1
|
Ramarao N, Tran SL, Marin M, Vidic J. Advanced Methods for Detection of Bacillus cereus and Its Pathogenic Factors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2667. [PMID: 32392794 PMCID: PMC7273213 DOI: 10.3390/s20092667] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Bacillus cereus is an opportunistic foodborne pathogen causing food intoxication and infectious diseases. Different toxins and pathogenic factors are responsible for diarrheal syndrome, like nonhemolytic enterotoxin Nhe, hemolytic enterotoxin Hbl, enterotoxin FM and cytotoxin K, while emetic syndrome is caused by the depsipeptide cereulide toxin. The traditional method of B. cereus detection is based on the bacterial culturing onto selective agars and cells enumeration. In addition, molecular and chemical methods are proposed for toxin gene profiling, toxin quantification and strain screening for defined virulence factors. Finally, some advanced biosensors such as phage-based, cell-based, immunosensors and DNA biosensors have been elaborated to enable affordable, sensitive, user-friendly and rapid detection of specific B. cereus strains. This review intends to both illustrate the state of the B. cereus diagnostic field and to highlight additional research that is still at the development level.
Collapse
Affiliation(s)
- Nalini Ramarao
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (S.-L.T.); (M.M.)
| | | | | | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (S.-L.T.); (M.M.)
| |
Collapse
|
2
|
Vidic J, Vizzini P, Manzano M, Kavanaugh D, Ramarao N, Zivkovic M, Radonic V, Knezevic N, Giouroudi I, Gadjanski I. Point-of-Need DNA Testing for Detection of Foodborne Pathogenic Bacteria. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1100. [PMID: 30836707 PMCID: PMC6427207 DOI: 10.3390/s19051100] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Foodborne pathogenic bacteria present a crucial food safety issue. Conventional diagnostic methods are time-consuming and can be only performed on previously produced food. The advancing field of point-of-need diagnostic devices integrating molecular methods, biosensors, microfluidics, and nanomaterials offers new avenues for swift, low-cost detection of pathogens with high sensitivity and specificity. These analyses and screening of food items can be performed during all phases of production. This review presents major developments achieved in recent years in point-of-need diagnostics in land-based sector and sheds light on current challenges in achieving wider acceptance of portable devices in the food industry. Particular emphasis is placed on methods for testing nucleic acids, protocols for portable nucleic acid extraction and amplification, as well as on the means for low-cost detection and read-out signal amplification.
Collapse
Affiliation(s)
- Jasmina Vidic
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Priya Vizzini
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy.
| | - Marisa Manzano
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, 33100 Udine, Italy.
| | - Devon Kavanaugh
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Nalini Ramarao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Milica Zivkovic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11000 Belgrade, Serbia.
| | - Vasa Radonic
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Nikola Knezevic
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Ioanna Giouroudi
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| | - Ivana Gadjanski
- BioSense-Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, 21000 Novi Sad, Serbia.
| |
Collapse
|
3
|
Critical factors for the performance of chip array-based electrical detection of DNA for analysis of pathogenic bacteria. Anal Biochem 2008; 382:77-86. [DOI: 10.1016/j.ab.2008.05.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 11/19/2022]
|
4
|
Basselet P, Wegrzyn G, Enfors SO, Gabig-Ciminska M. Sample processing for DNA chip array-based analysis of enterohemorrhagic Escherichia coli (EHEC). Microb Cell Fact 2008; 7:29. [PMID: 18851736 PMCID: PMC2572036 DOI: 10.1186/1475-2859-7-29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 10/13/2008] [Indexed: 11/10/2022] Open
Abstract
Background Exploitation of DNA-based analyses of microbial pathogens, and especially simultaneous typing of several virulence-related genes in bacteria is becoming an important objective of public health these days. Results A procedure for sample processing for a confirmative analysis of enterohemorrhagic Escherichia coli (EHEC) on a single colony with DNA chip array was developed and is reported here. The protocol includes application of fragmented genomic DNA from ultrasonicated colonies. The sample processing comprises first 2.5 min of ultrasonic treatment, DNA extraction (2×), and afterwards additional 5 min ultrasonication. Thus, the total sample preparation time for a confirmative analysis of EHEC is nearly 10 min. Additionally, bioinformatic revisions were performed in order to design PCR primers and array probes specific to most conservative regions of the EHEC-associated genes. Six strains with distinct pathogenic properties were selected for this study. At last, the EHEC chip array for a parallel and simultaneous detection of genes etpC-stx1-stx2-eae was designed and examined. This should permit to sense all currently accessible variants of the selected sequences in EHEC types and subtypes. Conclusion In order to implement the DNA chip array-based analysis for direct EHEC detection the sample processing was established in course of this work. However, this sample preparation mode may also be applied to other types of EHEC DNA-based sensing systems.
