlations. Here we describe a refinement to the technique that combines patch-clamp analysis with quantitative real-time (qRT) PCR at the single cell level. Hereto the expression of a housekeeping gene was used to normalize for cell-to-cell variability in mRNA isolation and the subsequent processing steps for performing qRT-PCR. However, the mRNA yield from a single cell was insufficient for performing a valid qRT-PCR assay; this was resolved by including a RNA amplification step. The technique was validated on a stable Ltk(-) cell line expressing the Kv2.1 channel and on embryonic dorsal root ganglion (DRG) cells probing for the expression of Kv2.1. Current density and transcript quantity displayed a clear correlation when the qRT-PCR assay was done in twofold and the data normalized to the transcript level of the housekeeping gene GAPD. Without this normalization no significant correlation was obtained. This improved technique should prove very valuable for studying the molecular background of diversity in cellular excitability.
Collapse
|
12
|
Nojima H, Tougan T. Preparation of a high-quality cDNA library from a single-cell quantity of mRNA using chum-RNA. Methods Mol Biol 2011; 729:15-35. [PMID: 21365481 DOI: 10.1007/978-1-61779-065-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Unlike exponential amplification using polymerase chain reaction (PCR), linear RNA amplification using T7 RNA polymerase is advantageous for genome-wide analysis of gene expression and for cDNA library preparation from single-cell quantities of RNA. However, the use of RNA polymerase requires a large amount of RNA, as the optimum concentration of the substrate (mRNA), or the Michaelis constant (K(m)), is one millionfold higher than the single-cell amount of mRNA. To circumvent this K(m) problem, we designed a small mRNA-like dummy molecule, termed chum-RNA, which can be easily removed after the completion of the reaction. Chum-RNA allowed the preparation of a high-quality cDNA library from single-cell quantities of RNA after four rounds of T7-based linear amplification, without using PCR amplification. The use of chum-RNA may also facilitate quantitative reverse-transcription (qRT)-PCR from small quantities of substrate.
Collapse
Affiliation(s)
- Hiroshi Nojima
- Department of Molecular Genetics and DNA-chip Development Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | | |
Collapse
|
13
|
McCalla SE, Tripathi A. Quantifying transcription of clinically relevant immobilized DNA within a continuous flow microfluidic reactor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:14372-14379. [PMID: 20695456 DOI: 10.1021/la101826x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Flow-through reactors are commonly used to control and optimize reagent delivery and product removal. Although recent research suggests that transcription reactions using picogram quantities of cDNA produce RNA efficiently in a flow-through microreactor, there has not been a detailed study on the mass transport and reagent dependence of microfluidic transcription reactions. We present a novel microreactor that contains H5 influenza cDNA immobilized directly onto the reactor walls to study the kinetics and reagent dependence of in vitro transcription reactions on a microfluidic platform. Enzyme and the rNTP substrate continuously flow over the cDNA and create RNA, which flows to a downstream collection well. Using nanogram quantities of cDNA, we found that enzyme limiting conditions caused by the concentration of cDNA in a small-volume microreactor channel may be partially overcome as the enzyme binds and concentrates near the channel wall. Kinetics confirm this phenomenon and show that the timescale for enzyme binding can be approximated by t(f) = cDNA/Q[E]. Surprisingly, on-chip transcription reactions have a strong dependence on the rNTP concentration from 5 to 9 mM despite a low consumption rate of rNTP molecules that is largely independent of the flow rate. Faster flow rates decrease the time it takes to fill DNA promoter sites with enzyme while additionally refreshing rNTP and MgCl(2) to allow for a greater consumption of rNTP. These two effects cause reactions with higher concentrations of cDNA in the reactor channel to have a greater dependence on the flow rate. At high flow rates (>0.37 nL/s), the reaction rate begins to drop, likely because of the release and escape of enzyme molecules from the cDNA layer. This critical flow rate can be predicted by a new modified Peclet number, Pe(m) = L(c)V/D, where L(c) is the full length of the tightly packed cDNA molecules, V is the velocity at the DNA/fluid interface, and D is the diffusivity of the enzyme molecule. Together, these insights can inspire reactor designs for a variety of applications.
