1
|
Bulloch MS, Huynh LK, Kennedy K, Ralton JE, McConville MJ, Ralph SA. Apicoplast-derived isoprenoids are essential for biosynthesis of GPI protein anchors, and consequently for egress and invasion in Plasmodium falciparum. PLoS Pathog 2024; 20:e1012484. [PMID: 39241090 PMCID: PMC11414934 DOI: 10.1371/journal.ppat.1012484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/20/2024] [Accepted: 08/06/2024] [Indexed: 09/08/2024] Open
Abstract
Glycophosphatidylinositol (GPI) anchors are the predominant glycoconjugate in Plasmodium parasites, enabling modified proteins to associate with biological membranes. GPI biosynthesis commences with donation of a mannose residue held by dolichol-phosphate at the endoplasmic reticulum membrane. In Plasmodium dolichols are derived from isoprenoid precursors synthesised in the Plasmodium apicoplast, a relict plastid organelle of prokaryotic origin. We found that treatment of Plasmodium parasites with apicoplast inhibitors decreases the synthesis of isoprenoid and GPI intermediates resulting in GPI-anchored proteins becoming untethered from their normal membrane association. Even when other isoprenoids were chemically rescued, GPI depletion led to an arrest in schizont stage parasites, which had defects in segmentation and egress. In those daughter parasites (merozoites) that did form, proteins that would normally be GPI-anchored were mislocalised, and when these merozoites were artificially released they were able to attach to but not invade new red blood cells. Our data provides further evidence for the importance of GPI biosynthesis during the asexual cycle of P. falciparum, and indicates that GPI biosynthesis, and by extension egress and invasion, is dependent on isoprenoids synthesised in the apicoplast.
Collapse
Affiliation(s)
- Michaela S. Bulloch
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Long K. Huynh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kit Kennedy
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Julie E. Ralton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Montone CM, Aita SE, Cannazza G, Cavaliere C, Cerrato A, Citti C, Mondello L, Piovesana S, Laganà A, Capriotti AL. Targeted and untargeted characterization of underivatized policosanols in hemp inflorescence by liquid chromatography-high resolution mass spectrometry. Talanta 2021; 235:122778. [PMID: 34517636 DOI: 10.1016/j.talanta.2021.122778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/16/2022]
Abstract
The paper describes the development of a targeted quantitative method for the analysis of policosanols in hemp inflorescence. Policosanols are long chain aliphatic alcohols, with carbon chains typically in the range 20-36, with interesting biological activities. These compounds are typically separated by gas chromatography and only a few methods employ liquid chromatography for policosanols. In both cases, methods always include the derivatization of policosanols. In this study, policosanols were separated by ultra-high performance liquid chromatography without any derivatization and detected using high resolution mass spectrometry by formation of lithiated adducts. The procedure was optimized and a quantitative method was validated for the most abundant policosanols (with C24, C26, C27, C28, and C30 chain lengths) in industrial hemp inflorescence extracts. The method was used for the quantitative analysis of policosanols in five hemp types. Hemp wax was found rich in these compounds, especially C26 and C28 policosanols, which may prove useful for revalorization of wax by-products. Finally, the acquired data were also used to expand the search to the untargeted qualitative analysis of policosanols using Compound Discoverer. The untargeted method allowed the annotation of underivatized policosanols up to C33.
