1
|
Khodadadi H, Taniguchi H. A method for siRNA-mediated knockdown of target genes in RA-induced neurogenesis using P19 cells. MethodsX 2025; 14:103177. [PMID: 39991434 PMCID: PMC11847458 DOI: 10.1016/j.mex.2025.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
This study presents a comprehensive protocol for siRNA-mediated knockdown in the differentiation of P19 cells into neuronal-like cells. Utilizing a retinoic acid (RA)-induced neurogenesis model, P19 cells were cultured under specific conditions that facilitated the formation of embryoid bodies (EBs), which were subsequently differentiated into neuronal-like cells. In this investigation, we specifically targeted the Nfe2l1 gene using siRNA transfection to assess the efficiency and effectiveness of our protocol throughout the neuronal differentiation process. Validation of the differentiation was performed through quantitative reverse transcription PCR (RT-qPCR) analysis, measuring the expression levels of key neuronal markers, including Map2 and Pax6 along with the pluripotency marker Oct4. Additionally, the efficiency of the siRNA-mediated knockdown was confirmed by western blot analysis, which demonstrated significant gene silencing at protein levels. These findings underscore the potential of siRNA technology in elucidating gene function during neuronal differentiation and highlight the critical role of targeted gene silencing in advancing neurogenesis research. Furthermore, this study provides a robust and reliable protocol for gene knockdown in neuronal-like cells derived from P19 cells, thereby facilitating further investigations into the intricate molecular mechanisms that govern neurogenesis, neuronal maturation, and overall brain development.•Developed a novel protocol for targeted gene knockdown in P19 cells during neuronal differentiation.•Successful silencing of the Nfe2l1 gene during neuronal differentiation, validated by western blot.•This study provides a reliable protocol for gene knockdown in neuronal differentiation, aiding functional studies of genes in neurogenesis.
Collapse
Affiliation(s)
- Hossein Khodadadi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36, Jastrzebiec 05-552, Poland
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36, Jastrzebiec 05-552, Poland
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| |
Collapse
|
2
|
Karati D, Meur S, Roy S, Mukherjee S, Debnath B, Jha SK, Sarkar BK, Naskar S, Ghosh P. Glycogen synthase kinase 3 (GSK3) inhibition: a potential therapeutic strategy for Alzheimer's disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2319-2342. [PMID: 39432068 DOI: 10.1007/s00210-024-03500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease (AD), the most common type of dementia among older adults, is a chronic neurodegenerative pathology that causes a progressive loss of cognitive functioning with a decline of rational skills. It is well known that AD is multifactorial, so there are many different pharmacological targets that can be pursued. According to estimates from the World Health Organization (WHO), 18 million individuals worldwide suffer from AD. Major initiatives to identify risk factors, enhance care giving, and conduct basic research to delay the beginning of AD were started by the USA, France, Germany, France, and various other nations. Widely recognized as a key player in the development and subsequent progression of AD pathogenesis, glycogen synthase kinase-3 (GSK-3) controls a number of crucial targets associated with neuronal degeneration. GSK-3 inhibition has been linked to reduced tau hyperphosphorylation, β-amyloid formation, and neuroprotective benefits in Alzheimer's disease. Lithium, the very first inhibitor of GSK-3β that was used therapeutically, has been successfully used for many years with remarkable results. A great variety of structurally varied strong GSK-3β blockers have been identified in recent years. The purpose of this thorough review is to cover the biological and structural elements of glycogen synthase kinase, as well as the medicinal chemistry aspects of GSK inhibitors that have been produced in recent years.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India.
| | - Biplab Debnath
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, Howrah, West Bengal, 711316, India
| | - Sajal Kumar Jha
- Department of Pharmaceutical Technology, Bengal College of Pharmaceutical Technology, Dubrajpur, West Bengal, 731123, India
| | | | - Saheli Naskar
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| | - Priya Ghosh
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata, West Bengal, 700053, India
| |
Collapse
|
3
|
GSK3 as a Regulator of Cytoskeleton Architecture: Consequences for Health and Disease. Cells 2021; 10:cells10082092. [PMID: 34440861 PMCID: PMC8393567 DOI: 10.3390/cells10082092] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) was initially isolated as a critical protein in energy metabolism. However, subsequent studies indicate that GSK-3 is a multi-tasking kinase that links numerous signaling pathways in a cell and plays a vital role in the regulation of many aspects of cellular physiology. As a regulator of actin and tubulin cytoskeleton, GSK3 influences processes of cell polarization, interaction with the extracellular matrix, and directional migration of cells and their organelles during the growth and development of an animal organism. In this review, the roles of GSK3–cytoskeleton interactions in brain development and pathology, migration of healthy and cancer cells, and in cellular trafficking of mitochondria will be discussed.
Collapse
|
4
|
Abstract
Glycogen synthase kinase 3β (GSK3β) is a multifunctional serine/threonine kinase. It is particularly abundant in the developing central nervous system (CNS). Since GSK3β has diverse substrates ranging from metabolic/signaling proteins and structural proteins to transcription factors, it is involved in many developmental events in the immature brain, such as neurogenesis, neuronal migration, differentiation and survival. The activity of GSK3β is developmentally regulated and is affected by various environmental/cellular insults, such as deprivation of nutrients/trophic factors, oxidative stress and endoplasmic reticulum stress. Abnormalities in GSK3β activity may disrupt CNS development. Therefore, GSK3β is a critical signaling protein that regulates brain development. It may also determine neuronal susceptibility to damages caused by various environmental insults.