Collapse
Affiliation(s)
- Stephanie E McCalla
- Biomedical Engineering Program, School of Engineering and Medical Sciences, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
14
|
McCalla SE, Luryi AL, Tripathi A. Steric effects and mass-transfer limitations surrounding amplification reactions on immobilized long and clinically relevant DNA templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:6168-75. [PMID: 19466779 DOI: 10.1021/la804144s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA and RNA are commonly captured on solid substrates during purification and isolation, where they can be transferred to downstream amplification and transcription reactions. When compared to the solution phase, however, immobilized DNA- and RNA-directed reactions are less efficient because of a variety of complex factors. Steric inhibition because of the bead surface and neighboring biological polymers, a change in solution chemistry because of the high local concentration of template molecules, and mass transfer to the bead surface could all affect the overall reaction kinetics. Furthermore, these effects may be particularly evident when working with long clinically relevant molecules, such as mRNA, viral RNA, and cDNA. In this paper, we focus on the in vitro transcription reaction (IVT) of both a long and short strand of H5 influenza A RNA (1777 and 465 nt) on both free and immobilized DNA templates to study these phenomena. We found that transcription was less efficient on immobilized beads than in solution, but that it can be dramatically increased with optimal solution chemistry. Using high ribonucleotide concentrations (>6 mM total rNTP), the RNA yield from long immobilized cDNA templates was boosted to 60% of solution control. Surprisingly, we found that steric effects because of surrounding immobilized molecules were only significant when the DNA molecules were short enough to achieve a high density (9x10(-4) microm2/molecule) on the silica substrate, such that the gap between molecules is on the order of the polymerase diameter. Eventually, these findings can be exploited in an automated microreactor, where isolation, purification, amplification, and detection of nucleic acids can be unified into one portable device.
Collapse
Affiliation(s)
- Stephanie E McCalla
- Biomedical Engineering Program Division of Engineering and Medical Sciences, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
15
|
Kitaoka M, Ichinose H, Goto M. Simultaneous visual detection of single-nucleotide variations in tuna DNA using DNA/RNA chimeric probes and ribonuclease A. Anal Biochem 2009; 389:6-11. [PMID: 19318082 DOI: 10.1016/j.ab.2009.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 12/22/2022]
Abstract
The need for detection of single-nucleotide polymorphisms (SNPs) is rapidly increasing for molecular diagnostics, species authentication, and food traceability. In many detection technologies, fluorescence probes have the advantage of simultaneous detection of multiple analytes using multiple color fluorescence dyes. In addition, an adequate concentration of fluorescence can be observed by the naked eye. We conducted a visual ribonuclease protection assay using multicolor fluorescence probes for the simultaneous detection of multiple tuna species. The assay includes amplification of a target RNA sequence by in vitro transcription, hybridization with DNA/RNA chimeric fluorescence probes, and cleavage of mismatched RNA bases by ribonuclease A. Fragmented dye-labeled oligonucleotides were easily removed by centrifugal gel filtration. Using three fluorescent probes, fluorescence signals related to the target SNP were simply found by the visual observation of eluates. Moreover, the dual fluorescence system was used for obtaining the mixing ratio of two tuna species. This technique appeared to be convenient for detection of interest species in food products.
Collapse
Affiliation(s)
- Momoko Kitaoka
- Department of Applied Chemistry, Graduate School of Engineering, and Center for Future Chemistry, Kyushu University, 744, Moto-oka, Fukuoka 819-0395, Japan
| | | | | |
Collapse
|
16
|
Tougan T, Okuzaki D, Nojima H. Chum-RNA allows preparation of a high-quality cDNA library from a single-cell quantity of mRNA without PCR amplification. Nucleic Acids Res 2008; 36:e92. [PMID: 18603591 PMCID: PMC2528176 DOI: 10.1093/nar/gkn420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Linear RNA amplification using T7 RNA polymerase is useful in genome-wide analysis of gene expression using DNA microarrays, but exponential amplification using polymerase chain reaction (PCR) is still required for cDNA library preparation from single-cell quantities of RNA. We have designed a small RNA molecule called chum-RNA that has enabled us to prepare a single-cell cDNA library after four rounds of T7-based linear amplification, without using PCR amplification. Chum-RNA drove cDNA synthesis from only 0.49 femtograms of mRNA (730 mRNA molecules) as a substrate, a quantity that corresponds to a minor population of mRNA molecules in a single mammalian cell. Analysis of the independent cDNA clone of this library (6.6 × 105 cfu) suggests that 30-fold RNA amplification occurred in each round of the amplification process. The size distribution and representation of mRNAs in the resulting one-cell cDNA library retained its similarity to that of the million-cell cDNA library. The use of chum-RNA might also facilitate reactions involving other DNA/RNA modifying enzymes whose Michaelis constant (Km) values are around 1 mM, allowing them to be activated in the presence of only small quantities of substrate.
