1
|
Raj A, Thomas RK, Vidya L, Neelima S, Aparna VM, Sudarsanakumar C. A Minor Groove Binder with Significant Cytotoxicity on Human Lung Cancer Cells: The Potential of Hesperetin Functionalised Silver Nanoparticles. J Fluoresc 2024; 34:2179-2196. [PMID: 37721707 DOI: 10.1007/s10895-023-03409-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Natural drug functionalised silver (Ag) nanoparticles (NPs) have gained significant interest in pharmacology related applications due to their therapeutic efficiency. We have synthesised silver nanoparticle using hesperetin as a reducing and capping agent. This work aims to discuss the relevance of the hesperetin functionalised silver nanoparticles (H-AgNPs) in the field of nano-medicine. The article primarily investigates the anticancer activity of H-AgNPs and then their interactions with calf thymus DNA (ctDNA) through spectroscopic and thermodynamic techniques. The green synthesised H-AgNPs are stable, spherical in shape and size of 10 ± 3 nm average diameter. The complex formation of H-AgNPs with ctDNA was established by UV-Visible absorption, fluorescent dye displacement assay, isothermal calorimetry and viscosity measurements. The binding constants obtained from these experiments were consistently in the order of 104 Mol-1. The melting temperature analysis and FTIR measurements confirmed that the structural alterations of ctDNA by the presence of H-AgNPs are minimal. All the thermodynamic variables and the endothermic binding nature were acquired from ITC experiments. All these experimental outcomes reveal the formation of H-AgNPs-ctDNA complex, and the results consistently verify the minor groove binding mode of H-AgNPs. The binding constant and limit of detection of 1.8 μM found from the interaction studies imply the DNA detection efficiency of H-AgNPs. The cytotoxicity of H-AgNPs against A549 and L929 cell lines were determined by in vitro MTT cell viability assay and lactate dehydrogenase (LDH) assay. The cell viability and LDH enzyme release are confirmed that the H-AgNPs has high anticancer activity. Moreover, the calculated LD50 value for H-AgNPs against lung cancer cells is 118.49 µl/ml, which is a low value comparing with the value for fibroblast cells (269.35 µl/ml). In short, the results of in vitro cytotoxicity assays revealed that the synthesised nanoparticles can be considered in applications related to cancer treatments. Also, we have found that, H-AgNPs is a minor groove binder, and having high DNA detection efficiency.
Collapse
Affiliation(s)
- Aparna Raj
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - Riju K Thomas
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
- Bharata Mata College, Thrikkakara, Ernakulam, Kerala, 682032, India
| | - L Vidya
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - S Neelima
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - V M Aparna
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India
| | - C Sudarsanakumar
- School of Pure & Applied Physics, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686 560, India.
| |
Collapse
|
2
|
Myres GJ, Harris JM. Nanomolar Binding of an Antibiotic Peptide to DNA Measured with Raman Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4150-4160. [PMID: 36888905 DOI: 10.1021/acs.langmuir.3c00099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Immobilization of DNA to surfaces offers a convenient means of screening the binding affinity and selectivity of potential small-molecule therapeutic candidates. Unfortunately, most surface-sensitive methods for detecting these binding interactions are not informative of the molecular structure, information that is valuable for understanding the non-covalent interactions that stabilize binding. In this work, we report a method to meet this challenge by employing confocal Raman microscopy to quantify the association of a minor-groove-binding antimicrobial peptide, netropsin, to duplex DNA hairpin sequences immobilized on the interior surfaces of porous silica particles. To assess binding selectivity, particles functionalized with different sequences of DNA were equilibrated with solutions of 100 nM netropsin, and selective association was detected based on the presence of netropsin Raman scattering in the particles. The selectivity study revealed that netropsin binds to sequences of duplex DNA having AT-rich recognition regions. To quantify binding affinities, these AT-rich DNA sequences were equilibrated with a range of netropsin solution concentrations (1 to 100 nM). Raman scattering intensities of netropsin versus solution concentration were well described by single-binding-site Langmuir isotherms with nanomolar dissociation constants, in agreement with previous isothermal calorimetry and surface plasmon resonance results. Target sequence binding was accompanied with changes in netropsin and DNA vibrational modes consistent with the hydrogen bonding between the amide groups of netropsin and adenine and thymine bases in the DNA minor groove. The binding of netropsin to a control sequence lacking the AT-rich recognition region exhibited an affinity nearly 4 orders of magnitude weaker than found for the target sequences. The Raman spectrum of netropsin interacting with this control sequence showed broad pyrrole and amide mode vibrations at frequencies similar to a free solution, revealing less constrained conformations compared with the specific binding interactions observed with AT-rich sequences.
Collapse
Affiliation(s)
- Grant J Myres
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 United States
| | - Joel M Harris
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 United States
| |
Collapse
|
3
|
Examining the Effects of Netropsin on the Curvature of DNA A-Tracts Using Electrophoresis. Molecules 2021; 26:molecules26195871. [PMID: 34641414 PMCID: PMC8510488 DOI: 10.3390/molecules26195871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
A-tracts are sequences of repeated adenine bases that, under the proper conditions, are capable of mediating DNA curvature. A-tracts occur naturally in the regulatory regions of many organisms, yet their biological functions are not fully understood. Orienting multiple A-tracts together constructively or destructively in a phase has the potential to create different shapes in the DNA helix axis. One means of detecting these molecular shape differences is from altered DNA mobilities measured using electrophoresis. The small molecule netropsin binds the minor groove of DNA, particularly at AT-rich sequences including A-tracts. Here, we systematically test the hypothesis that netropsin binding eliminates the curvature of A-tracts by measuring the electrophoretic mobilities of seven 98-base pair DNA samples containing different numbers and arrangements of centrally located A-tracts under varying conditions with netropsin. We find that netropsin binding eliminates the mobility difference between the DNA fragments with different A-tract arrangements in a concentration-dependent manner. This work provides evidence for the straightening of A-tracts upon netropsin binding and illustrates an artificial approach to re-sculpt DNA shape.