Collapse
Affiliation(s)
- Carmela Maria Montone
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Sara Elsa Aita
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe Cannazza
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Cerrato
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Cinzia Citti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Luigi Mondello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Polo Annunziata, Polo Annunziata, 98168, Messina, Italy; Chromaleont s.r.l., c/o CHIBIOFARAM - Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Polo Annunziata, 98168, Messina, Italy; BeSep s.r.l., c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Polo Annunziata, Polo Annunziata, 98168, Messina, Italy; Unit of Food Science and Nutrition, Dipartimento di Medicina, Università Campus Bio-Medico di Roma, 00128, Roma, Italy
| | - Susy Piovesana
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Aldo Laganà
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
3
|
Gladchuk AS, Krasnov KA, Keltsieva OA, Kalninia YK, Alexandrova ML, Ivanov NS, Muradymov MZ, Krasnov NV, Reynyuk VL, Sukhodolov NG, Podolskaya EP. A new approach for analysis of polyprenols by a combination of thin-film chemical deposition and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9185. [PMID: 34460139 DOI: 10.1002/rcm.9185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE The polyprenols are involved in some essential biosynthetic pathways and serve as ubiquitous components of cellular membranes, so their fingerprinting in natural samples is of great interest. Previous studies indicate that due to the high hydrophobicity of polyprenols their direct analysis by mass spectrometry with soft ionization techniques may be difficult and require preliminary off-line derivatization. Hence, a method for rapid and sensitive screening of polyprenols is required. METHODS A combination of thin-film chemical deposition and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used for analysis of the polyprenol profile of Abies sibirica L. extract. Polyprenol-based monolayers were formed at the interphase of aqueous barium acetate solution, supplemented with 2,5-dihydroxybenzoic acid, and an n-hexane solution of polyprenols directly on a MALDI target plate. RESULTS Peaks corresponding to [M - H + Ba]+ ions were observed in the MALDI-TOF mass spectra of polyprenols. A total of nine polyprenol homologues were identified with a polyprenol of 16 isoprene units dominating. The limit of detection was established at the level of 6 pg. Possible mechanisms of formation of [M - H + Ba]+ ions of polyprenols were discussed. CONCLUSIONS The proposed approach can be suitable for high-throughput screening of polyprenols in biological samples of different origin due to easy sample preparation and high sensitivity.
Collapse
Affiliation(s)
- Alexey S Gladchuk
- Golikov Research Center of Toxicology, St. Petersburg, 192019, Russia
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | | | - Olga A Keltsieva
- Golikov Research Center of Toxicology, St. Petersburg, 192019, Russia
- Institute for Analytical Instrumentation, Russian Academy of Sciences, St. Petersburg, 198095, Russia
| | - Yana K Kalninia
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | | | - Nikita S Ivanov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | - Marat Z Muradymov
- Institute for Analytical Instrumentation, Russian Academy of Sciences, St. Petersburg, 198095, Russia
| | - Nikolai V Krasnov
- Institute for Analytical Instrumentation, Russian Academy of Sciences, St. Petersburg, 198095, Russia
| | | | - Nikolai G Sukhodolov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | - Ekaterina P Podolskaya
- Golikov Research Center of Toxicology, St. Petersburg, 192019, Russia
- Institute for Analytical Instrumentation, Russian Academy of Sciences, St. Petersburg, 198095, Russia
| |
Collapse
|
4
|
Gharwalová L, Palyzová A, Marešová H, Kolouchová I, Kyselová L, Řezanka T. Identification of Homologous Polyprenols from Thermophilic Bacteria. Microorganisms 2021; 9:microorganisms9061168. [PMID: 34071687 PMCID: PMC8226974 DOI: 10.3390/microorganisms9061168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022] Open
Abstract
Sixteen strains of five genera of thermophilic bacteria, i.e., Alicyclobacillus, Brevibacillus, Geobacillus, Meiothermus, and Thermus, were cultivated at a temperature from 42 to 70 °C. Twelve strains were obtained from the Czech Collection of Microorganisms, while four were directly isolated and identified by 16S rRNA gene sequencing from the hot springs of the world-famous Carlsbad spa (Czech Republic). Polyprenol homologs from C40 to C65 as well as free undecaprenol (C55), undecaprenyl phosphate, and undecaprenyl diphosphate were identified by shotgun analysis and RP-HPLC/MS-ESI+ (reverse phase high-performance liquid chromatography–high-resolution positive electrospray ionization mass spectrometry). The limit of detection (50 pM) was determined for individual homologs and free polyprenols and their phosphates. Thus, it has been shown that at least some thermophilic bacteria produce not just the major C55 polyprenol as previously described, but a mixture of homologs.
