1
|
Chen T, Pu M, Subramanian S, Kearns D, Rowe-Magnus D. PlzD modifies Vibrio vulnificus foraging behavior and virulence in response to elevated c-di-GMP. mBio 2023; 14:e0153623. [PMID: 37800901 PMCID: PMC10653909 DOI: 10.1128/mbio.01536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Many free-swimming bacteria propel themselves through liquid using rotary flagella, and mounting evidence suggests that the inhibition of flagellar rotation initiates biofilm formation, a sessile lifestyle that is a nearly universal surface colonization paradigm in bacteria. In general, motility and biofilm formation are inversely regulated by the intracellular second messenger bis-(3´-5´)-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we identify a protein, PlzD, bearing a conserved c-di-GMP binding PilZ domain that localizes to the flagellar pole in a c-di-GMP-dependent manner and alters the foraging behavior, biofilm, and virulence characteristics of the opportunistic human pathogen, Vibrio vulnificus. Our data suggest that PlzD interacts with components of the flagellar stator to decrease bacterial swimming speed and changes in swimming direction, and these activities are enhanced when cellular c-di-GMP levels are elevated. These results reveal a physical link between a second messenger (c-di-GMP) and an effector (PlzD) that promotes transition from a motile to a sessile state in V. vulnificus.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Meng Pu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dan Kearns
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Dean Rowe-Magnus
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Effects of the neurotoxin MPTP and pargyline protection on extracellular energy metabolites and dopamine levels in the striatum of freely moving rats. Brain Res 2013; 1538:159-71. [PMID: 24080403 DOI: 10.1016/j.brainres.2013.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 08/27/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
Abstract
The neurotoxin MPTP is known to induce dopamine release and depletion of ATP in the striatum of rats. Therefore, we studied the changes induced by MPTP and pargyline protection both on striatal dopamine release and on extracellular energy metabolites in freely moving rats, using dual asymmetric-flow microdialysis. A dual microdialysis probe was inserted in the right striatum of rats. MPTP (25mg/kg, 15mg/kg, 10mg/kg) was intraperitoneally administered for three consecutive days. MAO-B inhibitor pargyline (15mg/kg) was systemically administered before neurotoxin administration. The first MPTP dose induced an increase in dialysate dopamine and a decrease of DOPAC levels in striatal dialysate. After the first neurotoxin administration, increases in striatal glucose, lactate, pyruvate, lactate/pyruvate (L/P) and lactate/glucose (L/G) ratios were observed. Subsequent MPTP administrations showed a progressive reduction of dopamine, glucose and pyruvate levels with a concomitant further increase in lactate levels and L/P and L/G ratios. At day 1, pargyline pre-treatment attenuated the MPTP-induced changes in all studied analytes. Starting from day 2, pargyline prevented the depletion of dopamine, glucose and pyruvate while reduced the increase of lactate, L/P ratio and L/G ratio. These in vivo results suggest a pargyline neuroprotection role against the MPTP-induced energetic impairment consequent to mitochondrial damage. This neuroprotective effect was confirmed by TH immunostaining of the substantia nigra.
Collapse
|
3
|
Tomokiyo A, Maeda H, Fujii S, Monnouchi S, Wada N, Kono K, Yamamoto N, Koori K, Teramatsu Y, Akamine A. A multipotent clonal human periodontal ligament cell line with neural crest cell phenotypes promotes neurocytic differentiation, migration, and survival. J Cell Physiol 2012; 227:2040-50. [PMID: 21751215 DOI: 10.1002/jcp.22933] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Repair of injured peripheral nerve is thought to play important roles in tissue homeostasis and regeneration. Recent experiments have demonstrated enhanced functional recovery of damaged neurons by some types of somatic stem cells. It remains unclear, however, if periodontal ligament (PDL) stem cells possess such functions. We recently developed a multipotent clonal human PDL cell line, termed cell line 1-17. Here, we investigated the effects of this cell line on neurocytic differentiation, migration, and survival. This cell line expressed the neural crest cell marker genes Slug, SOX10, Nestin, p75NTR, and CD49d and mesenchymal stem cell-related markers CD13, CD29, CD44, CD71, CD90, CD105, and CD166. Rat adrenal pheochromocytoma cells (PC12 cells) underwent neurocytic differentiation when co-cultured with cell line 1-17 or in conditioned medium from cell line 1-17 (1-17CM). ELISA analysis revealed that 1-17CM contained approximately 50 pg/ml nerve growth factor (NGF). Cell line 1-17-induced migration of PC12 cells, which was inhibited by a neutralizing antibody against NGF. Furthermore, 1-17CM exerted antiapoptotic effects on differentiated PC12 cells as evidenced by inhibition of neurite retraction, reduction in annexin V and caspase-3/7 staining, and induction of Bcl-2 and Bcl-xL mRNA expression. Thus, cell line 1-17 promoted neurocytic differentiation, migration, and survival through secretion of NGF and possibly synergistic factors. PDL stem cells may play a role in peripheral nerve reinnervation during PDL regeneration.
