1
|
de Pinho Favaro MT, Atienza-Garriga J, Martínez-Torró C, Parladé E, Vázquez E, Corchero JL, Ferrer-Miralles N, Villaverde A. Recombinant vaccines in 2022: a perspective from the cell factory. Microb Cell Fact 2022; 21:203. [PMID: 36199085 PMCID: PMC9532831 DOI: 10.1186/s12934-022-01929-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| |
Collapse
|
2
|
Correia R, Fernandes B, Castro R, Nagaoka H, Takashima E, Tsuboi T, Fukushima A, Viebig NK, Depraetere H, Alves PM, Roldão A. Asexual Blood-Stage Malaria Vaccine Candidate PfRipr5: Enhanced Production in Insect Cells. Front Bioeng Biotechnol 2022; 10:908509. [PMID: 35845392 PMCID: PMC9280424 DOI: 10.3389/fbioe.2022.908509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/02/2023] Open
Abstract
The malaria asexual blood-stage antigen PfRipr and its most immunogenic fragment PfRipr5 have recently risen as promising vaccine candidates against this infectious disease. Continued development of high-yielding, scalable production platforms is essential to advance the malaria vaccine research. Insect cells have supplied the production of numerous vaccine antigens in a fast and cost-effective manner; improving this platform further could prove key to its wider use. In this study, insect (Sf9 and High Five) and human (HEK293) cell hosts as well as process-optimizing strategies (new baculovirus construct designs and a culture temperature shift to hypothermic conditions) were employed to improve the production of the malaria asexual blood-stage vaccine candidate PfRipr5. Protein expression was maximized using High Five cells at CCI of 2 × 106 cell/mL and MOI of 0.1 pfu/cell (production yield = 0.49 mg/ml), with high-purity PfRipr5 binding to a conformational anti-PfRipr monoclonal antibody known to hold GIA activity and parasite PfRipr staining capacity. Further improvements in the PfRipr5 expression were achieved by designing novel expression vector sequences and performing a culture temperature shift to hypothermic culture conditions. Addition of one alanine (A) amino acid residue adjacent to the signal peptide cleavage site and a glycine-serine linker (GGSGG) between the PfRipr5 sequence and the purification tag (His6) induced a 2.2-fold increase in the expression of secreted PfRipr5 over using the expression vector with none of these additions. Performing a culture temperature shift from the standard 27–22°C at the time of infection improved the PfRipr5 expression by up to 1.7 fold. Notably, a synergistic effect was attained when combining both strategies, enabling to increase production yield post-purification by 5.2 fold, with similar protein quality (i.e., purity and binding to anti-PfRipr monoclonal antibody). This work highlights the potential of insect cells to produce the PfRipr5 malaria vaccine candidate and the importance of optimizing the expression vector and culture conditions to boost the expression of secreted proteins.
Collapse
Affiliation(s)
- Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bárbara Fernandes
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rute Castro
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | | | - Nicola K. Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Hilde Depraetere
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Paula M. Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: António Roldão,
| |
Collapse
|
3
|
Roman AO, Jimenez-Sandoval P, Augustin S, Broyart C, Hothorn LA, Santiago J. HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat Commun 2022; 13:876. [PMID: 35169143 PMCID: PMC8847575 DOI: 10.1038/s41467-022-28558-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/01/2022] [Indexed: 12/17/2022] Open
Abstract
The membrane receptor kinases HAESA and HSL2 recognize a family of IDA/IDL signaling peptides to control cell separation processes in different plant organs. The homologous HSL1 has been reported to regulate epidermal cell patterning by interacting with a different class of signaling peptides from the CLE family. Here we demonstrate that HSL1 binds IDA/IDL peptides with high, and CLE peptides with lower affinity, respectively. Ligand sensing capability and receptor activation of HSL1 require a SERK co-receptor kinase. Crystal structures with IDA/IDLs or with CLE9 reveal that HSL1-SERK1 complex recognizes the entire IDA/IDL signaling peptide, while only parts of CLE9 are bound to the receptor. In contrast, the receptor kinase BAM1 interacts with the entire CLE9 peptide with high affinity and specificity. Furthermore, the receptor tandem BAM1/BAM2 regulates epidermal cell division homeostasis. Consequently, HSL1-IDLs and BAM1/BAM2-CLEs independently regulate cell patterning in the leaf epidermal tissue.