Collapse
Affiliation(s)
- Lucia Gharwalová
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (L.G.); (I.K.)
| | - Andrea Palyzová
- Institute of Microbiology, The Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.P.); (H.M.)
| | - Helena Marešová
- Institute of Microbiology, The Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.P.); (H.M.)
| | - Irena Kolouchová
- Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (L.G.); (I.K.)
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, 120 44 Prague, Czech Republic;
| | - Tomáš Řezanka
- Institute of Microbiology, The Czech Academy of Sciences, 142 20 Prague, Czech Republic; (A.P.); (H.M.)
- Correspondence:
| |
Collapse
|
5
|
Metabolomics profiling reveals new aspects of dolichol biosynthesis in Plasmodium falciparum. Sci Rep 2020; 10:13264. [PMID: 32764679 PMCID: PMC7414040 DOI: 10.1038/s41598-020-70246-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
The cis-polyisoprenoid lipids namely polyprenols, dolichols and their derivatives are linear polymers of several isoprene units. In eukaryotes, polyprenols and dolichols are synthesized as a mixture of four or more homologues of different length with one or two predominant species with sizes varying among organisms. Interestingly, co-occurrence of polyprenols and dolichols, i.e. detection of a dolichol along with significant levels of its precursor polyprenol, are unusual in eukaryotic cells. Our metabolomics studies revealed that cis-polyisoprenoids are more diverse in the malaria parasite Plasmodium falciparum than previously postulated as we uncovered active de novo biosynthesis and substantial levels of accumulation of polyprenols and dolichols of 15 to 19 isoprene units. A distinctive polyprenol and dolichol profile both within the intraerythrocytic asexual cycle and between asexual and gametocyte stages was observed suggesting that cis-polyisoprenoid biosynthesis changes throughout parasite’s development. Moreover, we confirmed the presence of an active cis-prenyltransferase (PfCPT) and that dolichol biosynthesis occurs via reduction of the polyprenol to dolichol by an active polyprenol reductase (PfPPRD) in the malaria parasite.
Collapse
|
6
|
Isoprenoid Alcohols are Susceptible to Oxidation with Singlet Oxygen and Hydroxyl Radicals. Lipids 2015; 51:229-44. [PMID: 26715533 PMCID: PMC4735226 DOI: 10.1007/s11745-015-4104-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 11/19/2015] [Indexed: 12/01/2022]
Abstract
Isoprenoids, as common constituents of all living cells, are exposed to oxidative agents—reactive oxygen species, for example, singlet oxygen or hydroxyl radicals. Despite this fact, products of oxidation of polyisoprenoids have never been characterized. In this study, chemical oxidation of isoprenoid alcohols (Prenol-2 and -10) was performed using singlet oxygen (generated in the presence of hydrogen peroxide/molybdate or upon photochemical reaction in the presence of porphyrin), oxygen (formed upon hydrogen peroxide dismutation) or hydroxyl radical (generated by the hydrogen peroxide/sonication, UV/titanium dioxide or UV/hydrogen peroxide) systems. The structure of the obtained products, hydroxy-, peroxy- and heterocyclic derivatives, was studied with the aid of mass spectrometry (MS) and nuclear magnetic resonance (NMR) methods. Furthermore, mass spectrometry with electrospray ionization appeared to be a useful analytical tool to detect the products of oxidation of isoprenoids (ESI–MS analysis), as well as to establish their structure on the basis of the fragmentation spectra of selected ions (ESI–MS/MS analysis). Taken together, susceptibility of polyisoprenoid alcohols to various oxidizing agents was shown for the first time.