Collapse
|
4
|
Nguyen GTH, Leung WY, Tran TN, Wang H, Murray V, Donald WA. Mechanism for the Binding of Netropsin to Hairpin DNA Revealed Using Nanoscale Ion Emitters in Native Mass Spectrometry. Anal Chem 2019; 92:1130-1137. [PMID: 31778608 DOI: 10.1021/acs.analchem.9b04209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Netropsin is one of the first ligands to be discovered that selectively binds to the minor groove of DNA and is actively used as a scaffold for developing potential anticancer and antibiotic agents. The mechanism by which netropsin binds to hairpin DNA remains controversial with two competing mechanisms having been proposed. In one mechanism, netropsin binding induces a hairpin-to-duplex DNA transition. Alternatively, netropsin binds in two thermodynamically different modes at a single duplexed AATT site. Here, results from native mass spectrometry (MS) with nanoscale ion emitters indicate that netropsin can simultaneously and sequentially bind to both hairpin and duplex DNA. Duplex DNA was not detected using conventional MS with larger emitters because nanoscale emitters significantly reduce the extent of salt adduction to ligand-DNA complex ions, including in the presence of relatively high concentrations of nonvolatile salts. Based on native MS and polyacrylamide gel electrophoresis results, the abundances of hairpin and duplex DNA are unaffected by the addition of netropsin. By native MS, the binding affinities for five ligand-DNA and DNA-DNA interactions can be rapidly obtained simultaneously. This research indicates a "simultaneous binding mechanism" for the interactions of netropsin with DNA.
Collapse
Affiliation(s)
- Giang T H Nguyen
- School of Chemistry , University of New South Wales , Sydney New South Wales 2052 , Australia
| | - Wai Yu Leung
- School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney New South Wales 2052 , Australia
| | - Thinh N Tran
- School of Chemistry , University of New South Wales , Sydney New South Wales 2052 , Australia
| | - Huixin Wang
- School of Chemistry , University of New South Wales , Sydney New South Wales 2052 , Australia.,Mark Wainwright Analytical Centre , University of New South Wales , Sydney New South Wales 2052 , Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences , University of New South Wales , Sydney New South Wales 2052 , Australia
| | - William A Donald
- School of Chemistry , University of New South Wales , Sydney New South Wales 2052 , Australia
| |
Collapse
|
5
|
Gupta S, Tiwari N, Munde M. A Comprehensive Biophysical Analysis of the Effect of DNA Binding Drugs on Protamine-induced DNA Condensation. Sci Rep 2019; 9:5891. [PMID: 30971720 PMCID: PMC6458161 DOI: 10.1038/s41598-019-41975-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/13/2019] [Indexed: 11/21/2022] Open
Abstract
DNA condensation is a ubiquitous phenomenon in biology, yet the physical basis for it has remained elusive. Here, we have explored the mechanism of DNA condensation through the protamine-DNA interaction, and by examining on it the influence of DNA binding drugs. We observed that the DNA condensation is accompanied by B to Ψ-DNA transition as a result of DNA base pair distortions due to protamine binding, bringing about the formation of toroidal structure through coil-globule transition. The binding energetics suggested that electrostatic energy, bending energy and hydration energy must play crucial roles in DNA condensation. EtBr intercalation interferes with the protamine-DNA interaction, challenging the distortion of the DNA helix and separation of DNA base pairs by protamine. Thus, EtBr, by competing directly with protamine, resists the phenomenon of DNA condensation. On the contrary, netropsin impedes the DNA condensation by an allosteric mechanism, by resisting the probable DNA major groove bending by protamine. In summary, we demonstrate that drugs with distinct binding modes use different mechanism to interfere with DNA condensation.
Collapse
Affiliation(s)
- Sakshi Gupta
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Tiwari
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Affiliation(s)
- Hasan Y. Alniss
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Carbodiimide-mediated immobilization of acidic biomolecules on reversed-charge zwitterionic sensor chip surfaces. Anal Bioanal Chem 2018; 410:4109-4122. [PMID: 29707751 DOI: 10.1007/s00216-018-1048-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Accepted: 03/27/2018] [Indexed: 02/05/2023]
Abstract
The carbodiimide-mediated amine coupling of protein ligands to sensor chips coated with anionic polycarboxylate hydrogels, such as carboxymethyl dextran, is the predominant covalent immobilization procedure utilized in optical biosensors, namely surface plasmon resonance (SPR) biosensors. Usually, electrostatic interactions at a slightly acidic pH and low ionic strength are employed to efficiently accumulate neutral and basic ligands on the chip surface, which are then covalently coupled by surface-bound active N-hydroxysuccinimide (NHS) esters. Unfortunately, this approach is not suitable for acidic proteins or other ligands with low isoelectric points (IEPs), such as nucleic acids, because the charge density of the polycarboxylates is greatly reduced at acidic pH or because electrostatic attraction cannot be achieved. To overcome these drawbacks, we have established a charge-reversal approach that allows the preconcentration of acidic proteins above their IEPs. A precisely controlled amount of tertiary amines is applied to reverse the previous anionic surface charge while maintaining carbodiimide compatibility with future protein immobilization. The mechanism of this reversed-charge immobilization approach was demonstrated employing protein A as a model protein and using attenuated total reflectance Fourier transform infrared spectroscopy, dynamic contact angle measurements, colorimetric quantification, and SPR analysis to characterize surface derivatization. Furthermore, even though it had previously proven impossible to preconcentrate DNA electrostatically and to covalently couple it to polyanionic chip surfaces, we demonstrated that our approach allowed DNA to be preconcentrated and immobilized in good yields. Graphical abstract Principle of the covalent immobilization of acidic ligands on reversed-charge zwitterionic sensor chip surfaces.