Collapse
Affiliation(s)
- Takahiro Tougan
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
17
|
Abstract
Metagenomics is expanding our knowledge of the gene content, functional significance, and genetic variability in natural microbial communities. Still, there exists limited information concerning the regulation and dynamics of genes in the environment. We report here global analysis of expressed genes in a naturally occurring microbial community. We first adapted RNA amplification technologies to produce large amounts of cDNA from small quantities of total microbial community RNA. The fidelity of the RNA amplification procedure was validated with Prochlorococcus cultures and then applied to a microbial assemblage collected in the oligotrophic Pacific Ocean. Microbial community cDNAs were analyzed by pyrosequencing and compared with microbial community genomic DNA sequences determined from the same sample. Pyrosequencing-based estimates of microbial community gene expression compared favorably to independent assessments of individual gene expression using quantitative PCR. Genes associated with key metabolic pathways in open ocean microbial species-including genes involved in photosynthesis, carbon fixation, and nitrogen acquisition-and a number of genes encoding hypothetical proteins were highly represented in the cDNA pool. Genes present in the variable regions of Prochlorococcus genomes were among the most highly expressed, suggesting these encode proteins central to cellular processes in specific genotypes. Although many transcripts detected were highly similar to genes previously detected in ocean metagenomic surveys, a significant fraction ( approximately 50%) were unique. Thus, microbial community transcriptomic analyses revealed not only indigenous gene- and taxon-specific expression patterns but also gene categories undetected in previous DNA-based metagenomic surveys.
Collapse
|
18
|
Degrelle SA, Hennequet-Antier C, Chiapello H, Piot-Kaminski K, Piumi F, Robin S, Renard JP, Hue I. Amplification biases: possible differences among deviating gene expressions. BMC Genomics 2008; 9:46. [PMID: 18226214 PMCID: PMC2257942 DOI: 10.1186/1471-2164-9-46] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 01/28/2008] [Indexed: 01/16/2023] Open
Abstract
Background Gene expression profiling has become a tool of choice to study pathological or developmental questions but in most cases the material is scarce and requires sample amplification. Two main procedures have been used: in vitro transcription (IVT) and polymerase chain reaction (PCR), the former known as linear and the latter as exponential. Previous reports identified enzymatic pitfalls in PCR and IVT protocols; however the possible differences between the sequences affected by these amplification defaults were only rarely explored. Results Screening a bovine cDNA array dedicated to embryonic stages with embryonic (n = 3) and somatic tissues (n = 2), we proceeded to moderate amplifications starting from 1 μg of total RNA (global PCR or IVT one round). Whatever the tissue, 16% of the probes were involved in deviating gene expressions due to amplification defaults. These distortions were likely due to the molecular features of the affected sequences (position within a gene, GC content, hairpin number) but also to the relative abundance of these transcripts within the tissues. These deviating genes mainly encoded housekeeping genes from physiological or cellular processes (70%) and constituted 2 subsets which did not overlap (molecular features, signal intensities, gene ID). However, the differential expressions identified between embryonic stages were both reliable (minor intersect with biased expressions) and relevant (biologically validated). In addition, the relative expression levels of those genes were biologically similar between amplified and unamplified samples. Conclusion Conversely to the most recent reports which challenged the use of intense amplification procedures on minute amounts of RNA, we chose moderate PCR and IVT amplifications for our gene profiling study. Conclusively, it appeared that systematic biases arose even with moderate amplification procedures, independently of (i) the sample used: brain, ovary or embryos, (ii) the enzymatic properties initially inferred (exponential or linear) and (iii) the preliminary optimization of the protocols. Moreover the use of an in-house developed array, small-sized but well suited to the tissues we worked with, was of real interest for the search of differential expressions.