Collapse
|
7
|
Zhang Q, Huang L, Zhang C, Xie P, Zhang Y, Ding S, Xu F. Synthesis and biological activity of polyprenols. Fitoterapia 2015; 106:184-93. [PMID: 26358482 DOI: 10.1016/j.fitote.2015.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/26/2022]
Abstract
The polyprenols and their derivatives are highlighted in this study. These lipid linear polymers of isoprenoid residues are widespread in nature from bacteria to human cells. This review primarily presents the synthesis and biological activities of polyprenyl derivatives. Attention is focused on the synthesis and biological activity of dolichols, polyprenyl ester derivatives and polyprenyl amines. Other polyprenyl derivatives, such as oxides of polyprenols, aromatic polyprenols, polyprenyl bromide and polyprenyl sulphates, are mentioned. It is noted that polyprenyl phosphates and polyprenyl-linked glycosylation have better antibacterial, gene therapy and immunomodulating performance, whereas polyprenyl amines have better for antibacterial and antithrombotic activity. Dolichols, polyprenyl acetic esters, polyprenyl phosphates and polyprenyl-linked glycosylation have pharmacological anti-tumour effects. Finally, the postulated prospect of polyprenols and their derivatives are discussed. Further in vivo studies on the above derivatives are needed. The compatibility of polyprenols and their derivatives with other drugs should be studied, and new preparations of polyprenyl derivatives, such as hydrogel glue and release-controlled drugs, are suggested for future research and development.
Collapse
Affiliation(s)
- Qiong Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China; Beijing Forestry University, Beijing 100083, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China.
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Pujun Xie
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Yaolei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Shasha Ding
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Feng Xu
- Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Kania M, Skorupinska-Tudek K, Swiezewska E, Danikiewicz W. Atmospheric pressure photoionization mass spectrometry as a valuable method for the identification of polyisoprenoid alcohols. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1705-1710. [PMID: 22730090 DOI: 10.1002/rcm.6280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE The aim of this study was to determine whether Atmospheric Pressure Photoionization (APPI) was better suited for the mass spectrometric (MS) analysis of polyisoprenoid alcohols than the commonly used Electrospray Ionization (ESI) method. The APPI method should make possible the use of non-polar solvents without any of the additives required by ESI, together with improved detection limits. METHODS The liquid chromatography (LC)/APPI-MS and LC/ESI-MS spectra of polyisoprenoid alcohol standards were acquired in both positive and negative ion mode, in methanol and hexane, using a triple quadrupole/linear ion trap tandem mass spectrometer equipped with both an ESI and an APPI ion source. RESULTS In the positive ion mode peaks corresponding to [M + H - H(2)O](+) and [M + H](+) ions were observed in the APPI-MS spectra of polyprenols and dolichols, respectively. In the negative ion mode peaks corresponding to [M + O(2)](-•) and [M + Cl](-) ions were observed for both classes of polyisoprenoid alcohols. The detection limit of polyisoprenoid alcohols was established at the level of 10 pg. CONCLUSIONS APPI turned out to be a method of choice for the identification and quantitation of polyisoprenoid alcohols by MS using both polar and non-polar solvents. APPI also enabled greater differentiation of polyprenols and dolichols occurring together in natural samples and gave much better TIC chromatograms without the need for the post-column salt addition required by ESI.
Collapse
Affiliation(s)
- Magdalena Kania
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | |
Collapse
|
9
|
Lipophilic analogs of zoledronate and risedronate inhibit Plasmodium geranylgeranyl diphosphate synthase (GGPPS) and exhibit potent antimalarial activity. Proc Natl Acad Sci U S A 2012; 109:4058-63. [PMID: 22392982 DOI: 10.1073/pnas.1118215109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the results of an in vitro screening assay targeting the intraerythrocytic form of the malaria parasite Plasmodium falciparum using a library of 560 prenyl-synthase inhibitors. Based on "growth-rescue" and enzyme-inhibition experiments, geranylgeranyl diphosphate synthase (GGPPS) is shown to be a major target for the most potent leads, BPH-703 and BPH-811, lipophilic analogs of the bone-resorption drugs zoledronate and risedronate. We determined the crystal structures of these inhibitors bound to a Plasmodium GGPPS finding that their head groups bind to the [Mg(2+)](3) cluster in the active site in a similar manner to that found with their more hydrophilic parents, whereas their hydrophobic tails occupy a long-hydrophobic tunnel spanning both molecules in the dimer. The results of isothermal-titration-calorimetric experiments show that both lipophilic bisphosphonates bind to GGPPS with, on average, a ΔG of -9 kcal mol(-1), only 0.5 kcal mol(-1) worse than the parent bisphosphonates, consistent with the observation that conversion to the lipophilic species has only a minor effect on enzyme activity. However, only the lipophilic species are active in cells. We also tested both compounds in mice, finding major decreases in parasitemia and 100% survival. These results are of broad general interest because they indicate that it may be possible to overcome barriers to cell penetration of existing bisphosphonate drugs in this and other systems by simple covalent modification to form lipophilic analogs that retain their enzyme-inhibition activity and are also effective in vitro and in vivo.