Collapse
|
8
|
Ahmad A, Ahmad M. Deciphering the mechanism of interaction of edifenphos with calf thymus DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:244-251. [PMID: 28732283 DOI: 10.1016/j.saa.2017.07.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Edifenphos is an important organophosphate pesticide with many antifungal and anti-insecticidal properties but it may cause potential hazards to human health. In this work, we have tried to explore the binding mode of action and mechanism of edifenphos to calf thymus DNA (CT-DNA). Several experiments such as ultraviolet-visible absorption spectra and emission spectroscopy showed complex formation between edifenphos and CT-DNA and low binding constant values supporting groove binding mode. These results were further confirmed by circular dichroism (CD), CT-DNA melting studies, viscosity measurements, density functional theory and molecular docking. CD study suggests that edifenphos does not alter native structure of CT-DNA. Isothermal calorimetry reveals that binding of edifenphos with CT-DNA is enthalpy driven process. Competitive binding assay and effect of ionic strength showed that edifenphos binds to CT-DNA via groove binding manner. Hence, edifenphos is a minor groove binder preferably interacting with A-T regions with docking score -6.84kJ/mol.
Collapse
Affiliation(s)
- Ajaz Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
9
|
Marcella AM, Culbertson SJ, Shogren-Knaak MA, Barb AW. Structure, High Affinity, and Negative Cooperativity of the Escherichia coli Holo-(Acyl Carrier Protein):Holo-(Acyl Carrier Protein) Synthase Complex. J Mol Biol 2017; 429:3763-3775. [DOI: 10.1016/j.jmb.2017.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023]
|
10
|
Kumar S, Newby Spano M, Arya DP. Shape readout of AT-rich DNA by carbohydrates. Biopolymers 2016; 101:720-32. [PMID: 24281844 DOI: 10.1002/bip.22448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/10/2013] [Accepted: 11/23/2013] [Indexed: 12/16/2022]
Abstract
Gene expression can be altered by small molecules that target DNA; sequence as well as shape selectivities are both extremely important for DNA recognition by intercalating and groove-binding ligands. We have characterized a carbohydrate scaffold (1) exhibiting DNA "shape readout" properties. Thermodynamic studies with 1 and model duplex DNAs demonstrate the molecule's high affinity and selectivity towards B* form (continuous AT-rich) DNA. Isothermal titration calorimetry (ITC), circular dichroism (CD) titration, ultraviolet (UV) thermal denaturation, and Differential Scanning Calorimetry were used to characterize the binding of 1 with a B* form AT-rich DNA duplex d[5'-G2 A6 T6 C2 -3']. The binding constant was determined using ITC at various temperatures, salt concentrations, and pH. ITC titrations were fit using a two-binding site model. The first binding event was shown to have a 1:1 binding stoichiometry and was predominantly entropy-driven with a binding constant of approximately 10(8) M(-1) . ITC-derived binding enthalpies were used to obtain the binding-induced change in heat capacity (ΔCp ) of -225 ± 19 cal/mol·K. The ionic strength dependence of the binding constant indicated a significant electrolytic contribution in ligand:DNA binding, with approximately four to five ion pairs involved in binding. Ligand 1 displayed a significantly higher affinity towards AT-tract DNA over sequences containing GC inserts, and binding experiments revealed the order of binding affinity for 1 with DNA duplexes: contiguous B* form AT-rich DNA (d[5'-G2 A6 T6 C2 -3']) >B form alternate AT-rich DNA (d[5'-G2 (AT)6 C2- 3']) > A form GC-rich DNA (d[5'-A2 G6 C6 T2 -3']), demonstrating the preference of ligand 1 for B* form DNA.
Collapse
Affiliation(s)
- Sunil Kumar
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, SC, 29634
| | | | | |
Collapse
|
11
|
Subastri A, Ramamurthy CH, Suyavaran A, Mareeswaran R, Lokeswara Rao P, Harikrishna M, Suresh Kumar M, Sujatha V, Thirunavukkarasu C. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA. Int J Biol Macromol 2015; 78:122-9. [PMID: 25858879 DOI: 10.1016/j.ijbiomac.2015.03.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 01/31/2023]
Abstract
Troxerutin (TXER) is a derivative of naturally occurring bioflavonoid rutin. It possesses different biological activities in rising clinical world. The biological activity possessed by most of the drugs mainly targets on macromolecules. Hence, in the current study we have examined the interaction mechanism of TXER with calf thymus DNA (CT-DNA) by using various spectroscopic methods, isothermal titration calorimetry (ITC) and molecular docking studies. Further, DNA cleavage study was carried out to find the DNA protection activity of TXER. UV-absorption and emission spectroscopy showed low binding constant values via groove binding. Circular dichroism study indicates that TXER does not modify native B-form of DNA, and it retains the native B-conformation. Furthermore, no effective positive potential peak shift was observed in TXER-DNA complex during electrochemical analysis by which it represents an interaction of TXER with DNA through groove binding. Molecular docking study showed thymine guanine based interaction with docking score -7.09 kcal/mol. This result was compared to experimental ITC value. The DNA cleavage study illustrates that TXER does not cause any DNA damage as well as TXER showed DNA protection against hydroxyl radical induced DNA damage. From this study, we conclude that TXER interacts with DNA by fashion of groove binding.
