1
|
Lazzarini A, Colaiezzi R, Galante A, Passacantando M, Capista D, Ferella F, Alecci M, Crucianelli M. Hybrid polyphenolic Network/SPIONs aggregates with potential synergistic effects in MRI applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
2
|
One-pot embedding of iron oxides and Gd(III) complexes into silica nanoparticles—Morphology and aggregation effects on MRI dual contrasting ability. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Khaleghi S, Rahbarizadeh F, Ahmadvand D, Hosseini HRM. Anti-HER2 VHH Targeted Magnetoliposome for Intelligent Magnetic Resonance Imaging of Breast Cancer Cells. Cell Mol Bioeng 2017; 10:263-272. [PMID: 31719864 DOI: 10.1007/s12195-017-0481-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 02/10/2017] [Indexed: 04/11/2023] Open
Abstract
The combination of liposomes with magnetic nanoparticles, because of their strong effect on T2 relaxation can open new ways in the innovative cancer therapy and diagnosis. In order to design an intelligent contrast agent in MRI, we chose anti-HER2 nanobody the smallest fully functional antigen-binding fragments evolved from the variable domain, the VHH, of a camel heavy chain-only antibody. These targeted magnetoliposomes bind to the HER2 antigen which is highly expressed on breast and ovarian cancer cells so reducing the side effects as well as increasing image contrast and effectiveness. Cellular iron uptake analysis and in vitro MRI of HER2 positive cells incubated with targeted nanoparticles show specific cell targeting. In vitro MRI shows even at the lowest density (200 Cells/μl), dark spots corresponding to labeled cells which were still detectable. These results suggest that this new type of nanoparticles could be effective antigen-targeted contrast agents for molecular imaging.
Collapse
Affiliation(s)
- Sepideh Khaleghi
- 1Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. BOX. 14115-331, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- 1Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. BOX. 14115-331, Tehran, Iran
| | - Davoud Ahmadvand
- 2School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Madaah Hosseini
- 3Materials Science and Engineering Department, Sharif University of Technology, Azadi Avenue, P.O. BOX. 11155-9466, Tehran, Iran
| |
Collapse
|
4
|
Zhang L, Liang S, Liu R, Yuan T, Zhang S, Xu Z, Xu H. Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging. Colloids Surf B Biointerfaces 2016; 144:344-354. [PMID: 27110910 DOI: 10.1016/j.colsurfb.2016.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 12/29/2022]
Abstract
Molecular imaging is of significant importance for early detection and diagnosis of cancer. Herein, a novel core-shell magnetic microsphere for dual modal magnetic resonance imaging (MRI) and optical imaging was produced by one-pot emulsifier-free emulsion polymerization, which could provide high resolution rate of histologic structure information and realize high sensitive detection at the same time. The synthesized magnetic microspheres composed of cores containing oleic acid (OA) and sodium undecylenate (NaUA) modified Fe3O4 nanoparticles and styrene (St), Glycidyl methacrylate (GMA), and polymerizable lanthanide complexes (Gd(AA)3Phen and Eu(AA)3Phen) polymerized on the surface for outer shells. Fluorescence spectra show characteristic emission peaks from Eu(3+) at 590nm and 615nm and vivid red fluorescence luminescence can be observed by 2-photon confocal scanning laser microscopy (CLSM). In vitro cytotoxicity tests based on the MTT assay demonstrate good cytocompatibility, the composites have longitudinal relaxivity value (r1) of 8.39mM(-1)s(-1) and also have transverse relaxivity value (r2) of 71.18mM(-1)s(-1) at clinical 3.0 T MR scanner. In vitro and in vivo MRI studies exhibit high signal enhancement on both T1- and T2-weighted MR images. These fascinating multifunctional properties suggest that the polymer microspheres have large clinical potential as multi-modal MRI/optical probes.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China
| | - Shuang Liang
- Department of Radiology at Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruiqing Liu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China
| | - Tianmeng Yuan
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China
| | - Shulai Zhang
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Haibo Xu
- Department of Radiology at Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