Collapse
|
10
|
Nürenberg G, Volmer DA. The analytical determination of isoprenoid intermediates from the mevalonate pathway. Anal Bioanal Chem 2011; 402:671-85. [PMID: 21789486 DOI: 10.1007/s00216-011-5262-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 01/22/2023]
Abstract
In this article, assays on the analytical determination of farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), two important isoprenoid intermediates at biochemically relevant branching points in the mevalonate pathway, are summarized and reviewed. There is considerable recent interest in the measurement of these two isoprenoids because of their direct involvement in several diseases, for example, statins lower cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-CoA reductase but equally affect other metabolite biosyntheses. The isoprenoids FPP and GGPP are key intermediates due to their role as CaaX-specific substrates for posttranslational modification of proteins (protein prenylation). Disease pathologies and therapeutic efficacy of different treatments (e.g., cholesterol-lowering drugs) may lead to a reduction in isoprenoid levels and an accompanying reduction in prenylation of specific proteins. To understand the exact biochemical role of the isoprenoids FPP and GGPP, we need to know their levels. Several recent studies have shown exact levels of FPP and GGP in plasma and relevant tissues and their modulation following treatment. Furthermore, by directly measuring the extent of protein prenylation and identifying target proteins, further insight into the exact biochemical nature of the pathology and regulatory mechanisms will be possible. This short review aims to highlight the relevant literature on the analytical determination of the free isoprenoids FPP and GGPP in biological tissue as well as techniques for directly measuring prenylated proteins.
Collapse
Affiliation(s)
- Gudrun Nürenberg
- Institute of Bioanalytical Chemistry, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
11
|
Guan Z, Eichler J. Liquid chromatography/tandem mass spectrometry of dolichols and polyprenols, lipid sugar carriers across evolution. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:800-6. [PMID: 21570481 DOI: 10.1016/j.bbalip.2011.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/12/2011] [Accepted: 04/24/2011] [Indexed: 10/18/2022]
Abstract
Across evolution, dolichols and polyprenols serve as sugar carriers in biosynthetic processes that include protein glycosylation and lipopolysaccharide biogenesis. Liquid chromatography coupled with electrospray ionization mass spectrometry offers a powerful tool for studying dolichols and polyprenols in their alcohol or glycan-modified forms in members of all three domains of life. In the following, recent examples of the how different versions of this analytical approach, namely reverse phase liquid chromatography-multiple reaction monitoring, normal phase liquid chromatography/tandem mass spectrometry and normal phase liquid chromatography-precursor ion scan detection have respectively served to address novel aspects of dolichol or polyprenol biology in Eukarya, Archaea and Bacteria.
Collapse
Affiliation(s)
- Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
12
|
Cantagrel V, Lefeber DJ, Ng BG, Guan Z, Silhavy JL, Bielas SL, Lehle L, Hombauer H, Adamowicz M, Swiezewska E, De Brouwer AP, Blümel P, Sykut-Cegielska J, Houliston S, Swistun D, Ali BR, Babovic-Vuksanovic D, van Bokhoven H, Wevers RA, Raetz CR, Freeze HH, Morava É, Al-Gazali L, Gleeson JG. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell 2010; 142:203-217. [PMID: 20637498 PMCID: PMC2940322 DOI: 10.1016/j.cell.2010.06.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/26/2010] [Accepted: 05/06/2010] [Indexed: 02/08/2023]
Abstract
N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.