Collapse
Affiliation(s)
- A Subastri
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - C H Ramamurthy
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - A Suyavaran
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - R Mareeswaran
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - P Lokeswara Rao
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - M Harikrishna
- Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | - M Suresh Kumar
- Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | - V Sujatha
- Department of Chemistry, Periyar University, Salem 636 011, India
| | - C Thirunavukkarasu
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India; Department of Medicine - Gastroenterology and Liver diseases, 625, Ullmann Building, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10469, USA.
| |
Collapse
|
12
|
Alniss HY, Salvia MV, Sadikov M, Golovchenko I, Anthony NG, Khalaf AI, MacKay SP, Suckling CJ, Parkinson JA. Recognition of the DNA minor groove by thiazotropsin analogues. Chembiochem 2014; 15:1978-90. [PMID: 25045155 DOI: 10.1002/cbic.201402202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 01/14/2023]
Abstract
Solution-phase self-association characteristics and DNA molecular-recognition properties are reported for three close analogues of minor-groove-binding ligands from the thiazotropsin class of lexitropsin molecules; they incorporate isopropyl thiazole as a lipophilic building block. Thiazotropsin B (AcImPy(iPr) ThDp) shows similar self-assembly characteristics to thiazotropsin A (FoPyPy(iPr) ThDp), although it is engineered, by incorporation of imidazole in place of N-methyl pyrrole, to swap its DNA recognition target from 5'-ACTAGT-3' to 5'-ACGCGT-3'. Replacement of the formamide head group in thiazotropsin A by nicotinamide in AIK-18/51 results in a measureable difference in solution-phase self-assembly character and substantially enhanced DNA association characteristics. The structures and associated thermodynamic parameters of self-assembled ligand aggregates and their complexes with their respective DNA targets are considered in the context of cluster targeting of DNA by minor-groove complexes.
Collapse
Affiliation(s)
- Hasan Y Alniss
- Department of Pharmacy, An-Najah National University, University Street, Nablus (Palestine); Present address: Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 2J7 (Canada)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhou J, Le V, Kalia D, Nakayama S, Mikek C, Lewis EA, Sintim HO. Diminazene or berenil, a classic duplex minor groove binder, binds to G-quadruplexes with low nanomolar dissociation constants and the amidine groups are also critical for G-quadruplex binding. ACTA ACUST UNITED AC 2014; 10:2724-34. [DOI: 10.1039/c4mb00359d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diminazene or berenil is known to be an AT-rich DNA minor groove binder with micromolar dissociation constant. Here, we show that DMZ binds to G-quadruplexes withKdas low as 1 nM.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park, USA
| | - Vu Le
- Department of Chemistry
- Mississippi State University
- Mississippi State, USA
| | - Dimpy Kalia
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park, USA
| | - Shizuka Nakayama
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park, USA
| | - Clinton Mikek
- Department of Chemistry
- Mississippi State University
- Mississippi State, USA
| | - Edwin A. Lewis
- Department of Chemistry
- Mississippi State University
- Mississippi State, USA
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park, USA
- Program in Oncology
- University of Maryland Marlene and Stewart Greenebaum Cancer Center
| |
Collapse
|
14
|
Ramos JP, Le VH, Lewis EA. Role of Water in Netropsin Binding to an A2T2 Hairpin DNA Site: Osmotic Stress Experiments. J Phys Chem B 2013; 117:15958-65. [DOI: 10.1021/jp408077m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph P. Ramos
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Vu H. Le
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Edwin A. Lewis
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
15
|
Le VH, Nagesh N, Lewis EA. Bcl-2 promoter sequence G-quadruplex interactions with three planar and non-planar cationic porphyrins: TMPyP4, TMPyP3, and TMPyP2. PLoS One 2013; 8:e72462. [PMID: 23977303 PMCID: PMC3748076 DOI: 10.1371/journal.pone.0072462] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/18/2013] [Indexed: 12/31/2022] Open
Abstract
The interactions of three related cationic porphyrins, TMPyP4, TMPyP3 and TMPyP2, with a WT 39-mer Bcl-2 promoter sequence G-quadruplex were studied using Circular Dichroism, ESI mass spectrometry, Isothermal Titration Calorimetry, and Fluorescence spectroscopy. The planar cationic porphyrin TMPyP4 (5, 10, 15, 20-meso-tetra (N-methyl-4-pyridyl) porphine) is shown to bind to a WT Bcl-2 G-quadruplex via two different binding modes, an end binding mode and a weaker mode attributed to intercalation. The related non-planar ligands, TMPyP3 and TMPyP2, are shown to bind to the Bcl-2 G-quadruplex by a single mode. ESI mass spectrometry experiments confirmed that the saturation stoichiometry is 4:1 for the TMPyP4 complex and 2:1 for the TMPyP2 and TMPyP3 complexes. ITC experiments determined that the equilibrium constant for formation of the (TMPyP4)1/DNA complex (K1 = 3.7 × 10(6)) is approximately two orders of magnitude greater than the equilibrium constant for the formation of the (TMPyP2)1/DNA complex, (K1 = 7.0 × 10(4)). Porphyrin fluorescence is consistent with intercalation in the case of the (TMPyP4)3/DNA and (TMPyP4)4/DNA complexes. The non-planar shape of the TMPyP2 and TMPyP3 molecules results in both a reduced affinity for the end binding interaction and the elimination of the intercalation binding mode.
