1
|
Caron K, Craw P, Richardson MB, Bodrossy L, Voelcker NH, Thissen H, Sutherland TD. The Requirement of Genetic Diagnostic Technologies for Environmental Surveillance of Antimicrobial Resistance. SENSORS 2021; 21:s21196625. [PMID: 34640944 PMCID: PMC8513014 DOI: 10.3390/s21196625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
Antimicrobial resistance (AMR) is threatening modern medicine. While the primary cost of AMR is paid in the healthcare domain, the agricultural and environmental domains are also reservoirs of resistant microorganisms and hence perpetual sources of AMR infections in humans. Consequently, the World Health Organisation and other international agencies are calling for surveillance of AMR in all three domains to guide intervention and risk reduction strategies. Technologies for detecting AMR that have been developed for healthcare settings are not immediately transferable to environmental and agricultural settings, and limited dialogue between the domains has hampered opportunities for cross-fertilisation to develop modified or new technologies. In this feature, we discuss the limitations of currently available AMR sensing technologies used in the clinic for sensing in other environments, and what is required to overcome these limitations.
Collapse
Affiliation(s)
- Karine Caron
- CSIRO Health & Biosecurity, Canberra, ACT 2602, Australia;
| | - Pascal Craw
- CSIRO Oceans & Atmosphere, Hobart, TAS 7004, Australia; (P.C.); (L.B.)
| | - Mark B. Richardson
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
| | - Levente Bodrossy
- CSIRO Oceans & Atmosphere, Hobart, TAS 7004, Australia; (P.C.); (L.B.)
| | - Nicolas H. Voelcker
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Clayton, VIC 3168, Australia; (M.B.R.); (N.H.V.); (H.T.)
| | - Tara D. Sutherland
- CSIRO Health & Biosecurity, Canberra, ACT 2602, Australia;
- Correspondence:
| |
Collapse
|
2
|
Sequence-Specific End Labeling of Oligonucleotides (SSELO)-Based Microbial Detection. Methods Mol Biol 2019; 1918:47-56. [PMID: 30580398 DOI: 10.1007/978-1-4939-9000-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The sequence-specific end labeling of oligonucleotides (SSELO) is an alternative labelling approach for the short-oligonucleotide diagnostic microarrays that was firstly described by Rudi and coworkers (ScientificWorldJournal 3:578-584, 2003). SSELO approach is unique in a way that it shifts the specificity determining step from hybridization to labeling, ensuring both high specificity (with careful probe design even single nucleotide polymorphisms (SNPs) can be detected) and sensitivity (detection sensitivity in the range of 0.1% relative abundance has been demonstrated) of the diagnostic system. These features make SSELO approach a perfect choice for the development of microbial diagnostic microarrays, in particular in the frame of foodborne bacterial pathogen detection.
Collapse
|
3
|
Nostrand JDV, He Z, Zhou J. Use of functional gene arrays for elucidating in situ biodegradation. Front Microbiol 2012; 3:339. [PMID: 23049526 PMCID: PMC3448134 DOI: 10.3389/fmicb.2012.00339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022] Open
Abstract
Microarrays have revolutionized the study of microbiology by providing a high-throughput method for examining thousands of genes with a single test and overcome the limitations of many culture-independent approaches. Functional gene arrays (FGA) probe a wide range of genes involved in a variety of functions of interest to microbial ecology (e.g., carbon degradation, N fixation, metal resistance) from many different microorganisms, cultured and uncultured. The most comprehensive FGA to date is the GeoChip array, which targets tens of thousands of genes involved in the geochemical cycling of carbon, nitrogen, phosphorus, and sulfur, metal resistance and reduction, energy processing, antibiotic resistance and contaminant degradation as well as phylogenetic information (gyrB). Since the development of GeoChips, many studies have been performed using this FGA and have shown it to be a powerful tool for rapid, sensitive, and specific examination of microbial communities in a high-throughput manner. As such, the GeoChip is well-suited for linking geochemical processes with microbial community function and structure. This technology has been used successfully to examine microbial communities before, during, and after in situ bioremediation at a variety of contaminated sites. These studies have expanded our understanding of biodegradation and bioremediation processes and the associated microorganisms and environmental conditions responsible. This review provides an overview of FGA development with a focus on the GeoChip and highlights specific GeoChip studies involving in situ bioremediation.