Collapse
Affiliation(s)
- Vincent Cantagrel
- Neurogenetics Laboratory, Institute for Genomic Medicine, Howard Hughes Medical Institute, Department of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, USA
| | - Dirk J Lefeber
- Department of Laboratory Medicine, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bobby G. Ng
- Department of Glycobiology and Carbohydrate Chemistry, Sanford-Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Jennifer L. Silhavy
- Neurogenetics Laboratory, Institute for Genomic Medicine, Howard Hughes Medical Institute, Department of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, USA
| | - Stephanie L. Bielas
- Neurogenetics Laboratory, Institute for Genomic Medicine, Howard Hughes Medical Institute, Department of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, USA
| | - Ludwig Lehle
- Universität Regensburg, Lehrstuhl für Zellbiologie und Pflanzenbiochemie, D-93053 Regensburg, Germany
| | - Hans Hombauer
- Ludwig Institute for Cancer Research, Department of Medicine, Department of Cellular and Molecular Medicine and Cancer Center, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Maciej Adamowicz
- Department of Biochemistry and Experimental Medicine, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Arjan P. De Brouwer
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | | | - Jolanta Sykut-Cegielska
- Department of Metabolic Diseases, Endocrinology and Diabetology, The Children’s Memorial health Institute, Warsaw, Poland
| | - Scott Houliston
- Department of Glycobiology and Carbohydrate Chemistry, Sanford-Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Dominika Swistun
- Neurogenetics Laboratory, Institute for Genomic Medicine, Howard Hughes Medical Institute, Department of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, USA
| | - Bassam R. Ali
- Department of Pathology, United Arab Emirates University, Faculty of Medicine and Health Sciences, PO Box 17666, Al Ain, United Arab Emirates
| | - Dusica Babovic-Vuksanovic
- Departments of Medical Genetics, Pediatric Neurology, Laboratory Genetics, Pediatric Endocrinology, and Dermatology. Mayo Clinic, Rochester, MN, USA
| | - Hans van Bokhoven
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Christian R.H. Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hudson H. Freeze
- Department of Glycobiology and Carbohydrate Chemistry, Sanford-Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Éva Morava
- Department of Paediatrics, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lihadh Al-Gazali
- Departments of Pediatrics and Pathology, United Arab Emirates University, Faculty of Medicine and Health Sciences, Al Ain, United Arab Emirates
| | - Joseph G. Gleeson
- Neurogenetics Laboratory, Institute for Genomic Medicine, Howard Hughes Medical Institute, Department of Neurosciences and Pediatrics, University of California, San Diego, La Jolla, USA
| |
Collapse
|
13
|
Wang HY, Yim WL, Klüner T, Metzger J. ESIMS Studies and Calculations on Alkali-Metal Adduct Ions of Ruthenium Olefin Metathesis Catalysts and Their Catalytic Activity in Metathesis Reactions. Chemistry 2009; 15:10948-59. [DOI: 10.1002/chem.200900565] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Haeuptle MA, Hülsmeier AJ, Hennet T. HPLC and mass spectrometry analysis of dolichol-phosphates at the cell culture scale. Anal Biochem 2009; 396:133-8. [PMID: 19761748 DOI: 10.1016/j.ab.2009.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 11/26/2022]
Abstract
Dolichols (Dol) are polyprenol lipids that are essential structural components of eukaryotic membranes. In addition, the phosphorylated derivatives of Dol function as lipid anchors of mono- and oligosaccharide precursors involved in protein glycosylation. The biological importance of Dol phosphates (Dol-P) is illustrated by the severe outcome of human disorders linked to Dol biosynthetic defects, such as Dol-kinase deficiency. For characterization of inherited human diseases and evaluation of therapeutic trials, cultured cells often serve as a sole possible source for experimentation. Limited amounts of cell culture material render the quantitative analysis of Dol a challenging task. Here, we present HPLC- and mass spectrometry-based approaches to analyze and quantitate Dol-P from cultured human cells. The composition of naturally occurring Dol-P and the saturation state of the alpha-isoprene units was identified by negative-ion electrospray ionization mass spectrometry. Furthermore, fluorescently labeled Dol-P were separated by HPLC and quantified by comparison to known amounts of the internal standard polyprenol-P. The effect of pravastatin, a 3-hydroxy-3-methyl-glutaryl coenzyme-A reductase inhibitor, on the formation of Dol-P in HeLa cells was investigated. As expected, this treatment led to a decrease of Dol-P down to 35% of normal levels.