5
|
Basoglu H, Bilgin MD, Demir MM. Protoporphyrin IX-loaded magnetoliposomes as a potential drug delivery system for photodynamic therapy: Fabrication, characterization and in vitro study. Photodiagnosis Photodyn Ther 2016; 13:81-90. [PMID: 26751701 DOI: 10.1016/j.pdpdt.2015.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Protoporphyrin IX (PpIX) is a well-known photosensitizer that has great potential for use in photodynamic therapy (PDT). However, aggregation behavior of PpIX in neutral water makes it inappropriate for physiological studies. PpIX-loaded magnetoliposomes (MLs) were fabricated to increase PpIX biocompatibility. PpIX-loaded ML physical properties were characterized, and PpIX-loaded ML drug release behavior was investigated under the influence of an external magnetic field and heat. Toxicity and photodynamic effects of the complex were also examined using in vitro experiments with MCF-7 human breast cancer cells. METHODS The magnetoliposomes were prepared with DPPC, DSPE-PEG2000 lipids and Fe3O4 nanoparticles. The toxicity and in vitro photodynamic effects of the PpIX-loaded MLs at various concentrations were studied using the MCF-7 cell line. RESULTS The produced PpIX-loaded MLs exhibited an average hydrodynamic diameter of 221nm; however, TEM measurements indicated that the diameter of the PpIX-loaded MLs varied between 166 and 720nm. The iron content of the MLs affected cell viability less than the content of the iron free liposomes. Cell viability was reduced to 66% when the concentration of the PpIX-loaded MLs was 350nM, but when white light was applied for 5min, all of the cells that were exposed to concentrations of 250nM and higher PpIX died within 24h. CONCLUSION The results of this study demonstrated the effective application of PpIX-loaded MLs for in vitro photodynamic therapy at nanomolar concentrations. The results also indicated that an LED light source provided sufficient energy to stimulate the PpIX molecules.
Collapse
Affiliation(s)
- Harun Basoglu
- Department of Biophysics, Medical Faculty, Bezmialem Vakif University, Fatih, Istanbul 34093, Turkey.
| | - Mehmet Dincer Bilgin
- Department of Biophysics, Medical Faculty, Adnan Menderes University, Aydin, Turkey.
| | - Mustafa Muammer Demir
- Department of Materials Science and Engineering, Faculty of Engineering, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
6
|
Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine 2015; 10:1727-41. [PMID: 25834422 PMCID: PMC4358688 DOI: 10.2147/ijn.s76501] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation) of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents) are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions), providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor) targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of nanoparticles at the site of interest and the bioavailability, respectively. Here, we review the most important characteristics of the nanoparticles or complexes used as MRI contrast agents.
Collapse
Affiliation(s)
- Joan Estelrich
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain ; Institut de Nanociència I Nanotecnologia (IN UB), Barcelona, Catalonia, Spain
| | - María Jesús Sánchez-Martín
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Maria Antònia Busquets
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain ; Institut de Nanociència I Nanotecnologia (IN UB), Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Chatterjee K, Sarkar S, Jagajjanani Rao K, Paria S. Core/shell nanoparticles in biomedical applications. Adv Colloid Interface Sci 2014; 209:8-39. [PMID: 24491963 DOI: 10.1016/j.cis.2013.12.008] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
Nanoparticles have several exciting applications in different areas and biomedial field is not an exception of that because of their exciting performance in bioimaging, targeted drug and gene delivery, sensors, and so on. It has been found that among several classes of nanoparticles core/shell is most promising for different biomedical applications because of several advantages over simple nanoparticles. This review highlights the development of core/shell nanoparticles-based biomedical research during approximately past two decades. Applications of different types of core/shell nanoparticles are classified in terms of five major aspects such as bioimaging, biosensor, targeted drug delivery, DNA/RNA interaction, and targeted gene delivery.