Collapse
Affiliation(s)
- Atsushi Tomokiyo
- Faculty of Dental Science, Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang S, Hu CP, Yuan Q, Zhang WF, Zhou Z, Nie SD, Jiang JL, Li YJ. Dimethylarginine dimethylaminohydrolase 1 regulates nerve growth factor-promoted differentiation of PC12 cells in a nitric oxide-dependent but asymmetric dimethylargenine-independent manner. J Neurosci Res 2012; 90:1209-17. [DOI: 10.1002/jnr.23009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 11/05/2011] [Accepted: 11/18/2011] [Indexed: 11/10/2022]
|
5
|
Chang YL, Chen SJ, Kao CL, Hung SC, Ding DC, Yu CC, Chen YJ, Ku HH, Lin CP, Lee KH, Chen YC, Wang JJ, Hsu CC, Chen LK, Li HY, Chiou SH. Docosahexaenoic Acid Promotes Dopaminergic Differentiation in Induced Pluripotent Stem Cells and Inhibits Teratoma Formation in Rats with Parkinson-Like Pathology. Cell Transplant 2012; 21:313-32. [PMID: 21669041 DOI: 10.3727/096368911x580572] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic (DA) neurons in the midbrain. Induced pluripotent stem (iPS) cells have shown potential for differentiation and may become a resource of functional neurons for the treatment of PD. However, teratoma formation is a major concern for transplantation-based therapies. This study examined whether functional neurons could be efficiently generated from iPS cells using a five-step induction procedure combined with docosahexaenoic acid (DHA) treatment. We demonstrated that DHA, a ligand for the RXR/Nurr1 heterodimer, significantly activated expression of the Nurr1 gene and the Nurr1-related pathway in iPS cells. DHA treatment facilitated iPS differentiation into tyrosine hydroxylase (TH)-positive neurons in vitro and in vivo and functionally increased dopamine release in transplanted grafts in PD-like animals. Furthermore, DHA dramatically upregulated the endogenous expression levels of neuroprotective genes ( Bcl-2, Bcl-xl, brain-derived neurotrophic factor, and glial cell-derived neurotrophic factor) and protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced apoptosis in iPS-derived neuronal precursor cells. DHA-treated iPS cells significantly improved the behavior of 6-hydroxydopamine (6-OHDA)-treated PD-like rats compared to control or eicosapentaenoic acid-treated group. Importantly, the in vivo experiment suggests that DHA induces the differentiation of functional dopaminergic precursors and improves the abnormal behavior of 6-OHDA-treated PD-like rats by 4 months after transplantation. Furthermore, we found that DHA treatment in iPS cell-grafted rats significantly downregulated the mRNA expression of embryonic stem cell-specific genes (Oct-4 and c-Myc) in the graft and effectively blocked teratoma formation. Importantly, 3 Tesla-magnetic resonance imaging and ex vivo green fluorescence protein imaging revealed that no teratomas were present in transplanted grafts of DHA-treated iPS-derived DA neurons 4 months after implantation. Therefore, our data suggest that DHA plays a crucial role in iPS differentiation into functional DA neurons and that this approach could provide a novel therapeutic approach for PD treatment.