Collapse
Affiliation(s)
- Vu H. Le
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Narayana Nagesh
- Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India
| | - Edwin A. Lewis
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
16
|
Alniss HY, Anthony NG, Khalaf AI, Mackay SP, Suckling CJ, Waigh RD, Wheate NJ, Parkinson JA. Rationalising sequence selection by ligand assemblies in the DNA minor groove: the case for thiazotropsin A. Chem Sci 2012. [DOI: 10.1039/c2sc00630h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Lewis EA, Munde M, Wang S, Rettig M, Le V, Machha V, Wilson WD. Complexity in the binding of minor groove agents: netropsin has two thermodynamically different DNA binding modes at a single site. Nucleic Acids Res 2011; 39:9649-58. [PMID: 21890907 PMCID: PMC3239193 DOI: 10.1093/nar/gkr699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Structural results with minor groove binding agents, such as netropsin, have provided detailed, atomic level views of DNA molecular recognition. Solution studies, however, indicate that there is complexity in the binding of minor groove agents to a single site. Netropsin, for example, has two DNA binding enthalpies in isothermal titration calorimetry (ITC) experiments that indicate the compound simultaneously forms two thermodynamically different complexes at a single AATT site. Two proposals for the origin of this unusual observation have been developed: (i) two different bound species of netropsin at single binding sites and (ii) a netropsin induced DNA hairpin to duplex transition. To develop a better understanding of DNA recognition complexity, the two proposals have been tested with several DNAs and the methods of mass spectrometry (MS), polyacrylamide gel electrophoresis (PAGE) and nuclear magnetic resonance spectroscopy in addition to ITC. All of the methods with all of the DNAs investigated clearly shows that netropsin forms two different complexes at AATT sites, and that the proposal for an induced hairpin to duplex transition in this system is incorrect.
Collapse
Affiliation(s)
- Edwin A Lewis
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Lah J, Seručnik M, Vesnaver G. Influence of a hairpin loop on the thermodynamic stability of a DNA oligomer. J Nucleic Acids 2011; 2011:513910. [PMID: 21904665 PMCID: PMC3166569 DOI: 10.4061/2011/513910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/16/2011] [Indexed: 11/23/2022] Open
Abstract
DSC was used to evaluate the mechanism of the thermally induced unfolding of the single-stranded hairpin HP = 5′-CGGAATTCCGTCTCCGGAATTCCG-3′ and its core duplex D (5′-CGGAATTCCG-3′)2. The DSC melting experiments performed at several salt concentrations were successfully described for HP and D in terms of a three-state transition model HP↔I (intermediate state) ↔ S (unfolded single-stranded state) and two state transition model D↔2S, respectively. Comparison of the model-based thermodynamic parameters obtained for each HP and D transition shows that in unfolding of HP only the HP↔I transition is affected by the TCTC loop. This observation suggests that in the intermediate state its TCTC loop part exhibits significantly more flexible structure than in the folded state while its duplex part remains pretty much unchanged.
Collapse
Affiliation(s)
- Jurij Lah
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
19
|
Dettler JM, Buscaglia R, Le VH, Lewis EA. DSC deconvolution of the structural complexity of c-MYC P1 promoter G-quadruplexes. Biophys J 2011; 100:1517-25. [PMID: 21402034 DOI: 10.1016/j.bpj.2011.01.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 01/01/2023] Open
Abstract
We completed a biophysical characterization of the c-MYC proto-oncogene P1 promoter quadruplex and its interaction with a cationic porphyrin, 5,10,15,20-tetra(N-methyl-4-pyridyl)porphyrin (TMPyP4), using differential scanning calorimetry, isothermal titration calorimetry, and circular dichroism spectroscopy. We examined three different 24-mer oligonucleotides, including the wild-type (WT) sequence found in the c-MYC P(1) promoter and two mutant G→T sequences that are known to fold into single 1:2:1 and 1:6:1 loop isomer quadruplexes. Biophysical experiments were performed on all three oligonucleotide sequences at two different ionic strengths (30 mM [K(+)] and 130 mM [K(+)]). Differential scanning calorimetry experiments demonstrated that the WT quadruplex consists of a mixture of at least two different folded conformers at both ionic strengths, whereas both mutant sequences exhibit a single two-state melting transition at both ionic strengths. Isothermal titration calorimetry experiments demonstrated that both mutant sequences bind 4 mols of TMPyP4 to 1 mol of DNA, in similarity to the WT sequence. The circular dichroism spectroscopy signatures for all three oligonucleotides at both ionic strengths are consistent with an intramolecular parallel stranded G-quadruplex structure, and no change in quadruplex structure is observed upon addition of saturating amounts of TMPyP4 (i.e., 4:1 TMPyP4/DNA).