Collapse
|
8
|
Dai F, Du M, Liu Y, Liu G, Liu Q, Zhang X. Folic acid-conjugated glucose and dextran coated iron oxide nanoparticles as MRI contrast agents for diagnosis and treatment response of rheumatoid arthritis. J Mater Chem B 2014; 2:2240-2247. [PMID: 32261712 DOI: 10.1039/c3tb21732a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coating superparamagnetic iron oxide (SPIO) with dextran increases the stability of the magnetic nanoparticles during blood circulation, yet this is accompanied by an increase in the particle size and the vascular permeability efficiency of the SPIO nanoparticles into the joints decreases. In our study, the thickness of the dextran coated onto SPIO (dex-SPIO) was optimized without affecting the magnetic quality of iron oxide by adding a suitable amount of glucose into the crystal growth process. To further improve the signal enhancement effect of this glucose and dextran coated SPIO (glu-dex-SPIO) for the detection of the inflammatory site of arthritis, folic acid (FA) was conjugated to glu-dex-SPIO. This FA glu-dex-SPIO was used as a negative contrast agent for MRI to visualize the antigen induce arthritis (AIA) model in rats using a 7 T MR scans. MR imaging revealed more significant differences between the synovium and surrounding tissues with FA glu-dex SPIO than when using the non-targeting glu-dex-SPIO over a long period of time (24 h) after intravenous injection. Moreover, the therapeutic efficacy of the cyclooxygenase 2 (COX-2) inhibitor treatment of the inflamed joints also could be confirmed by using FA glu-dex SPIO enhanced MRI, indicating that this type of nanoparticles could also have potential as a contrast agent for measuring the treatment response of rheumatoid arthritis.
Collapse
Affiliation(s)
- Fengying Dai
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, P.R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Szpak A, Fiejdasz S, Prendota W, Strączek T, Kapusta C, Szmyd J, Nowakowska M, Zapotoczny S. T 1-T 2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2014; 16:2678. [PMID: 25328426 PMCID: PMC4193999 DOI: 10.1007/s11051-014-2678-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/26/2014] [Indexed: 05/20/2023]
Abstract
Dual-mode MRI contrast agents consisting of superparamagnetic iron oxide nanoparticle (SPION) cores and gadolinium ions associated with the ionic chitosan protecting layer were synthesized and studied. Gadolinium ions were introduced into the coating layer via direct complex formation on the nanoparticles surface, covalent attachment or electrostatically driven deposition of the preformed Gd complex. The modified SPIONs having hydrodynamic diameters ca. 100 nm form stable, well-defined dispersions in water and have excellent magnetic properties. Physiochemical properties of those new materials were characterized using e.g., FTIR spectroscopy, dynamic light scattering, X-ray fluorescence, TEM, and vibrating sample magnetometry. They behave as superparamagnetics and shorten both T1 and T2 proton relaxation times, thus influencing both r1 and r2 relaxivity values that reach 53.7 and 375.5 mM-1 s-1, respectively, at 15 MHz. The obtained materials can be considered as highly effective contrast agents for low-field MRI, particularly useful at permanent magnet-based scanners.
Collapse
Affiliation(s)
- Agnieszka Szpak
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Sylwia Fiejdasz
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Witold Prendota
- Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Tomasz Strączek
- Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Czesław Kapusta
- Department of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Janusz Szmyd
- Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
10
|
Abstract
INTRODUCTION Drug therapy is frequently limited by the widespread biodistribution of the active agents and the little specificity for non-healthy cells. Therefore, inadequate drug concentrations result into the site of action, and severe toxicity may also arise. To address the problem, liposome-based medicines have tried to improve pharmacotherapy. AREAS COVERED The review provides an updated revision of the lately published patents covering recent advances in liposome-based drug delivery. They are principally related to the control of drug biodistribution by using stealth, stimuli-sensitive and/or liposomal structures surface modified for ligand-mediated delivery. The contribution further highlights liposome-based theranosis. EXPERT OPINION Liposomes have received great attention given their biocompatibility, biodegradability and targetability. From 2007 to present date, patent publications related to their use in drug delivery have shown the move towards more stable structures with optimized drug delivery capabilities, further combining passive and active targeting concepts to gain control of the in vivo fate. However, the introduction of all these liposomal structures in the disease arena is still a challenge. Two key aspects are the difficulty of identifying easy and economic synthesis conditions which can be scaled up in the pharmaceutical industry, and the need for complementary investigations illustrating risks of toxicity/immunogenicity.