Collapse
Affiliation(s)
- Séverine A Degrelle
- Biologie du Développement et Reproduction UMR 1198; ENVA; CNRS, FRE 2857, Institut National de la Recherche Agronomique, F-78350 Jouy-en-Josas, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
van Bakel H, van Werven FJ, Radonjic M, Brok MO, van Leenen D, Holstege FCP, Timmers HTM. Improved genome-wide localization by ChIP-chip using double-round T7 RNA polymerase-based amplification. Nucleic Acids Res 2008; 36:e21. [PMID: 18180247 PMCID: PMC2275083 DOI: 10.1093/nar/gkm1144] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromatin immunoprecipitation combined with DNA microarrays (ChIP-chip) is a powerful technique to detect in vivo protein–DNA interactions. Due to low yields, ChIP assays of transcription factors generally require amplification of immunoprecipitated genomic DNA. Here, we present an adapted linear amplification method that involves two rounds of T7 RNA polymerase amplification (double-T7). Using this we could successfully amplify as little as 0.4 ng of ChIP DNA to sufficient amounts for microarray analysis. In addition, we compared the double-T7 method to the ligation-mediated polymerase chain reaction (LM-PCR) method in a ChIP-chip of the yeast transcription factor Gsm1p. The double-T7 protocol showed lower noise levels and stronger binding signals compared to LM-PCR. Both LM-PCR and double-T7 identified strongly bound genomic regions, but the double-T7 method increased sensitivity and specificity to allow detection of weaker binding sites.
Collapse
Affiliation(s)
- Harm van Bakel
- Department of Physiological Chemistry, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Reed J, Mishra B, Pittenger B, Magonov S, Troke J, Teitell MA, Gimzewski JK. Single molecule transcription profiling with AFM. NANOTECHNOLOGY 2007; 18:44032. [PMID: 20721301 PMCID: PMC2922717 DOI: 10.1088/0957-4484/18/4/044032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations.
Collapse
Affiliation(s)
- Jason Reed
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Bud Mishra
- Department of Computer Science and Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | | | | | - Joshua Troke
- Department of Pathology and the Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095, USA
| | - Michael A Teitell
- Department of Pathology and the Center for Cell Control, an NIH Nanomedicine Development Center, UCLA, Los Angeles, CA 90095, USA
- California Nanosystems Institute (CNSI), Los Angeles, CA 90095, USA
| | - James K Gimzewski
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
- California Nanosystems Institute (CNSI), Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Zhang X, Madi S, Borsuk L, Nettleton D, Elshire RJ, Buckner B, Janick-Buckner D, Beck J, Timmermans M, Schnable PS, Scanlon MJ. Laser microdissection of narrow sheath mutant maize uncovers novel gene expression in the shoot apical meristem. PLoS Genet 2007; 3:e101. [PMID: 17571927 PMCID: PMC1904365 DOI: 10.1371/journal.pgen.0030101] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 05/07/2007] [Indexed: 12/28/2022] Open
Abstract
Microarrays enable comparative analyses of gene expression on a genomic scale, however these experiments frequently identify an abundance of differentially expressed genes such that it may be difficult to identify discrete functional networks that are hidden within large microarray datasets. Microarray analyses in which mutant organisms are compared to nonmutant siblings can be especially problematic when the gene of interest is expressed in relatively few cells. Here, we describe the use of laser microdissection microarray to perform transcriptional profiling of the maize shoot apical meristem (SAM), a ~100-μm pillar of organogenic cells that is required for leaf initiation. Microarray analyses compared differential gene expression within the SAM and incipient leaf primordium of nonmutant and narrow sheath mutant plants, which harbored mutations in the duplicate genes narrow sheath1 (ns1) and narrow sheath2 (ns2). Expressed in eight to ten cells within the SAM, ns1 and ns2 encode paralogous WUSCHEL1-like homeobox (WOX) transcription factors required for recruitment of leaf initials that give rise to a large lateral domain within maize leaves. The data illustrate the utility of laser microdissection-microarray analyses to identify a relatively small number of genes that are differentially expressed within the SAM. Moreover, these analyses reveal potentially conserved WOX gene functions and implicate specific hormonal and signaling pathways during early events in maize leaf development. Unlike animals, plants exhibit a prolonged period of organogenesis, generating new leaves throughout their life cycle. This ability to maintain an embryo-like state is dependent upon the activity of shoot meristems, whose dual functions are to supply an inner core of pluripotent cells that sustain the shoot meristem while simultaneously generating new leaves derived from cells at the meristem periphery. Deciphering the complex combinations of molecular signals that transform meristematic cells into leaf primordia is a central question in plant developmental biology. In this study, we used the power of focused laser light to microdissect shoot meristems from neighboring leaf and stem tissue in the maize plant. Once isolated, we compared patterns of gene expression in normal shoot meristems to those of genetically mutant shoot meristems that form abnormal, narrow leaves. Out of more than 21,000 maize genes analyzed, 66 genes were identified as misexpressed in the mutant shoot meristems. All but one of the differentially expressed genes are previously unstudied in maize, and the majority are predicted to function during cell division, growth, or developmental signaling. Many of these novel genes are expressed in specific domains of the shoot meristem, consistent with their predicted function during maize leaf initiation.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