Collapse
Affiliation(s)
- Micha A Haeuptle
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
15
|
Tonhosolo R, D'Alexandri FL, de Rosso VV, Gazarini ML, Matsumura MY, Peres VJ, Merino EF, Carlton JM, Wunderlich G, Mercadante AZ, Kimura EA, Katzin AM. Carotenoid biosynthesis in intraerythrocytic stages of Plasmodium falciparum. J Biol Chem 2009; 284:9974-85. [PMID: 19203994 PMCID: PMC2665121 DOI: 10.1074/jbc.m807464200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 02/06/2009] [Indexed: 01/02/2023] Open
Abstract
Carotenoids are widespread lipophilic pigments synthesized by all photosynthetic organisms and some nonphotosynthetic fungi and bacteria. All carotenoids are derived from the C40 isoprenoid precursor geranylgeranyl pyrophosphate, and their chemical and physical properties are associated with light absorption, free radical scavenging, and antioxidant activity. Carotenoids are generally synthesized in well defined subcellular organelles, the plastids, which are also present in the phylum Apicomplexa, which comprises a number of important human parasites, such as Plasmodium and Toxoplasma. Recently, it was demonstrated that Toxoplasma gondii synthesizes abscisic acid. We therefore asked if Plasmodium falciparum is also capable of synthesizing carotenoids. Herein, biochemical findings demonstrated the presence of carotenoid biosynthesis in the intraerythrocytic stages of the apicomplexan parasite P. falciparum. Using metabolic labeling with radioisotopes, in vitro inhibition tests with norflurazon, a specific inhibitor of plant carotenoid biosynthesis, the results showed that intraerythrocytic stages of P. falciparum synthesize carotenoid compounds. A plasmodial enzyme that presented phytoene synthase activity was also identified and characterized. These findings not only contribute to the current understanding of P. falciparum evolution but shed light on a pathway that could serve as a chemotherapeutic target.
Collapse
Affiliation(s)
- Renata Tonhosolo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes 1374, CEP 05508-000, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lai D, Lluncor B, Schröder I, Gunsalus RP, Liao JC, Monbouquette HG. Reconstruction of the archaeal isoprenoid ether lipid biosynthesis pathway in Escherichia coli through digeranylgeranylglyceryl phosphate. Metab Eng 2009; 11:184-91. [PMID: 19558961 DOI: 10.1016/j.ymben.2009.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/05/2009] [Accepted: 01/27/2009] [Indexed: 11/25/2022]
Abstract
The membrane lipids of archaea are characterized by unique isoprenoid biochemistry, which typically is based on two core lipid structures, sn-2,3-diphytanylglycerol diether (archaeol) and sn-2,3-dibiphytanyldiglycerol tetraether (caldarchaeol). The biosynthetic pathway for the tetraether lipid entails unprecedented head-to-head coupling of isoprenoid intermediates by an unknown mechanism involving unidentified enzymes. To investigate the isoprenoid ether lipid biosynthesis pathway of the hyperthermophilic archaeon, Archaeoglobus fulgidus, its lipid synthesis machinery was reconstructed in an engineered Escherichia coli strain in an effort to demonstrate, for the first time, efficient isoprenoid ether lipid biosynthesis for the production of the intermediate, digeranylgeranylglyceryl phosphate (DGGGP). The biosynthesis of DGGGP was verified using an LC/MS/MS technique and was accomplished by cloning and expressing the native E. coli gene for isopentenyl diphosphate (IPP) isomerase (idi), along with the A. fulgidus genes for G1P dehydrogenase (egsA) and GGPP synthase (gps), under the control of the lac promoter. The A. fulgidus genes for GGGP synthase (GGGPS) and DGGGP synthase (DGGGPS), under the control of the araBAD promoter, were then introduced and expressed to enable DGGGP biosynthesis in vivo. This investigation established roles for four A. fulgidus genes in the isoprenoid ether lipid pathway for DGGGP biosynthesis and provides a platform useful for identification of subsequent, currently unknown, steps in tetraether lipid biosynthesis proceeding from DGGGP, which is the presumed substrate for the head-to-head coupling reaction yielding unsaturated caldarchaeol.