Collapse
Affiliation(s)
- Yuh-Lih Chang
- Institute of Pharmacology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Lan Kao
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Dah-Ching Ding
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital & Tzu Chi University, Taipei, Taiwan
| | - Cheng-Chia Yu
- Institute of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Oral Biology and Biomaterial Science, Chung-Shan Medical University & Department of Dentistry, Chung Shan Medical University Hospital, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hung-Hai Ku
- Institute of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Po Lin
- Brain Research Center, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Hsiung Lee
- Division of Biotechnology, Animal Technology Institute Taiwan, Chunan, Miaoli, Taiwan
| | - Yu-Chih Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jhi-Joung Wang
- Department of Surgery, Chi-Mei Medical Center & Chia Nan University of Pharmacy & Science, Taipei, Taiwan
| | - Chuan-Chih Hsu
- Department of Surgery, Chi-Mei Medical Center & Chia Nan University of Pharmacy & Science, Taipei, Taiwan
| | - Liang-Kung Chen
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yang Li
- Institute of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
6
|
Luo Y, Zhou J, Watt SK, Lee VT, Dayie TK, Sintim HO. Differential binding of 2'-biotinylated analogs of c-di-GMP with c-di-GMP riboswitches and binding proteins. MOLECULAR BIOSYSTEMS 2011; 8:772-8. [PMID: 22182995 DOI: 10.1039/c2mb05338a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
C-di-GMP has emerged as a signalling molecule that regulates a variety of processes in several bacteria; therefore there is interest in the development of biotinylated analogs for the identification of binding partners. No detailed study has been done to evaluate if biotinylated analogs of c-di-GMP are capable of binding to c-di-GMP receptors. Herein, we evaluate the binding of commercially available 2'-biotinylated c-di-GMP and phosphorothioate 2'-biotinylated c-di-GMP, prepared via a facile solid-phase synthesis, to several c-di-GMP receptors. Docking, using Autodock vina software, as well as experimental studies of these analogs, with c-di-GMP class I and II riboswitches and binding proteins, reveal that some, but not all, c-di-GMP receptors can tolerate the 2'-modification of c-di-GMP with biotin.
Collapse
Affiliation(s)
- Yiling Luo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | |
Collapse
|
7
|
Bazzu G, Biosa A, Farina D, Spissu Y, Dedola S, Calia G, Puggioni G, Rocchitta G, Migheli R, Desole MS, Serra PA. Dual asymmetric-flow microdialysis for in vivo monitoring of brain neurochemicals. Talanta 2011; 85:1933-40. [PMID: 21872041 DOI: 10.1016/j.talanta.2011.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 01/25/2023]
Abstract
Microdialysis is an extensively used technique for both in vivo and in vitro experiments, applicable to animal and human studies. In neurosciences, the in vivo microdialysis is usually performed to follow changes in the extracellular levels of substances and to monitor neurotransmitters release in the brain of freely moving animals. Catecholamines, such as dopamine and their related compounds, are involved in the neurochemistry and in the physiology of mental diseases and neurological disorders. It is generally supposed that the brain's energy requirement is supplied by glucose oxidation. More recently, lactate was proposed to be the metabolic substrate used by neurons during synaptic activity. In our study, an innovative microdialysis approach for simultaneous monitoring of catecholamines, indolamines, glutamate and energy substrates in the striatum of freely moving rats, using an asymmetric perfusion flow rate on microdialysis probe, is described. As a result of this asymmetric perfusion, two samples are available from the same brain region, having the same analytes composition but different concentrations. The asymmetric flow perfusion could be a useful tool in neurosciences studies related to brain's energy requirement, such as toxin-induced models of Parkinson's disease.
Collapse
Affiliation(s)
- Gianfranco Bazzu
- Department of Neuroscience, Medical School, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tsai YJ, Lin LC, Tsai TH. Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4638-4643. [PMID: 20302371 DOI: 10.1021/jf100269g] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cordycepin is a bioactive constituent of Cordyceps sinensis that has been shown to regulate homeostatic function. As an adenosine analogue, it is possible cordycepin goes through a similar metabolic pathway to that of adenosine. To investigate this hypothesis, a sensitive liquid chromatography with photodiode-array detector (HPLC-PDA) coupled to a microdialysis sampling system was developed to monitor cordycepin and adenosine in rat blood and liver. Other endogenous nucleosides were simultaneously measured to further understand the downstream metabolic pathway. The experiments were divided into six parallel groups for drug administration: (1) normal saline vehicle, (2) adenosine, (3) cordycepin, (4) normal saline + erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA; a potent adenosine deaminase inhibitor), (5) adenosine + EHNA, and (6) cordycepin + EHNA. The pharmacokinetic results suggest that the levels of both adenosine and cordycepin decreased rapidly in blood around 30 min after drug administration. When adenosine was given, the concentrations of adenosine metabolites, hypoxanthinosine and hypoxanthine, increased in rat blood. This phenomenon was inhibited by EHNA pretreatment. An unidentified peak was observed in the blood and liver samples after cordycepin administration. The decline of this unidentified peak paralleled the decreased of the concentration of cordycepin, and it was not observed in the presence of the adenosine deaminase inhibitor. It is concluded that adenosine and cordycepin had short elimination half-lives and high rates of clearance and their biotransformation was suppressed by EHNA.