Collapse
Affiliation(s)
- Andra-Octavia Roman
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pedro Jimenez-Sandoval
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Sebastian Augustin
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, 30167, Hannover, Germany
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
4
|
Frøbert AM, Brohus M, Toews JNC, Round P, Fröbert O, Hammond GL, Overgaard MT. Characterization and comparison of recombinant full-length ursine and human sex hormone-binding globulin. FEBS Open Bio 2021; 12:362-378. [PMID: 34855305 PMCID: PMC8804615 DOI: 10.1002/2211-5463.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Sex hormone‐binding globulin (SHBG) regulates the bioavailability of sex steroid hormones in the blood. Levels of SHBG increase markedly in brown bears (Ursus arctos) during hibernation, suggesting that a key regulatory role of this protein is to quench sex steroid bioavailability in hibernation physiology. To enable characterization of ursine SHBG and a cross species comparison, we established an insect cell‐based expression system for recombinant full‐length ursine and human SHBG. Compared with human SHBG, we observed markedly lower secretion levels of ursine SHBG, resulting in a 10‐fold difference in purified protein yield. Both human and ursine recombinant SHBG appeared as dimeric proteins in solution, with a single unfolding temperature of ~ 58 °C. The thermal stability of ursine and human SHBG increased 5.4 and 9.5 °C, respectively, in the presence of dihydrotestosterone (DHT), suggesting a difference in affinity. The dissociation constants for [3H]DHT were determined to 0.21 ± 0.04 nm for human and 1.32 ± 0.10 nm for ursine SHBG, confirming a lower affinity of ursine SHBG. A similarly reduced affinity, determined from competitive steroid binding, was observed for most steroids. Overall, we found that ursine SHBG had similar characteristics to human SHBG, specifically, being a homodimeric glycoprotein capable of binding steroids with high affinity. Therefore, ursine SHBG likely has similar biological functions to those known for human SHBG. The determined properties of ursine SHBG will contribute to elucidating its potential regulatory role in hibernation physiology.
Collapse
Affiliation(s)
- Anne Mette Frøbert
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Denmark
| | - Malene Brohus
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Denmark
| | - Julia N C Toews
- Department of Cellular & Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Phillip Round
- Department of Cellular & Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Sweden.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Geoffrey L Hammond
- Department of Cellular & Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Denmark
| |
Collapse
|
5
|
Lou Y, Ji G, Liu Q, Wang P, Zhang R, Zhang Y, Liu X. Secretory expression and scale-up production of recombinant human thyroid peroxidase via baculovirus/insect cell system in a wave-type bioreactor. Protein Expr Purif 2018; 149:7-12. [DOI: 10.1016/j.pep.2018.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 11/29/2022]
|
6
|
A highly efficient modified human serum albumin signal peptide to secrete proteins in cells derived from different mammalian species. Protein Expr Purif 2017; 132:27-33. [DOI: 10.1016/j.pep.2017.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022]
|
7
|
Yu K, Yu Y, Tang X, Chen H, Xiao J, Su XD. Transcriptome analyses of insect cells to facilitate baculovirus-insect expression. Protein Cell 2016; 7:373-82. [PMID: 27017378 PMCID: PMC4853316 DOI: 10.1007/s13238-016-0260-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/27/2016] [Indexed: 12/03/2022] Open
Abstract
The High Five cell line (BTI-TN-5B1-4) isolated from the cabbage looper, Trichoplusia ni is an insect cell line widely used for baculovirus-mediated recombinant protein expression. Despite its widespread application in industry and academic laboratories, the genomic background of this cell line remains unclear. Here we sequenced the transcriptome of High Five cells and assembled 25,234 transcripts. Codon usage analysis showed that High Five cells have a robust codon usage capacity and therefore suit for expressing proteins of both eukaryotic- and prokaryotic-origin. Genes involved in glycosylation were profiled in our study, providing guidance for engineering glycosylated proteins in the insect cells. We also predicted signal peptides for transcripts with high expression abundance in both High Five and Sf21 cell lines, and these results have important implications for optimizing the expression level of some secretory and membrane proteins.