Collapse
|
5
|
Corbo CP, Alonso ADC. Therapeutic targets in Alzheimer's disease and related tauopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:47-83. [PMID: 21199770 DOI: 10.1016/b978-0-12-385506-0.00002-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is a progressive neurodegenerative disease that is characterized histopathologically by the presence of plaques, mainly composed of Abeta amyloid and the tangles, mainly composed of hyperphosphorylated tau. To date, there is no treatment that can reverse the disease, and all the current therapeutics is directed to cope with the symptoms of the disease. Here we describe the efforts dedicated to attack the plaques and, in more detail, the process of neurofibrillary degeneration, linked to the presence of the hyperphosphorylated microtubule associated protein tau. We have identified the different putative targets for therapeutics and the current knowledge on them.
Collapse
Affiliation(s)
- Christopher P Corbo
- College of Staten Island, Program in evelopmental Neuroscience, The Graduate Center, City University of New York (CUNY), Staten Island, New York, USA
| | | |
Collapse
|
6
|
Abstract
Alcohol consumption during pregnancy is a significant public health problem and may result in a wide range of adverse outcomes for the child. The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. Children with fetal alcohol spectrum disorders (FASD) have a variety of cognitive, behavioral, and neurological impairments. FASD currently represents the leading cause of mental retardation in North America ahead of Down syndrome and cerebral palsy. Ethanol exposure during development causes multiple abnormalities in the brain such as permanent loss of neurons, ectopic neurons, and alterations in synaptogenesis and myelinogenesis. These alcohol-induced structural alterations in the developing brain underlie many of the behavioral deficits observed in FASD. The cellular and molecular mechanisms of ethanol neurotoxicity, however, remain unclear. Ethanol elicits cellular stresses, including oxidative stress and endoplasmic reticulum stress. Glycogen synthase kinase 3beta (GSK3beta), a multifunctional serine/threonine kinase, responds to various cellular stresses. GSK3beta is particularly abundant in the developing CNS, and regulates diverse developmental events in the immature brain, such as neurogenesis and neuronal differentiation, migration, and survival. Available evidence indicates that the activity of GSK3beta in the CNS is affected by ethanol. GSK3beta inhibition provides protection against ethanol neurotoxicity, whereas high GSK3beta activity/expression sensitizes neuronal cells to ethanol-induced damages. It appears that GSK3beta is a converging signaling point that mediates some of ethanol's neurotoxic effects.
Collapse
|
7
|
Tsukane M, Yamauchi T. Ca2 +/calmodulin-dependent protein kinase II mediates apoptosis of P19 cells expressing human tau during neural differentiation with retinoic acid treatment. J Enzyme Inhib Med Chem 2009; 24:365-71. [DOI: 10.1080/14756360802187851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mariko Tsukane
- Department of Biochemistry, Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| | - Takashi Yamauchi
- Department of Biochemistry, Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, University of Tokushima, Shomachi 1, Tokushima 770-8505, Japan
| |
Collapse
|
8
|
Chow AM, Brown IR. Induction of heat shock proteins in differentiated human and rodent neurons by celastrol. Cell Stress Chaperones 2007; 12:237-44. [PMID: 17915556 PMCID: PMC1971233 DOI: 10.1379/csc-269.1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been termed protein misfolding disorders that are characterized by the neuronal accumulation of protein aggregates. Manipulation of the cellular stress-response involving induction of heat shock proteins (Hsps) in differentiated neurons offers a therapeutic strategy to counter conformational changes in neuronal proteins that trigger pathogenic cascades resulting in neurodegenerative diseases. Hsps are protein repair agents that provide a line of defense against misfolded, aggregation-prone proteins. These proteins are not induced in differentiated neurons by conventional heat shock. We have found that celastrol, a quinine methide triterpene, induced expression of a wider set of Hsps, including Hsp70B', in differentiated human neurons grown in tissue culture compared to cultured rodent neuronal cells. Hence the beneficial effect of celastrol against human neurodegenerative diseases may exceed its potential in rodent models of these diseases.
Collapse
Affiliation(s)
- Ari M Chow
- Centre for the Neurobiology of Stress, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | | |
Collapse
|
9
|
Yamauchi T. Molecular Mechanism of Learning and Memory Based on the Research for Ca 2+/Calmodulin-dependent Protein Kinase II. YAKUGAKU ZASSHI 2007; 127:1173-97. [PMID: 17666869 DOI: 10.1248/yakushi.127.1173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the central nervous system (CNS), the synapse is a specialized junctional complex by which axons and dendrites emerging from different neuron intercommunicates. Changes in the efficiency of synaptic transmission are important for a number of aspects of neural function. Much has been learned about the activity-dependent synaptic modifications that are thought to underlie memory storage, but the mechanism by which these modifications are stored remains unclear. Thus, it is important to find and characterize "memory molecules," and "memory apparatus or memory forming apparatus." A good candidate for the storage mechanism is Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). CaM kinase II is one of the most prominent protein kinases, present in essentially every tissue but most concentrated in the brain. Neuronal CaM kinase II regulates important neuronal functions, including neurotransmitter synthesis, neurotransmitter release, modulation of ion channel activity, cellular transport, cell morphology and neurite extension, synaptic plasticity, learning and memory, and gene expression. Studies concerning this kinase open a door of the molecular basis of nerve function, especially learning and memory, and indicate one direction for the studies in the field of neuroscience. This review presents molecular structure, properties and functions of CaM kinase II, as a major component of neuron, which are mainly developed in our laboratory.
Collapse
Affiliation(s)
- Takashi Yamauchi
- Institute of Health Biosciences, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Japan.
| |
Collapse
|