Collapse
Affiliation(s)
- José L Arias
- University of Granada, Faculty of Pharmacy, Department of Pharmacy and Pharmaceutical Technology , Campus Universitario de Cartuja s/n, 18071 Granada , Spain +34 958 24 39 02 ; +34 958 24 89 58 ;
| |
Collapse
|
11
|
Zohdiaghdam R, Riyahi-Alam N, Moghimi HR, Haghgoo S, Alinaghi A, Azizian G, Ghanaati H, Gorji E, Rafiei B. Development of a novel lipidic nanoparticle probe using liposomal encapsulated Gd₂O₃-DEG for molecular MRI. J Microencapsul 2013; 30:613-23. [PMID: 23915304 DOI: 10.3109/02652048.2013.770095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, it has been showed that gadolinium oxide nanoparticles can provide high-contrast enhancement in magnetic resonance imaging (MRI). Moreover, liposomes due to high biocompatibility have shown unique model systems, with the most successful application being the drug delivery system. As a suitable cell-tracking contrast agent (CA) in molecular MRI (mMRI), the synthesis and optimisation characteristic of a novel paramagnetic liposomes (PMLs) based on gadolinium nanoparticles, essentially composed of a new complex of gadolinium oxide-diethylene glycol (Gd₂O₃-DEG) loaded in liposomes have been determined in this research. Gd₂O₃-DEG was prepared by a new supervised polyol method and was encapsulated with liposome by the film hydration method. The paramagnetic liposome nanoparticle (PMLN) sizes ranged from 65 to 170 nm. The r₁ of PMLNs and Gd₂O₃-DEG were much higher than that of Gd-diethylenetriamine penta-acetic acid (Gd-DTPA). In MC/9 cell lines, the experiments showed similar results as in water. PMLNs with lower T₁ than Gd-DTPA are sensitive, positive MRI CA that could be attractive candidates for cellular and molecular lipid content targets such as diagnostic applications.
Collapse
Affiliation(s)
- R Zohdiaghdam
- Medical Physics Department, School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Research advancements for magnetically guided drug delivery encompass not only the improvement of the design, synthesis and evaluation of more selective nanomaterials bearing magnetic properties, but also the optimization of the transport and delivery of magnetic agents. Such versatile platforms can be utilized for simultaneously carrying therapeutics and diagnostics.