Collapse
Affiliation(s)
- Kai Yu
- Biodynamic Optical Imaging Center, School of Life Science, Peking University, Beijing, 100871, China.,State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Yang Yu
- Biodynamic Optical Imaging Center, School of Life Science, Peking University, Beijing, 100871, China.,State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Xiaoyan Tang
- Biodynamic Optical Imaging Center, School of Life Science, Peking University, Beijing, 100871, China.,State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Huimin Chen
- Biodynamic Optical Imaging Center, School of Life Science, Peking University, Beijing, 100871, China.,State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | - Junyu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xiao-Dong Su
- Biodynamic Optical Imaging Center, School of Life Science, Peking University, Beijing, 100871, China. .,State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Sharma K, Mishra AK, Mehraj V, Duraisamy GS. Advances and applications of molecular cloning in clinical microbiology. Biotechnol Genet Eng Rev 2015; 30:65-78. [PMID: 25023463 DOI: 10.1080/02648725.2014.921501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Molecular cloning is based on isolation of a DNA sequence of interest to obtain multiple copies of it in vitro. Application of this technique has become an increasingly important tool in clinical microbiology due to its simplicity, cost effectiveness, rapidity, and reliability. This review entails the recent advances in molecular cloning and its application in the clinical microbiology in the context of polymicrobial infections, recombinant antigens, recombinant vaccines, diagnostic probes, antimicrobial peptides, and recombinant cytokines. Culture-based methods in polymicrobial infection have many limitation, which has been overcome by cloning techniques and provide gold standard technique. Recombinant antigens produced by cloning technique are now being used for screening of HIV, HCV, HBV, CMV, Treponema pallidum, and other clinical infectious agents. Recombinant vaccines for hepatitis B, cholera, influenza A, and other diseases also use recombinant antigens which have replaced the use of live vaccines and thus reduce the risk for adverse effects. Gene probes developed by gene cloning have many applications including in early diagnosis of hereditary diseases, forensic investigations, and routine diagnosis. Industrial application of this technology produces new antibiotics in the form of antimicrobial peptides and recombinant cytokines that can be used as therapeutic agents.
Collapse
Affiliation(s)
- Kamal Sharma
- a Faculty of Agrobiology, Department of Genetics and Breeding , Czech University of Life Sciences , Prague , Czech Republic
| | | | | | | |
Collapse
|
9
|
Liu F, Wu X, Zhao Y, Li L, Wang Z. Budding of peste des petits ruminants virus-like particles from insect cell membrane based on intracellular co-expression of peste des petits ruminants virus M, H and N proteins by recombinant baculoviruses. J Virol Methods 2014; 207:78-85. [PMID: 24992672 DOI: 10.1016/j.jviromet.2014.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/01/2014] [Accepted: 06/24/2014] [Indexed: 01/13/2023]
Abstract
Peste des petits ruminants virus (PPRV), an etiological agent of peste des petits ruminants (PPR), is classified into the genus Morbillivirus in the family Paramyxovirida. In this study, two full-length open reading frames (ORF) corresponding to the PPRV matrix (M) and haemagglutinin (H) genes underwent a codon-optimization based on insect cells, respectively. Two codon-optimized ORFs along with one native nucleocapsid (N) ORF were used to construct recombinant baculoviruses co-expressing the PPRV M, H and N proteins in insect cells. Analysis of Western blot, immunofluorescence, confocal microscopy and flow cytometry demonstrated co-expression of the three proteins but at different levels in insect cells, and PPR virus-like particles (VLPs) budded further from cell membrane based on self-assembly of the three proteins by viewing of ultrathin section with a transmission electron microscope (TEM). Subsequently, a small number of VLPs were purified by sucrose density gradient centrifugation for TEM viewing. The PPR VLPs, either purified by sucrose density gradient centrifugation or budding from insect cell membrane on ultrathin section, morphologically resembled authentic PPRVs but were smaller in diameter by the TEM examination.