| | - Shahinez Madi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Lisa Borsuk
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa, United States of America
| | - Robert J Elshire
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Brent Buckner
- Division of Science, Truman State University, Kirksville, Missouri, United States of America
| | - Diane Janick-Buckner
- Division of Science, Truman State University, Kirksville, Missouri, United States of America
| | - Jon Beck
- Division of Mathematics and Computer Science, Truman State University, Kirksville, Missouri, United States of America
| | - Marja Timmermans
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Patrick S Schnable
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Michael J Scanlon
- Plant Biology Department, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Cheng C, Tempel D, van Haperen R, de Boer HC, Segers D, Huisman M, van Zonneveld AJ, Leenen PJ, van der Steen A, Serruys PW, de Crom R, Krams R. Shear stress-induced changes in atherosclerotic plaque composition are modulated by chemokines. J Clin Invest 2007; 117:616-26. [PMID: 17304353 PMCID: PMC1794116 DOI: 10.1172/jci28180] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 12/19/2006] [Indexed: 11/17/2022] Open
Abstract
We previously found that low shear stress (LSS) induces atherosclerotic plaques in mice with increased lipid and matrix metalloproteinase content and decreased vascular smooth muscle and collagen content. Here, we evaluated the role of chemokines in this process, using an extravascular device inducing regions of LSS, high shear stress, and oscillatory shear stress (OSS) in the carotid artery. One week of shear stress alterations induced expression of IFN-gamma-inducible protein-10 (IP-10) exclusively in the LSS region, whereas monocyte chemoattractant protein-1 (MCP-1) and the mouse homolog of growth-regulated oncogene alpha (GRO-alpha) were equally upregulated in both LSS and OSS regions. After 3 weeks, GRO-alpha and IP-10 were specifically upregulated in LSS regions. After 9 weeks, lesions with thinner fibrous caps and larger necrotic cores were found in the LSS region compared with the OSS region. Equal levels of MCP-1 expression were observed in both regions, while expression of fractalkine was found in the LSS region only. Blockage of fractalkine inhibited plaque growth and resulted in striking differences in plaque composition in the LSS region. We conclude that LSS or OSS triggers expression of chemokines involved in atherogenesis. Fractalkine upregulation is critically important for the composition of LSS-induced atherosclerotic lesions.
Collapse
Affiliation(s)
- Caroline Cheng
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dennie Tempel
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rien van Haperen
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hetty C. de Boer
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dolf Segers
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Huisman
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pieter J.M. Leenen
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anton van der Steen
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrick W. Serruys
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rini de Crom
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob Krams
- Department of Cardiology, Thoraxcenter, and
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
Department of Immunology and
Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Department of Physiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Branen JR, Hass MJ, Maki WC, Branen AL. An enzymatic bionanotransduction system for multianalyte biological detection. J Appl Microbiol 2007; 102:892-908. [PMID: 17381732 DOI: 10.1111/j.1365-2672.2007.03300.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to develop and optimize a system for the detection of multiple biological targets in a single sample based on enzymatic bionanotransduction. METHOD AND RESULTS We used biological recognition elements (antibodies, DNA sequences) linked to DNA templates with T7 promoter regions for detection of specific target molecules. In vitro transcription of DNA templates bound to target molecules produced RNA nanosignals specific for every target in the sample. An enzyme-linked oligonucleotide fluorescence assay (ELOFA) provided a correlation between nanosignal profiles and target concentrations. The system was capable of detecting and distinguishing three species of specific immunoglobulin G (IgG) molecules at a level of 0.2 ng, mixed protein and DNA targets and single sample detection of Escherichia coli O157 micro-organisms and Staphylococcal enterotoxin B (SEB). CONCLUSIONS This report provided proof of concept for the use of enzymatic bionanotransduction with multianalyte biological detection based on differential nanosignal hybridization along with the application of this system to pathogen/toxin detection. SIGNIFICANCE AND IMPACT OF THE STUDY This system has the potential to be used as a tool for detection of multiple foodborne and environmental pathogens, toxins and targets of interest in a single sample.