Collapse
|
13
|
Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012; 112:5818-78. [PMID: 23043508 DOI: 10.1021/cr300068p] [Citation(s) in RCA: 1166] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- L Harivardhan Reddy
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Université Paris-Sud XI, UMR CNRS, Faculté de Pharmacie, IFR, Châtenay-Malabry, France
| | | | | | | |
Collapse
|
14
|
Sen T, Sheppard SJ, Mercer T, Eizadi-sharifabad M, Mahmoudi M, Elhissi A. Simple one-pot fabrication of ultra-stable core-shell superparamagnetic nanoparticles for potential application in drug delivery. RSC Adv 2012. [DOI: 10.1039/c2ra20199b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
De M, Chou SS, Joshi HM, Dravid VP. Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. Adv Drug Deliv Rev 2011; 63:1282-99. [PMID: 21851844 DOI: 10.1016/j.addr.2011.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/29/2011] [Accepted: 07/02/2011] [Indexed: 12/13/2022]
Abstract
The development of MRI contrast agents has experienced its version of the gilded age over the past decade, thanks largely to the rapid advances in nanotechnology. In addition to progress in single mode contrast agents, which ushered in unprecedented R(1) or R(2) sensitivities, there has also been a boon in the development of agents covering more than one mode of detection. These include T(1)-PET, T(2)-PET T(1)-optical, T(2)-optical, T(1)-T(2) agents and many others. In this review, we describe four areas which we feel have experienced particular growth due to nanotechnology, specifically T(2) magnetic nanostructure development, T(1)/T(2)-optical dual mode agents, and most recently the T(1)-T(2) hybrid imaging systems. In each of these systems, we describe applications including in vitro, in vivo usage and assay development. In all, while the benefits and drawbacks of most MRI contrast agents depend on the application at hand, the recent development in multimodal nanohybrids may curtail the shortcomings of single mode agents in diagnostic and clinical settings by synergistically incorporating functionality. It is hoped that as nanotechnology advances over the next decade, it will produce agents with increased diagnostics and assay relevant capabilities in streamlined packages that can meaningfully improve patient care and prognostics. In this review article, we focus on T(2) materials, its surface functionalization and coupling with optical and/or T(1) agents.
Collapse
|
16
|
Fattahi H, Laurent S, Liu F, Arsalani N, Elst LV, Muller RN. Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics. Nanomedicine (Lond) 2011; 6:529-44. [DOI: 10.2217/nnm.11.14] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the emerging field of molecular and cellular imaging, flexible strategies to synthesize multimodal contrast agents with targeting ligands are required. Liposomes have the ability to combine with a large variety of nanomaterials, including superparamagnetic iron oxide nanoparticles, to form magnetoliposomes (MLs). MLs can be used as highly efficient MRI contrast agents. Owing to their high flexibility, MLs can be associated with other imaging modality probes to be used as multimodal contrast agents. By using a thermosensitive lipid bilayer in the ML structure, these biocompatible systems offer many possibilities for targeting and delivering therapeutic agents for ‘theragnostics’, a coincident therapy and diagnosis strategy. This article deals with the fast-growing field of MLs as biomedical diagnostic tools. Different kinds of MLs, their preparation methods, as well as their surface modification with different imaging probes, are discussed. ML applications as multimodal contrast agents and in theragnostics are reviewed. Some important issues for the biomedical uses of magnetic liposomes, such as toxicity, are summarized.
Collapse
Affiliation(s)
- Hassan Fattahi
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium
- Polymer research laboratory, Department of Organic & Biochemistry, Faculty of Chemistry, University of Tabriz, 29 Bahman Blvd, Tabriz, Iran
| | - Sophie Laurent
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium
| | - Fujun Liu
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium
| | - Nasser Arsalani
- Polymer research laboratory, Department of Organic & Biochemistry, Faculty of Chemistry, University of Tabriz, 29 Bahman Blvd, Tabriz, Iran
| | - Luce Vander Elst
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium
| | | |
Collapse
|
17
|
Soenen SJ, Velde GV, Ketkar-Atre A, Himmelreich U, De Cuyper M. Magnetoliposomes as magnetic resonance imaging contrast agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:197-211. [PMID: 25363747 DOI: 10.1002/wnan.122] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Among the wide variety in iron oxide nanoparticles which are routinely used as magnetic resonance imaging (MRI) contrast agents, magnetoliposomes (MLs) take up a special place. In the present work, the two main types (large and small MLs) are defined and their specific features are commented. For both types of MLs, the flexibility of the lipid coating allows for efficient functionalization, enabling bimodal imaging (e.g., MRI and fluorescence) or the use of MLs as theranostics. These features are especially true for large MLs, where several magnetite cores are encapsulated within a single large liposome, which were found to be highly efficient theranostic agents. By carefully fine-tuning the number of magnetite cores and attaching Gd(3+) -complexes onto the liposomal surface, the large MLs can be efficiently optimized for dynamic MRI. A special type of MLs, biogenic MLs, can also be efficiently used in this regard, with potential applications in cancer treatment and imaging. Small MLs, where the lipid bilayer is immediately attached onto a solid magnetite core, give a very high r2 /r1 ratio. The flexibility of the lipid bilayer allows the incorporation of poly(ethylene glycol)-lipid conjugates to increase blood circulation times and be used as bone marrow contrast agents. Cationic lipids can also be incorporated, leading to high cell uptake and associated strong contrast generation in MRI of implanted cells. Unique for these small MLs is the high resistance the particles exhibit against intracellular degradation compared with dextran- or citrate-coated particles. Additionally, intracellular clustering of the iron oxide cores enhances negative contrast generation and enables longer tracking of labeled cells in time.