Collapse
Affiliation(s)
- Joy D Van Nostrand
- Institute for Environmental Genomics, University of Oklahoma Norman, OK, USA ; Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | | | | |
Collapse
|
4
|
He Z, Deng Y, Zhou J. Development of functional gene microarrays for microbial community analysis. Curr Opin Biotechnol 2011; 23:49-55. [PMID: 22100036 DOI: 10.1016/j.copbio.2011.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/21/2023]
Abstract
Functional gene arrays (FGAs) are a special type of microarrays containing probes for key genes involved in microbial functional processes, such as biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus and metals, virulence and antibiotic resistance, biodegradation of environmental contaminants, and stress responses. FGAs have been demonstrated to be a specific, sensitive, and quantitative tool for rapid analysis of microbial communities from different habitats, such as waters, soils, extreme environments, bioreactors, and human microbiomes. In this review, we first summarize currently reported FGAs, and then focus on the FGA development. We will also discuss several key issues of FGA technology as well as challenges and directions in future FGA development.
Collapse
Affiliation(s)
- Zhili He
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA.
| | | | | |
Collapse
|
5
|
He Z, Van Nostrand JD, Deng Y, Zhou J. Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11783-011-0301-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Wu G, Abuoun M, Hackl E, La Ragione RM, Fookes M, Fenner J, Pan Z, Wenzl P, Anjum MF, Woodward MJ. Epidemic multidrug-resistant (MDR-AmpC) Salmonella enterica serovar Newport strains contain three phage regions and a MDR resistance plasmid. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:228-235. [PMID: 23766073 DOI: 10.1111/j.1758-2229.2009.00095.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multidrug-resistant (MDR-AmpC) Salmonella enterica serovar Newport has caused serious disease in animals and humans in North America, whereas in the UK S. enterica serovar Newport is not associated with severe disease and usually sensitive to antibiotics; MDR S. Newport (not AmpC) strains have only been isolated from poultry. We found that UK poultry strains belonged to MLST type ST166 and were distinct from cattle isolates for being able to utilize D-tagotose and when compared by pulsed-field gel electrophoresis (PFGE), comparative genomic hybridization (CGH) and diversity arrays technology (DArT). Cattle strains belonged to the ST45 complex differing from ST166 at all seven loci. PFGE showed that 19 out of 27 cattle isolates were more than 85% similar to each other and some UK and US strains were indistinguishable. Both CGH and DArT identified genes (including phage-related ones) that were uniquely present in the US isolates and two such genes identified by DArT showed sequence similarities with the pertussis-like (artAB) toxin. This work demonstrates that MDR-AmpC S. Newport from the USA are genetically closely related to pan-susceptible strains from the UK, but contained three extra phage regions and a MDR plasmid.
Collapse
Affiliation(s)
- Guanghui Wu
- Department for Food and Environmental Safety, Veterinary Laboratories Agency (VLA)-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT13 3NB, UK. AIT Austrian Institute of Technology GmbH, Bioresources Unit, 2444 Seibersdorf, Austria. The Pathogen Genetics Group, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. Diversity Arrays Technology Pty Ltd, Yarralumla, Canberra, ACT 2600, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hackl E, Konrad-Köszler M, Kilian A, Wenzl P, Kornschober C, Sessitsch A. Phage-type specific markers identified by Diversity Arrays Technology (DArT) analysis of Salmonella enterica ssp. enterica serovars Enteritidis and Typhimurium. J Microbiol Methods 2009; 80:100-5. [PMID: 19852988 DOI: 10.1016/j.mimet.2009.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/09/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
Diversity Arrays Technology (DArT) was applied to differentiate between S. enterica serovar Enteritidis and Typhimurium strains, respectively. Ten and eleven, mainly phage and plasmid-related markers were identified for serovars Enteritidis and Typhimurium. In combination, these markers can be used for subtyping among and within phage types.