Collapse
Affiliation(s)
- Jamie M Dettler
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | | | | | | |
Collapse
|
20
|
Wittayanarakul K, Anthony NG, Treesuwan W, Hannongbua S, Alniss H, Khalaf AI, Suckling CJ, Parkinson JA, Mackay SP. Ranking ligand affinity for the DNA minor groove by experiment and simulation. ACS Med Chem Lett 2010; 1:376-80. [PMID: 24900221 DOI: 10.1021/ml100047n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 07/12/2010] [Indexed: 11/30/2022] Open
Abstract
The structural and thermodynamic basis for the strength and selectivity of the interactions of minor groove binders (MGBs) with DNA is not fully understood. In 2003, we reported the first example of a thiazole-containing MGB that bound in a phase-shifted pattern that spanned six base pairs rather than the usual four (for tricyclic distamycin-like compounds). Since then, using DNA footprinting, NMR spectroscopy, isothermal titration calorimetry, and molecular dynamics, we have established that the flanking bases around the central four being read by the ligand have subtle effects on recognition. We have investigated the effect of these flanking sequences on binding and the reasons for the differences and established a computational method to rank ligand affinity against varying DNA sequences.
Collapse
Affiliation(s)
- Kitiyaporn Wittayanarakul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, United Kingdom
| | - Nahoum G. Anthony
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, United Kingdom
| | - Witcha Treesuwan
- Chemistry Department and Center of Nanotechnology, Kasetsart University, Bangkok 10900, Thailand
| | - Supa Hannongbua
- Chemistry Department and Center of Nanotechnology, Kasetsart University, Bangkok 10900, Thailand
| | - Hasan Alniss
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, United Kingdom
| | - Abedawn I. Khalaf
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Colin J. Suckling
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - John A Parkinson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Simon P. Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, United Kingdom
| |
Collapse
|
21
|
Joynt S, Morillo V, Leng F. Binding the mammalian high mobility group protein AT-hook 2 to AT-rich deoxyoligonucleotides: enthalpy-entropy compensation. Biophys J 2009; 96:4144-52. [PMID: 19450485 DOI: 10.1016/j.bpj.2009.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 10/20/2022] Open
Abstract
HMGA2 is a DNA minor-groove binding protein. We previously demonstrated that HMGA2 binds to AT-rich DNA with very high binding affinity where the binding of HMGA2 to poly(dA-dT)(2) is enthalpy-driven and to poly(dA)poly(dT) is entropy-driven. This is a typical example of enthalpy-entropy compensation. To further study enthalpy-entropy compensation of HMGA2, we used isothermal-titration-calorimetry to examine the interactions of HMGA2 with two AT-rich DNA hairpins: 5'-CCAAAAAAAAAAAAAAAGCCCCCGCTTTTTTTTTTTTTTTGG-3' (FL-AT-1) and 5'-CCATATATATATATATAGCCCCCGCTATATATATATATATGG-3' (FL-AT-2). Surprisingly, we observed an atypical isothermal-titration-calorimetry-binding curve at low-salt aqueous solutions whereby the apparent binding-enthalpy decreased dramatically as the titration approached the end. This unusual behavior can be attributed to the DNA-annealing coupled to the ligand DNA-binding and is eliminated by increasing the salt concentration to approximately 200 mM. At this condition, HMGA2 binding to FL-AT-1 is entropy-driven and to FL-AT-2 is enthalpy-driven. Interestingly, the DNA-binding free energies for HMGA2 binding to both hairpins are almost temperature independent; however, the enthalpy-entropy changes are dependent on temperature, which is another aspect of enthalpy-entropy compensation. The heat capacity change for HMGA2 binding to FL-AT-1 and FL-AT-2 are almost identical, indicating that the solvent displacement and charge-charge interaction in the coupled folding/binding processes for both binding reactions are similar.
Collapse
Affiliation(s)
- Suzanne Joynt
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida 33199, USA
| | | | | |
Collapse
|
22
|
Rahimian M, Kumar A, Say M, Bakunov SA, Boykin DW, Tidwell RR, Wilson WD. Minor groove binding compounds that jump a gc base pair and bind to adjacent AT base pair sites. Biochemistry 2009; 48:1573-83. [PMID: 19173620 DOI: 10.1021/bi801944g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most A/T specific heterocyclic diamidine derivatives need at least four A/T base pairs for tight binding to the DNA minor groove. Addition of a GC base pair to A/T sequences typically causes a large decrease in binding constant. The ability to target biologically important sequences of DNA could be significantly increased if compounds that could recognize A/T sites with an intervening GC base pair could be designed. The kinetoplast DNA sequence of parasitic microorganisms, for example, contains numerous three A/T binding sites that are separated by a single G. A series of compounds were prepared to target the AAAGTTT sequence as a model system for discovery of "G-jumpers". The new synthetic compounds have two aromatic-amidine groups for A/T recognition, and these are connected through an oxy-methylene linker to cross the GC. CD experiments indicated a minor groove binding mode, as expected, for these compounds. T(max), surface plasmon resonance, and isothermal titration calorimetry experiments revealed 1:1 binding to the AAAGTTT sequence with an affinity that depends on compound structure. Benzimidazole derivatives gave the strongest binding and had generally good solution properties. The binding affinities to the classical AATT sequence were similar to that for AAAGTTT for these extended compounds, but binding was weaker to the AAAGCTTT sequence with two intervening GC base pairs. Binding to both AAAGTTT and AATT was enthalpy driven for strong binding benzimidazole derivatives.