Collapse
Affiliation(s)
- Yung-Jen Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taiwan
| | | | | |
Collapse
|
9
|
Allais A, Burel D, Roy V, Arthaud S, Galas L, Isaac ER, Desfeux A, Parent B, Fournier A, Chapillon P, Sherwood NM, Vaudry H, Gonzalez BJ. Balanced effect of PACAP and FasL on granule cell death during cerebellar development: a morphological, functional and behavioural characterization. J Neurochem 2010; 113:329-40. [DOI: 10.1111/j.1471-4159.2009.06555.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Tseng YT, Yang CS, Tseng FG. A perfusion-based micro opto-fluidic system (PMOFS) for continuously in-situ immune sensing. LAB ON A CHIP 2009; 9:2673-2682. [PMID: 19704983 DOI: 10.1039/b823449c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper proposes a novel perfusion-based micro opto-fluidic system (PMOFS) as a reusable immunosensor for in-situ and continuous protein detection. The PMOFS includes a fiber optic interferometry (FOI) sensor housed in a micro-opto-fluidic chip covered with a microdialysis membrane. It features a surface regeneration mechanism for continuous detection. Gold nanoparticles (GNPs) labeled anti-rabbit IgG were used to enhance the immune conjugation signal by the elongated optical path from GNPs conjugation. Surface regeneration of the sensor was achieved through local pH level manipulation by means of a photoactive molecule, o-Nitrobenzaldehyde (o-NBA), which triggered the elution of immune complexes. Experimental results showed that the pH level of the o-NBA solution can be reduced from 7 to 3.5 within 20 seconds under UV irradiation, sufficient for an effective elution process. The o-NBA molecules, contained within poly(ethylene glycol) diacrylate (PEG) complexes, were trapped within the sensing compartment by the microdialysis membrane and would not leak into the outside environment. The pH variation was also limited in the neighborhood of the sensor surface, resulting in a self-contained sensing system. In-situ immune detection and surface regeneration of the sensing probe has been successfully carried out for two identical cycles by the same sensing probe, and the cycle time can be less than 8 minutes, which is so far the fastest method for continuous monitoring on protein/peptide molecules. In addition, the interference fringe shift of the sensor is linearly related to the concentration of anti-cytochrome C antibody solution and the detection limit approaches 10 ng/ml.
Collapse
Affiliation(s)
- Yuan-Tai Tseng
- Institute of NanoEngineering and MicroSystems (NEMS), National Tsing Hua University, Hsinchu, Taiwan, 300
| | | | | |
Collapse
|
11
|
The effect of the controlled release of nerve growth factor from collagen gel on the efficiency of neural cell culture. Biomaterials 2009; 30:126-32. [DOI: 10.1016/j.biomaterials.2008.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/04/2008] [Indexed: 11/22/2022]
|
12
|
Migheli R, Puggioni G, Dedola S, Rocchitta G, Calia G, Bazzu G, Esposito G, Lowry JP, O'Neill RD, Desole MS, Miele E, Serra PA. Novel integrated microdialysis-amperometric system for in vitro detection of dopamine secreted from PC12 cells: design, construction, and validation. Anal Biochem 2008; 380:323-30. [PMID: 18577368 DOI: 10.1016/j.ab.2008.05.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
Abstract
A novel dual channel in vitro apparatus, derived from a previously described design, has been coupled with dopamine (DA) microsensors for the flow-through detection of DA secreted from PC12 cells. The device, including two independent microdialysis capillaries, was loaded with a solution containing PC12 cells while a constant phosphate-buffered saline (PBS) medium perfusion was carried out using a dual channel miniaturized peristaltic pump. One capillary was perfused with normal PBS, whereas extracellular calcium was removed from extracellular fluid of the second capillary. After a first period of stabilization and DA baseline recording, KCl (75 mM) was added to the perfusion fluid of both capillaries. In this manner, a simultaneous "treatment-control" experimental design was performed to detect K+-evoked calcium-dependent DA secretion. For this purpose, self-referencing DA microsensors were developed, and procedures for making, testing, and calibrating them are described in detail. The electronic circuitry was derived from previously published schematics and optimized for dual sensor constant potential amperometry applications. The microdialysis system was tested and validated in vitro under different experimental conditions, and DA secretion was confirmed by high-performance liquid chromatography with electrochemical detection (HPLC-EC). PC12 cell viability was quantified before and after each experiment. The proposed apparatus serves as a reliable model for studying the effects of different drugs on DA secretion through the direct comparison of extracellular DA increase in treatment-control experiments performed on the same initial PC12 cell population.
Collapse
Affiliation(s)
- Rossana Migheli
- Department of Neuroscience, Medical School, University of Sassari, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|