Collapse
Affiliation(s)
- Denton Lai
- Chemical and Biomolecular Engineering Department, University of California, Box 951592, Los Angeles, CA 90095-1592, USA
| | | | | | | | | | | |
Collapse
|
17
|
D'Alexandri FL, Tonhosolo R, Kimura EA, Katzin AM. Mass spectrometry analysis of polyisoprenoids alcohols and carotenoids via ESI(Li(+))-MS/MS. Methods Mol Biol 2009; 580:109-128. [PMID: 19784596 DOI: 10.1007/978-1-60761-325-1_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Direct analysis of polyisoprenoid alcohols by electrospray ionization mass spectrometry (ESI-MS) often produces poor results requiring off-line time- and sample-consuming derivatization techniques. In this chapter, we describe a simple ESI-MS approach for the direct analysis of polyisoprenoid alcohols from biological samples. Lithium iodide is used to promote cationization by intense formation of [M+Li](+) adducts. Detection of polyisoprenoids with mass determination can thus be performed with high sensitivity (LOD near 100 pM), whereas characteristic collision-induced dissociations observed for both dolichols and polyprenols permit investigation of their structure. We also describe a simple ESI-MS approach for the direct analysis of carotenoids in biological samples using lithium iodide to promote their ionization and the analysis of several carotenoids as proof-of-principle cases. Finally, we applied ESI(Li(+))-MS and ESI(Li(+))-MS/MS to investigate the presence of carotenoids in Plasmodium falciparum.
Collapse
Affiliation(s)
- Fabio Luiz D'Alexandri
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
18
|
Arruda DC, D'Alexandri FL, Katzin AM, Uliana SRB. Leishmania amazonensis: biosynthesis of polyprenols of 9 isoprene units by amastigotes. Exp Parasitol 2007; 118:624-8. [PMID: 18155196 DOI: 10.1016/j.exppara.2007.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 10/16/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
The isoprenoid metabolic pathway in protozoa of the Leishmania genus exhibits distinctive characteristics. These parasites, as well as other members of the Trypanosomatidae family, synthesize ergosterol, instead of cholesterol, as the main membrane sterol lipid. Leishmania has been shown to utilize leucine, instead of acetate as the main precursor for sterol biosynthesis. While mammalian dolichols are molecules containing 15-23 isoprene units, Leishmania amazonensis promastigotes synthesize dolichol of 11 and 12 units. In this paper, we show that the intracellular stages of L. amazonensis, amastigotes, synthesize mainly polyprenols of 9 isoprene units, instead of dolichol.
Collapse
Affiliation(s)
- Denise Costa Arruda
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-900 São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
19
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:547-558. [PMID: 17385794 DOI: 10.1002/jms.1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
20
|
D'Alexandri FL, Kimura EA, Peres VJ, Katzin AM. Protein dolichylation in Plasmodium falciparum. FEBS Lett 2006; 580:6343-8. [PMID: 17084391 DOI: 10.1016/j.febslet.2006.10.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 10/18/2006] [Accepted: 10/19/2006] [Indexed: 11/26/2022]
Abstract
We performed reverse-phase thin-layer chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC) analysis of polyisoprenoids released by sulfonium-salt cleavage with methyl iodide from Plasmodium falciparum proteins labeled with [3H]FPP or [3H]GGPP and showed that a dolichol of 11 isoprene units is bound to 21-28-kDa protein clusters from trophozoite and schizont stages. The dolichol structure was confirmed by electrospray-ionization mass spectrometry analysis. Treatment with protein synthesis inhibitors and RP-HPLC analysis of the proteolytic digestion products from parasite proteins labeled with [35S]cysteine and [3H]FPP showed that the attachment of dolichol to protein is a post-translational event and probably occurs via a covalent bond to cysteine residues.
Collapse
Affiliation(s)
- Fabio Luiz D'Alexandri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|