Collapse
Affiliation(s)
- J R Branen
- University of Idaho, Post Falls, Idaho, USA.
| | | | | | | |
Collapse
|
24
|
Nygaard V, Hovig E. Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling. Nucleic Acids Res 2006; 34:996-1014. [PMID: 16473852 PMCID: PMC1363777 DOI: 10.1093/nar/gkj499] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/24/2006] [Accepted: 01/24/2006] [Indexed: 01/18/2023] Open
Abstract
The possibility of performing microarray analysis on limited material has been demonstrated in a number of publications. In this review we approach the technical aspects of mRNA amplification and several important implicit consequences, for both linear and exponential procedures. Amplification efficiencies clearly allow profiling of extremely small samples. The conservation of transcript abundance is the most important issue regarding the use of sample amplification in combination with microarray analysis, and this aspect has generally been found to be acceptable, although demonstrated to decrease in highly diluted samples. The fact that variability and discrepancies in microarray profiles increase with minute sample sizes has been clearly documented, but for many studies this does appear to have affected the biological conclusions. We suggest that this is due to the data analysis approach applied, and the consequence is the chance of presenting misleading results. We discuss the issue of amplification sensitivity limits in the light of reports on fidelity, published data from reviewed articles and data analysis approaches. These are important considerations to be reflected in the design of future studies and when evaluating biological conclusions from published microarray studies based on extremely low input RNA quantities.
Collapse
Affiliation(s)
- Vigdis Nygaard
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radiumhospital Montebello, 0310, Oslo, Norway.
| | | |
Collapse
|
25
|
Abstract
The ability to form tenable hypotheses regarding the neurobiological basis of normative functions as well as mechanisms underlying neurodegenerative and neuropsychiatric disorders is often limited by the highly complex brain circuitry and the cellular and molecular mosaics therein. The brain is an intricate structure with heterogeneous neuronal and nonneuronal cell populations dispersed throughout the central nervous system. Varied and diverse brain functions are mediated through gene expression, and ultimately protein expression, within these cell types and interconnected circuits. Large-scale high-throughput analysis of gene expression in brain regions and individual cell populations using modern functional genomics technologies has enabled the simultaneous quantitative assessment of dozens to hundreds to thousands of genes. Technical and experimental advances in the accession of tissues, RNA amplification technologies, and the refinement of downstream genetic methodologies including microarray analysis and real-time quantitative PCR have generated a wellspring of informative studies pertinent to understanding brain structure and function. In this review, we outline the advantages as well as some of the potential challenges of applying high throughput functional genomics technologies toward a better understanding of brain tissues and diseases using animal models as well as human postmortem tissues.
Collapse
|
26
|
Nygaard V, Holden M, Løland A, Langaas M, Myklebost O, Hovig E. Limitations of mRNA amplification from small-size cell samples. BMC Genomics 2005; 6:147. [PMID: 16253144 PMCID: PMC1310617 DOI: 10.1186/1471-2164-6-147] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 10/27/2005] [Indexed: 11/10/2022] Open
Abstract
Background Global mRNA amplification has become a widely used approach to obtain gene expression profiles from limited material. An important concern is the reliable reflection of the starting material in the results obtained. This is especially important with extremely low quantities of input RNA where stochastic effects due to template dilution may be present. This aspect remains under-documented in the literature, as quantitative measures of data reliability are most often lacking. To address this issue, we examined the sensitivity levels of each transcript in 3 different cell sample sizes. ANOVA analysis was used to estimate the overall effects of reduced input RNA in our experimental design. In order to estimate the validity of decreasing sample sizes, we examined the sensitivity levels of each transcript by applying a novel model-based method, TransCount. Results From expression data, TransCount provided estimates of absolute transcript concentrations in each examined sample. The results from TransCount were used to calculate the Pearson correlation coefficient between transcript concentrations for different sample sizes. The correlations were clearly transcript copy number dependent. A critical level was observed where stochastic fluctuations became significant. The analysis allowed us to pinpoint the gene specific number of transcript templates that defined the limit of reliability with respect to number of cells from that particular source. In the sample amplifying from 1000 cells, transcripts expressed with at least 121 transcripts/cell were statistically reliable and for 250 cells, the limit was 1806 transcripts/cell. Above these thresholds, correlation between our data sets was at acceptable values for reliable interpretation. Conclusion These results imply that the reliability of any amplification experiment must be validated empirically to justify that any gene exists in sufficient quantity in the input material. This finding has important implications for any experiment where only extremely small samples such as single cell analyses or laser captured microdissected cells are available.
Collapse
Affiliation(s)
- Vigdis Nygaard
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Marit Holden
- Norwegian Computing Center, P.O. Box 114 Blindern, 0314 Oslo, Norway
| | - Anders Løland
- Norwegian Computing Center, P.O. Box 114 Blindern, 0314 Oslo, Norway
| | - Mette Langaas
- Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| |
Collapse
|