Collapse
Affiliation(s)
- Fuxiao Liu
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, Shandong, China
| | - Xiaodong Wu
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, Shandong, China
| | - Yonggang Zhao
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, Shandong, China
| | - Lin Li
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, Shandong, China
| | - Zhiliang Wang
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao 266032, Shandong, China.
| |
Collapse
|
10
|
Sundaramoorthy V, Walker AK, Yerbury J, Soo KY, Farg MA, Hoang V, Zeineddine R, Spencer D, Atkin JD. Extracellular wildtype and mutant SOD1 induces ER-Golgi pathology characteristic of amyotrophic lateral sclerosis in neuronal cells. Cell Mol Life Sci 2013; 70:4181-95. [PMID: 23765103 PMCID: PMC11113712 DOI: 10.1007/s00018-013-1385-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/03/2013] [Accepted: 05/23/2013] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disorder and the majority of ALS is sporadic, where misfolding and aggregation of Cu/Zn-superoxide dismutase (SOD1) is a feature shared with familial mutant-SOD1 cases. ALS is characterized by progressive neurospatial spread of pathology among motor neurons, and recently the transfer of extracellular, aggregated mutant SOD1 between cells was demonstrated in culture. However, there is currently no evidence that uptake of SOD1 into cells initiates neurodegenerative pathways reminiscent of ALS pathology. Similarly, whilst dysfunction to the ER-Golgi compartments is increasingly implicated in the pathogenesis of both sporadic and familial ALS, it remains unclear whether misfolded, wildtype SOD1 triggers ER-Golgi dysfunction. In this study we show that both extracellular, native wildtype and mutant SOD1 are taken up by macropinocytosis into neuronal cells. Hence uptake does not depend on SOD1 mutation or misfolding. We also demonstrate that purified mutant SOD1 added exogenously to neuronal cells inhibits protein transport between the ER-Golgi apparatus, leading to Golgi fragmentation, induction of ER stress and apoptotic cell death. Furthermore, we show that extracellular, aggregated, wildtype SOD1 also induces ER-Golgi pathology similar to mutant SOD1, leading to apoptotic cell death. Hence extracellular misfolded wildtype or mutant SOD1 induce dysfunction to ER-Golgi compartments characteristic of ALS in neuronal cells, implicating extracellular SOD1 in the spread of pathology among motor neurons in both sporadic and familial ALS.
Collapse
Affiliation(s)
- Vinod Sundaramoorthy
- Department of Biochemistry, Latrobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia
| | - Adam K. Walker
- Department of Biochemistry, Latrobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia
- Center for Neurodegenerative Disease Research, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Justin Yerbury
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Kai Ying Soo
- Department of Biochemistry, Latrobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia
| | - Manal A. Farg
- Department of Biochemistry, Latrobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia
| | - Vy Hoang
- Department of Biochemistry, Latrobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia
| | - Rafaa Zeineddine
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Damian Spencer
- Department of Biochemistry, Latrobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia
| | - Julie D. Atkin
- Department of Biochemistry, Latrobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086 Australia
- Department of Florey Neuroscience, University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
11
|
Jantzen RR, Truelson SN, Choy FY. Human α-N-acetylglucosaminidase: cDNA cryptic site removal and native secretion signal addition significantly enhance enzyme expression and secretion. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Liu F, Wu X, Li L, Liu Z, Wang Z. Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Protein Expr Purif 2013; 90:104-16. [PMID: 23742819 PMCID: PMC7128112 DOI: 10.1016/j.pep.2013.05.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 11/10/2022]
Abstract
A brief overview of principles and applications of BES. Generation of VLPs using BES. Major properties of BES: promoting generation of VLPs. Bioprocess considerations for generation of VLPs.