Collapse
Affiliation(s)
- Stefaan J Soenen
- Lab of BioNanoColloids, KULeuven Campus Kortrijk, IRC Etienne Sabbelaan, Kortrijk, Belgium
| | - Greetje Vande Velde
- Biomedical NMR Unit/MoSAIC, KULeuven Campus Gasthuisberg, University Medical Hospital Gasthuisberg, Leuven, Belgium
| | - Ashwini Ketkar-Atre
- Biomedical NMR Unit/MoSAIC, KULeuven Campus Gasthuisberg, University Medical Hospital Gasthuisberg, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical NMR Unit/MoSAIC, KULeuven Campus Gasthuisberg, University Medical Hospital Gasthuisberg, Leuven, Belgium
| | - Marcel De Cuyper
- Lab of BioNanoColloids, KULeuven Campus Kortrijk, IRC Etienne Sabbelaan, Kortrijk, Belgium
| |
Collapse
|
18
|
Abstract
Magnetoliposomes (MLs) consist of nanosized, magnetisable iron oxide cores (magnetite, Fe(3)O(4)) which are individually enveloped by a bilayer of phospholipid molecules. To generate these structures, the so-called water-compatible magnetic fluid is first synthesized by co-precipitation of Fe(2+) and Fe(3+) salts with ammonia and the resulting cores are subsequently stabilized with lauric acid molecules. Incubation and dialysis of this suspension with an excess of sonicated, small unilamellar vesicles, ultimately, results in phospholipid-Fe(3)O(4) complexes which can be readily captured from the solution by high-gradient magnetophoresis (HGM), reaching very high yields. Examination of the architecture of the phospholipid coat reveals the presence of a typical bilayered phospholipid arrangement. Cationic MLs are then produced by confronting MLs built up of zwitterionic phospholipids with vesicles containing the relevant cationic lipid, followed by fractionation of the mixture in a second HGM separation cycle. Data, published earlier by our group (Soenen et al., ChemBioChem 8:2067-2077, 2007) prove that these constructs are unequivocal biocompatible imaging agents resulting in a highly efficient labeling of biological cells.
Collapse
Affiliation(s)
- Marcel De Cuyper
- Laboratory of BioNanoColloids, Interdisciplinary Research Centre, Katholieke Universiteit Leuven, Kortrijk, Belgium
| | | |
Collapse
|
19
|
Soenen SJH, Hodenius M, De Cuyper M. Magnetoliposomes: versatile innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine (Lond) 2009; 4:177-91. [PMID: 19193184 DOI: 10.2217/17435889.4.2.177] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The high biocompatibility and versatile nature of liposomes have made these particles keystone components in many hot-topic biomedical research areas. Liposomes can be combined with a large variety of nanomaterials, such as superparamagnetic iron oxide nanocores. Because the unique features of both the magnetizable colloid and the versatile lipid bilayer can be joined, the resulting so-called magnetoliposomes can be exploited in a great array of biotechnological and biomedical applications. In this article, we highlight the use of magnetoliposomes in immobilizing enzymes, both water-soluble and hydrophobic ones, as well as their potential in several biomedical applications, including MRI, hyperthermia cancer treatment and drug delivery. The goal of this article is not to list all known uses of magnetoliposomes but rather to present some conspicuous applications in comparison to other currently used nanoparticles.