Collapse
Affiliation(s)
- Maryam Rahimian
- Department of Chemistry, Georgia State University, P.O. Box 4098, Atlanta, Georgia 30302, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Targeting the minor groove of DNA through binding to a small molecule has long been considered an important molecular-recognition strategy in biology. A wide range of synthetic heterocyclic molecules bind noncovalently in the minor groove of the double helix and are also effective against a number of human and animal diseases. A classic structural concept, the isohelicity principle, has guided much of this work: such heterocyclic molecules require a shape that complements the convex surface of the minor groove. Researchers have used this principle to design molecules that can read DNA sequences. This principle also predicts that molecules that lack the complementary shape requirement would only bind weakly to DNA. Recently, however, researchers have unexpectedly found that some essentially linear compounds, which do not have this feature, can have high DNA affinity. In this Account, we discuss an alternative recognition concept based on these new findings. We demonstrate that highly structured water molecules can play a key role in mediating between the ligand and DNA minor groove without loss of binding affinity. Combined structural and thermodynamic approaches to understanding the behavior of these molecules have shown that there are different categories of bound water in their DNA complexes. For example, application of this water-bridging concept to the phenylamidine platform has resulted in the discovery of molecules with high levels of biological activity and low nonspecific toxicity. Some of these molecules are now in advanced clinical trials.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | - Stephen Neidle
- CRUK Biomolecular Structure Group, The School of Pharmacy, University of London, London WC1N 1AX, UK
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
24
|
Nardo L, Bondani M, Andreoni A. DNA-ligand binding mode discrimination by characterizing fluorescence resonance energy transfer through lifetime measurements with picosecond resolution. Photochem Photobiol 2008; 84:101-10. [PMID: 18173709 DOI: 10.1111/j.1751-1097.2007.00204.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a method for distinguishing between minor groove binders and base intercalators that is based on measurements of the fluorescence lifetime of a donor (D) in the presence of an acceptor (A). The D-A pair is separated by a short double helix DNA with which the ligands interact. By plotting the D fluorescence lifetime as a function of the ligand-to-base pair concentration ratio we find a clear signature that distinguishes between the two binding mechanisms: minor groove binding induces an asymptotic decrease of the D fluorescence lifetime, while intercalation gives a monotonically increasing lifetime and the appearance of an additional short lifetime. We assayed Quinacrine, Hoechst and 4'-6'diamidine-2-phenyl indole, which in control experiments performed on oligodeoxyribonucleotides (oligos) lacking the A are demonstrated not to interfere with the D fluorescence. The changes in fluorescence lifetimes measured in the case of dual-labeled oligos are thus caused by structural changes in the DNA that modify the D-A distance. The appearance of the short-lived transient in the fluorescence decay of Ds attached to dual-labeled oligos upon binding of an intercalator can be interpreted as denaturation.
Collapse
Affiliation(s)
- Luca Nardo
- Dipartimento di Fisica e Matematica, Universita' degli Studi dell'Insubria, Como, Italy.
| | | | | |
Collapse
|
25
|
Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:1-19. [DOI: 10.1002/jmr.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Isothermal Titration Calorimetry: Experimental Design, Data Analysis, and Probing Macromolecule/Ligand Binding and Kinetic Interactions. Methods Cell Biol 2008; 84:79-113. [DOI: 10.1016/s0091-679x(07)84004-0] [Citation(s) in RCA: 316] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
27
|
Abstract
Differential scanning calorimetry (DSC) has emerged as a powerful experimental technique for determining thermodynamic properties of biomacromolecules. The ability to monitor unfolding or phase transitions in proteins, polynucleotides, and lipid assemblies has not only provided data on thermodynamic stability for these important molecules, but also made it possible to examine the details of unfolding processes and to analyze the characteristics of intermediate states involved in the melting of biopolymers. The recent improvements in DSC instrumentation and software have generated new opportunities for the study of the effects of structure and changes in environment on the behavior of proteins, nucleic acids, and lipids. This review presents some of the details of application of DSC to the examination of the unfolding of biomolecules. After a brief introduction to DSC instrumentation used for the study of thermal transitions, the methods for obtaining basic thermodynamic information from the DSC curve are presented. Then, using DNA unfolding as an example, methods for the analysis of the melting transition are presented that allow deconvolution of the DSC curves to determine more subtle characteristics of the intermediate states involved in unfolding. Two types of transitions are presented for analysis, the first example being the unfolding of two large synthetic polynucleotides, which display high cooperativity in the melting process. The second example shows the application of DSC for the study of the unfolding of a simple hairpin oligonucleotide. Details of the data analysis are presented in a simple spreadsheet format.
Collapse
Affiliation(s)
- Charles H Spink
- Department of Chemistry, State University of New York - Cortland, Cortland, New York 13045, USA
| |
Collapse
|
28
|
Lah J, Drobnak I, Dolinar M, Vesnaver G. What drives the binding of minor groove-directed ligands to DNA hairpins? Nucleic Acids Res 2007; 36:897-904. [PMID: 18086706 PMCID: PMC2241884 DOI: 10.1093/nar/gkm1110] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding the molecular basis of ligand-DNA-binding events, and its application to the rational design of novel drugs, requires knowledge of the structural features and forces that drive the corresponding recognition processes. Existing structural evidence on DNA complexation with classical minor groove-directed ligands and the corresponding studies of binding energetics have suggested that this type of binding can be described as a rigid-body association. In contrast, we show here that the binding-coupled conformational changes may be crucial for the interpretation of DNA (hairpin) association with a classical minor groove binder (netropsin). We found that, although the hairpin form is the only accessible state of ligand-free DNA, its association with the ligand may lead to its transition into a duplex conformation. It appears that formation of the fully ligated duplex from the ligand-free hairpin, occurring via two pathways, is enthalpically driven and accompanied by a significant contribution of the hydrophobic effect. Our thermodynamic and structure-based analysis, together with corresponding theoretical studies, shows that none of the predicted binding steps can be considered as a rigid-body association. In this light we anticipate our thermodynamic approach to be the basis of more sophisticated nucleic acid recognition mechanisms, which take into account the dynamic nature of both the nucleic acid and the ligand molecule.