The baculovirus expression system (BES) has been one of the versatile platforms for the production of recombinant proteins requiring multiple post-translational modifications, such as folding, oligomerization, phosphorylation, glycosylation, acylation, disulfide bond formation and proteolytic cleavage. Advances in recombinant DNA technology have facilitated application of the BES, and made it possible to express multiple proteins simultaneously in a single infection and to produce multimeric proteins sharing functional similarity with their natural analogs. Therefore, the BES has been used for the production of recombinant proteins and the construction of virus-like particles (VLPs), as well as for the development of subunit vaccines, including VLP-based vaccines. The VLP, which consists of one or more structural proteins but no viral genome, resembles the authentic virion but cannot replicate in cells. The high-quality recombinant protein expression and post-translational modifications obtained with the BES, along with its capacity to produce multiple proteins, imply that it is ideally suited to VLP production. In this article, we critically review the pros and cons of using the BES as a platform to produce both enveloped and non-enveloped VLPs.
Collapse
Affiliation(s)
- Fuxiao Liu
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | | | | | | | | |
Collapse
|
13
|
Kober L, Zehe C, Bode J. Optimized signal peptides for the development of high expressing CHO cell lines. Biotechnol Bioeng 2013; 110:1164-73. [DOI: 10.1002/bit.24776] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 01/12/2023]
|
14
|
Comparison of signal peptides for efficient protein secretion in the baculovirus-silkworm system. Open Life Sci 2013. [DOI: 10.2478/s11535-012-0112-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe baculovirus-silkworm expression system is widely used as a mass production system for recombinant secretory proteins. However, the final yields of some recombinant proteins are not sufficient for industrial use. In this study, we focused on the signal peptide as a key factor for improving the efficiency of protein production. Endoplasmic reticulum (ER) translocation of newly synthesized proteins is the first stage of the secretion pathway; therefore, the selection of an efficient signal peptide would lead to the efficient secretion of recombinant proteins. The Drosophila Bip and honeybee melittin signal peptides have often been used in this system, but to the best of our knowledge, there has been no study comparing secretion efficiency between exogenous and endogenous signal peptides. In this study we employed signal peptides from 30K Da and SP2 proteins as endogenous signals, and compared secretion efficiency with those of exogenous or synthetic origins. We have found that the endogenous secretory signal from the 30K Da protein is the most efficient for recombinant secretory protein production in the baculovirus-silkworm expression system.
Collapse
|
15
|
Wu TY, Chen YJ, Teng CY, Chen WS, Villaflores O. A bi-cistronic baculovirus expression vector for improved recombinant protein production. Bioeng Bugs 2012; 3:129-32. [PMID: 22539029 DOI: 10.4161/bbug.19388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Baculoviruses are one of the most studied insect viruses both in basic virology research and in biotechnology applications. Incorporating an internal ribosome entry site (IRES) into the baculovirus genome generates bi-cistronic baculoviruses expression vectors that produce two genes of interest. The bi-cistronic baculoviruses also facilitate recombinant virus isolation and titer determination when the green fluorescent protein was co-expressed. Furthermore, when the secretion proteins were co-expressed with the cytosolic green fluorescent protein, the cell lysis and cytosolic protein released into the culture medium could be monitored by the green fluorescence, thus facilitating purification of the secreted proteins.
Collapse
Affiliation(s)
- Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Chungli, Taiwan.
| | | | | | | | | |
Collapse
|
16
|
Li SF, Wang HL, Hu ZH, Deng F. Genetic modification of baculovirus expression vectors. Virol Sin 2012; 27:71-82. [PMID: 22491998 DOI: 10.1007/s12250-012-3236-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/27/2012] [Indexed: 10/28/2022] Open
Abstract
As a protein expression vector, the baculovirus demonstrates many advantages over other vectors. With the development of biotechnology, baculoviral vectors have been genetically modified to facilitate high level expression of heterologous proteins in both insect and mammalian cells. These modifications include utilization of different promoters and signal peptides, deletion or replacement of viral genes for increasing protein secretion, integration of polycistronic expression cassette for producing protein complexes, and baculovirus pseudotyping, promoter accommodation or surface display for enhancing mammalian cell targeting gene delivery. This review summarizes the development and the current state of art of the baculovirus expression system. Further development of baculovirus expression systems will make them even more feasible and accessible for advanced applications.