Collapse
Affiliation(s)
- Pascal Basselet
- School of Biotechnology, Royal Institute of Technology (KTH), S-10691 Stockholm, Sweden.
| | | | | | | |
Collapse
|
5
|
Novel developments for improved detection of specific mRNAs by DNA chips. Appl Microbiol Biotechnol 2008; 80:953-63. [PMID: 18784921 DOI: 10.1007/s00253-008-1680-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/20/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
Microarrays have revolutionized gene expression analysis as they allow for highly parallel monitoring of mRNA levels of thousands of genes in a single experiment. Since their introduction some 15 years ago, substantial progress has been achieved with regard to, e.g., faster or more sensitive analyses. In this review, interesting new approaches for a more sensitive detection of specific mRNAs will be highlighted. Particularly, the potential of electrical DNA chip formats that allow for faster mRNA analyses will be discussed.
Collapse
|
6
|
Leuko S, Goh F, Ibáñez-Peral R, Burns BP, Walter MR, Neilan BA. Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles 2007; 12:301-8. [PMID: 18087671 DOI: 10.1007/s00792-007-0124-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/05/2007] [Indexed: 11/29/2022]
Abstract
The extraction of nucleic acids from a given environment marks a crucial and essential starting point in any molecular investigation. Members of Halococcus spp. are known for their rigid cell walls, and are thus difficult to lyse and could potentially be overlooked in an environment. Furthermore, the lack of a suitable lysis method hinders subsequent molecular analysis. The effects of six different DNA extraction methods were tested on Halococcus hamelinensis, Halococcus saccharolyticus and Halobacterium salinarum NRC-1 as well as on an organic rich, highly carbonated sediment from stromatolites spiked with Halococcus hamelinensis. The methods tested were based on physical disruption (boiling and freeze/thawing), chemical lysis (Triton X-100, potassium ethyl xanthogenate (XS) buffer and CTAB) and on enzymatic lysis (lysozyme). Results showed that boiling and freeze/thawing had little effect on the lysis of both Halococcus strains. Methods based on chemical lysis (Triton X-100, XS-buffer, and CTAB) showed the best results, however, Triton X-100 treatment failed to produce visible DNA fragments. Using a combination of bead beating, chemical lysis with lysozyme, and thermal shock, lysis of cells was achieved however DNA was badly sheared. Lysis of cells and DNA extraction of samples from spiked sediment proved to be difficult, with the XS-buffer method indicating the best results. This study provides an evaluation of six commonly used methods of cell lysis and DNA extraction of Halococcus spp., and the suitability of the resulting DNA for molecular analysis.
Collapse
Affiliation(s)
- S Leuko
- Australian Centre for Astrobiology, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | | | | | | |
Collapse
|
7
|
Liu Y, Elsholz B, Enfors SO, Gabig-Ciminska M. Confirmative electric DNA array-based test for food poisoning Bacillus cereus. J Microbiol Methods 2007; 70:55-64. [PMID: 17466398 DOI: 10.1016/j.mimet.2007.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/20/2007] [Accepted: 03/20/2007] [Indexed: 11/18/2022]
Abstract
Detection of the full set of toxin encoding genes involved in gastrointestinal diseases caused by B. cereus was performed. Eight genes determining the B. cereus pathogenicity, which results in diarrhea or emesis, were simultaneously evaluated on a 16-position electrical chip microarray. The DNA analyte preparation procedure comprising first 5 min of ultrasonic treatment, DNA extraction, and afterwards an additional 10 min sonication, was established as the most effective way of sample processing. No DNA amplification step prior to the analysis was included. The programmed assay was carried out within 30 min, once the DNA analyte from 10(8) bacterial cells, corresponding to one agar colony, was subjected to the assay. In general, this work represents a mature analytical way for DNA review. It can be used under conditions that require almost immediate results.
Collapse
Affiliation(s)
- Yanling Liu
- School of Biotechnology, Royal Institute of Technology (KTH), S-10691, Stockholm, Sweden
| | | | | | | |
Collapse
|
8
|
Gabig-Ciminska M. Developing nucleic acid-based electrical detection systems. Microb Cell Fact 2006; 5:9. [PMID: 16512917 PMCID: PMC1420323 DOI: 10.1186/1475-2859-5-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Accepted: 03/02/2006] [Indexed: 11/10/2022] Open
Abstract
Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of possibilities makes the research field very diversified and competitive. New challenges and requirements for an ideal detector suitable for nucleic acid analysis include high sensitivity and high specificity protocol that can be completed in a relatively short time offering at the same time low detection limit. Moreover, systems that can be miniaturized and automated present a significant advantage over conventional technology, especially if detection is needed in the field. Electrical system technology for nucleic acid-based detection is an enabling mode for making miniaturized to micro- and nanometer scale bio-monitoring devices via the fusion of modern micro- and nanofabrication technology and molecular biotechnology. The electrical biosensors that rely on the conversion of the Watson-Crick base-pair recognition event into a useful electrical signal are advancing rapidly, and recently are receiving much attention as a valuable tool for microbial pathogen detection. Pathogens may pose a serious threat to humans, animal and plants, thus their detection and analysis is a significant element of public health. Although different conventional methods for detection of pathogenic microorganisms and their toxins exist and are currently being applied, improvements of molecular-based detection methodologies have changed these traditional detection techniques and introduced a new era of rapid, miniaturized and automated electrical chip detection technologies into pathogen identification sector. In this review some developments and current directions in nucleic acid-based electrical detection are discussed.
Collapse
|