Collapse
Affiliation(s)
- Evelyn Hackl
- AIT Austrian Institute of Technology GmbH, Health & Environment Department, Bioresources Unit, A-2444 Seibersdorf, Austria.
| | | | | | | | | | | |
Collapse
|
8
|
In situ-synthesized virulence and marker gene biochip for detection of bacterial pathogens in water. Appl Environ Microbiol 2008; 74:2200-9. [PMID: 18245235 DOI: 10.1128/aem.01962-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pathogen detection tools with high reliability are needed for various applications, including food and water safety and clinical diagnostics. In this study, we designed and validated an in situ-synthesized biochip for detection of 12 microbial pathogens, including a suite of pathogens relevant to water safety. To enhance the reliability of presence/absence calls, probes were designed for multiple virulence and marker genes (VMGs) of each pathogen, and each VMG was targeted by an average of 17 probes. Hybridization of the biochip with amplicon mixtures demonstrated that 95% of the initially designed probes behaved as predicted in terms of positive/negative signals. The probes were further validated using DNA obtained from three different types of water samples and spiked with pathogen genomic DNA at decreasing relative abundance. Excellent specificity for making presence/absence calls was observed by using a cutoff of 0.5 for the positive fraction (i.e., the fraction of probes yielding a positive signal for a given VMG). A split multiplex PCR design for simultaneous amplification of the VMGs resulted in a detection limit of between 0.1 and 0.01% relative abundance, depending on the type of pathogen and the VMG. Thermodynamic analysis of the hybridization patterns obtained with DNA from the different water samples demonstrated that probes with a hybridization Gibbs free energy of approximately -19.3 kcal/mol provided the best trade-off between sensitivity and specificity. The developed biochip may be used to detect the described bacterial pathogens in water samples when parallel and specific detection is required.
Collapse
|
9
|
Ojha S, Kostrzynska M. Examination of animal and zoonotic pathogens using microarrays. Vet Res 2007; 39:4. [DOI: 10.1051/vetres:2007042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 07/27/2007] [Indexed: 01/13/2023] Open
|
10
|
Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Sandjong BT, Bodrossy L. Diagnostic microbial microarrays in soil ecology. THE NEW PHYTOLOGIST 2006; 171:719-35. [PMID: 16918544 DOI: 10.1111/j.1469-8137.2006.01824.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Soil microbial communities are responsible for important physiological and metabolic processes. In the last decade soil microorganisms have been frequently analysed by cultivation-independent techniques because only a minority of the natural microbial communities are accessible by cultivation. Cultivation-independent community analyses have revolutionized our understanding of soil microbial diversity and population dynamics. Nevertheless, many methods are still laborious and time-consuming, and high-throughput methods have to be applied in order to understand population shifts at a finer level and to be better able to link microbial diversity with ecosystems functioning. Microbial diagnostic microarrays (MDMs) represent a powerful tool for the parallel, high-throughput identification of many microorganisms. Three categories of MDMs have been defined based on the nature of the probe and target molecules used: phylogenetic oligonucleotide microarrays with short oligonucleotides against a phylogenetic marker gene; functional gene arrays containing probes targeting genes encoding specific functions; and community genome arrays employing whole genomes as probes. In this review, important methodological developments relevant to the application of the different types of diagnostic microarrays in soil ecology will be addressed and new approaches, needs and future directions will be identified, which might lead to a better insight into the functional activities of soil microbial communities.
Collapse
Affiliation(s)
- A Sessitsch
- ARC Seibersdorf research GmbH, Department. of Bioresources, A-2444 Seibersdorf, Austria.
| | | | | | | | | | | | | | | |
Collapse
|