Collapse
Affiliation(s)
- Shu-fen Li
- State Key Laboratory of Virology and Joint-Lab of Invertebrate Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | |
Collapse
|
17
|
Chen WS, Villaflores OB, Lu CF, Wu HI, Chen YJ, Teng CY, Chang YC, Chang SL, Wu TY. Functional expression of rat neuroligin-1 extracellular fragment by a bi-cistronic baculovirus expression vector. Protein Expr Purif 2012; 81:18-24. [PMID: 21911064 DOI: 10.1016/j.pep.2011.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
18
|
Olczak M, Ciuraszkiewicz J, Wójtowicz H, Maszczak D, Olczak T. Diphosphonucleotide phosphatase/phosphodiesterase (PPD1) from yellow lupin (Lupinus luteus L.) contains an iron-manganese center. FEBS Lett 2009; 583:3280-4. [PMID: 19755125 DOI: 10.1016/j.febslet.2009.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 08/31/2009] [Accepted: 09/09/2009] [Indexed: 11/26/2022]
Abstract
Yellow lupin diphosphonucleotide phosphatase/phosphodiesterase (PPD1) represents a novel group of enzymes. Here we report that it possesses one iron atom and one manganese atom (1:1 molar ratio) per subunit. The enzyme exhibits visible absorption maximum at approximately 530 nm. Prolonged oxidation of PPD1 leads to loss of the charge-transfer band and catalytic activity, whereas after reduction PPD1 remains active. Replacement of conserved amino-acid residues coordinating metals results in the loss of enzymatic activity. Despite low amino-acid sequence homology of PPD1 to well-characterized approximately 55-kDa purple acid phosphatases, their overall fold, topology of active center and metal content are highly similar.
Collapse
Affiliation(s)
- Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
19
|
Frade R, Rousselet N, Jean D. Intratumoral gene delivery of anti-cathepsin L single-chain variable fragment by lentiviral vector inhibits tumor progression induced by human melanoma cells. Cancer Gene Ther 2008; 15:591-604. [DOI: 10.1038/cgt.2008.51] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Olczak M, Indyk K, Olczak T. Reconstitution of human azurocidin catalytic triad and proteolytic activity by site-directed mutagenesis. Biol Chem 2008; 389:955-62. [DOI: 10.1515/bc.2008.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAzurocidin belongs to the serprocidin family, but it is devoid of proteolytic activity due to a substitution of His and Ser residues in the catalytic triad. The aim of this study was to reconstitute the active site of azurocidin by site-directed mutagenesis, analyze its processing and restored proteolytic activity. Azurocidin expressed inSf9 insect cells possessing the reconstituted His41-Asp89-Ser175 triad exhibited significant proteolytic activity toward casein with a pH optimum of approximately 8–9, but a reconstitution of only one active site amino acid did not result in proteolytically active protein. Enzymatically active recombinant azurocidin caused cleavage of the C-terminal fusion tag with the primary cleavage site after lysine at Lys-Leu and after alanine at Ala-Ala, and the secondary cleavage site after arginine at Arg-Gln, as well as with low efficiency caused cleavage of insulin chain B after leucine at Leu-Tyr and Leu-Cys, and after alanine at Ala-Leu. We demonstrate that cleavage of the azurocidin C-terminal tripeptide is not necessary for its enzymatic activity. The first isoleucine present in mature azurocidin can be replaced by similar amino acids, such as leucine or valine, but its substitution by histidine or arginine decreases proteolytic activity.
Collapse
|
21
|
N-Glycosylation sites of plant purple acid phosphatases important for protein expression and secretion in insect cells. Arch Biochem Biophys 2007; 461:247-54. [DOI: 10.1016/j.abb.2007.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/05/2007] [Accepted: 02/07/2007] [Indexed: 11/20/2022]
|