Collapse
Affiliation(s)
- Stefaan J H Soenen
- Interdisciplinary Research Centre, Laboratory of BioNanoColloids, KU Leuven-Campus Kortrijk, E Sabbelaan 53, B-8500 Kortrijk, Belgium
| | | | | |
Collapse
|
20
|
Soenen SJH, Vercauteren D, Braeckmans K, Noppe W, De Smedt S, De Cuyper M. Stable long-term intracellular labelling with fluorescently tagged cationic magnetoliposomes. Chembiochem 2009; 10:257-67. [PMID: 19072823 DOI: 10.1002/cbic.200800510] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Iron oxide nanocrystals that are dextran coated are widely exploited biomedically for magnetic resonance imaging (MRI), hyperthermia cancer treatment and drug or gene delivery. In this study, the use of an alternative coating consisting of a phospholipid bilayer directly attached to the magnetite core is described. The flexible nature of the magnetoliposome (ML) coat, together with the simple production procedure, allows rapid and easy modification of the coating, offering many exciting possibilities for the use of these particles in biomedical applications. Upon incubation of neutral MLs with an equimolar amount of cationic 1,2-distearoyl-3-trimethylammoniumpropane (DSTAP)-bearing vesicles, approximately one third of the cationic lipids are incorporated into the ML coat. This is in line with a theoretical model predicting transferability of only the outer leaflet phospholipids of bilayer structures. Most interestingly, the use of MLs containing 3.33 % DSTAP with a positive zeta-potential of (31.3+/-7.3) mV (mean +/-SD) at neutral pH, results in very heavy labelling of a variety of biological cells (up to (70.39+/-4.52) pg of Fe per cell, depending on the cell type) without cytotoxic effects. The results suggest the general applicability of these bionanocolloids for cell labelling. Mechanistically, the nanoparticles are primarily taken up by clathrin-mediated endocytosis and follow the endosomal pathway. The fate of the ML coat after internalisation has been studied with different fluorescent lipid conjugates, which because of the unique features of the ML coat can be differentially incorporated in either the inner or the outer layer of the ML bilayer. It is shown that, ultimately, iron oxide cores surrounded by an intact lipid bilayer appear in endosomal structures. Once internalised, MLs are not actively exocytosed and remain within the cell. The lack of exocytosis and the very high initial loading of the cells by MLs result in a highly persistent label, which can be detected, even in highly proliferative 3T3 fibroblasts, for up to at least one month (equivalent to approximately 30 cell doublings), which by far exceeds any values reported in the literature.
Collapse
Affiliation(s)
- Stefaan J H Soenen
- Subfaculty of Medicine, Katholieke Universiteit Leuven, Interdisciplinary Research Centre, KUL-Campus Kortrijk, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Herranz F, Morales MP, Roca AG, Vilar R, Ruiz-Cabello J. A new method for the aqueous functionalization of superparamagnetic Fe2O3 nanoparticles. CONTRAST MEDIA & MOLECULAR IMAGING 2009; 3:215-22. [PMID: 19072767 DOI: 10.1002/cmmi.254] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new methodology for the synthesis of hydrophilic iron oxide nanoparticles has been developed. This new method is based on the direct chemical modification of the nanoparticles' surfactant molecules. Using this methodology both USPIO (ultrasmall super paramagnetic iron oxide) (hydrodynamic size smaller than 50 nm) and SPIO (super paramagnetic iron oxide) (hydrodynamic size bigger than 50 nm) were obtained. In addition, we also show that it is possible to further functionalize the hydrophilic nanoparticles via covalent chemistry in water. The magnetic properties of these nanoparticles were also studied, showing their potential as MRI contrast agents.
Collapse
Affiliation(s)
- Fernando Herranz
- Instituto de Estudios Biofuncionales, Universidad Complutense, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Paseo Juan XXIII no. 1, Madrid, Spain
| | | | | | | | | |
Collapse
|