Collapse
Affiliation(s)
- Jurij Lah
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Askerceva 5, 1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
29
|
Nguyen B, Tanious FA, Wilson WD. Biosensor-surface plasmon resonance: Quantitative analysis of small molecule–nucleic acid interactions. Methods 2007; 42:150-61. [PMID: 17472897 DOI: 10.1016/j.ymeth.2006.09.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022] Open
Abstract
Surface plasmon resonance (SPR)-biosensor techniques directly provide essential information for the study and characterization of small molecule-nucleic acid interactions, and the use of these methods is steadily increasing. The method is label-free and monitors the interactions in real time. Both dynamic and steady-state information can be obtained for a wide range of reaction rates and binding affinities. This article presents the basics of the SPR technique, provides suggestions for experimental design, and illustrates data processing and analysis of results. A specific example of the interaction of a well-known minor groove binding agent, netropsin, with DNA is evaluated by both kinetic and steady-state SPR methods. Three different experiments are used to illustrate different approaches and analysis methods. The three sets of results show the reproducibility of the binding constants and agreement from both steady-state and kinetic analyses. These experiments also show that reliable kinetic information can be obtained, even with difficult systems, if the experimental conditions are optimized to minimize mass transport effects. Limitations of the biosensor-SPR technique are also discussed to provide an awareness of the care needed to conduct a successful experiment.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Chemistry, Georgia State University, PO Box 4098, Atlanta, GA 30302, USA
| | | | | |
Collapse
|
30
|
Freyer MW, Buscaglia R, Hollingsworth A, Ramos J, Blynn M, Pratt R, Wilson WD, Lewis EA. Break in the heat capacity change at 303 K for complex binding of netropsin to AATT containing hairpin DNA constructs. Biophys J 2007; 92:2516-22. [PMID: 17237207 PMCID: PMC1864850 DOI: 10.1529/biophysj.106.098723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies performed in our laboratory demonstrated the formation of two thermodynamically distinct complexes on binding of netropsin to a number of hairpin-forming DNA sequences containing AATT-binding regions. These two complexes were proposed to differ only by a bridging water molecule between the drug and the DNA in the lower affinity complex. A temperature-dependent isothermal titration calorimetry (ITC)-binding study was performed using one of these constructs (a 20-mer hairpin of sequence 5'-CGAATTCGTCTCCGAATTCG) and netropsin. This study demonstrated a break in the heat capacity change for the formation of the complex containing the bridging water molecule at approximately 303 K. In the plot of the binding enthalpy change versus temperature, the slope (DeltaCp) was -0.67 kcal mol-1 K-1 steeper after the break at 303 K. Because of the relatively low melting temperature of the 20-mer hairpin (341 K (68 degrees C)), the enthalpy change for complex formation might have included some energy of refolding of the partially denatured hairpin, giving the suggestion of a larger DeltaCp. Studies done on the binding of netropsin to similar constructs, a 24-mer and a 28-mer, with added GC basepairs in the hairpin stem to increase thermal stability, exhibit the same nonlinearity in DeltaCp over the temperature range of from 275 to 333 K. The slopes (DeltaCp) were -0.69 and -0.64 kcal mol-1 K-1 steeper after 303 K for the 24-mer and 28-mer, respectively. This observation strengthens the argument regarding the presence of a bridging water molecule in the lower affinity netropsin/DNA complex. The DeltaCp data seem to infer that because the break in the heat capacity change function for the lower affinity binding occurs at the isoequilibrium temperature for water, water may be included or trapped in the complex. The fact that this break does not occur in the heat capacity change function for formation of the higher affinity complex can similarly be taken as evidence that water is not included in the higher affinity complex.
Collapse
Affiliation(s)
- Matthew W Freyer
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona 86011-5698, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Degtyareva NN, Wallace BD, Bryant AR, Loo KM, Petty JT. Hydration changes accompanying the binding of minor groove ligands with DNA. Biophys J 2006; 92:959-65. [PMID: 17114230 PMCID: PMC1779984 DOI: 10.1529/biophysj.106.097451] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
4',6-diamidino-2-phenylindole (DAPI), netropsin, and pentamidine are minor groove binders that have terminal -C(NH2)2+ groups. The hydration changes that accompany their binding to the minor groove of the (AATT)2 sequence have been studied using the osmotic stress technique with fluorescence spectroscopy. The affinity of DAPI for the binding site decreases with the increasing osmolality of the solution, resulting in acquisition of 35+/-1 waters upon binding. A competition fluorescence assay was utilized to measure the binding constants and hydration changes of the other two ligands, using the DNA-DAPI complex as the fluorescence reporter. Upon their association to the (AATT)2 binding site, netropsin and pentamidine acquire 26+/-3 and 34+/-2 additional waters of hydration, respectively. The hydration changes are discussed in the context of the terminal functional groups of the ligands and conformational changes in the DNA.
Collapse
|