1
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Naidu KT, Prabhu NP. Polyols, increasing global stability of cytochrome c, destabilize the thermal unfolding intermediate. J Biomol Struct Dyn 2022; 40:11216-11228. [PMID: 34308796 DOI: 10.1080/07391102.2021.1956593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Studies on the intermediate states of proteins provide essential information on folding pathway and energy landscape of proteins. Osmolytes, known to alter the stability of proteins, might also affect the structure and energy states of folding intermediates. This was examined using cytochrome c (Cyt) as a model protein which forms a spectroscopically detectable intermediate during thermal denaturation transition. Most of the secondary structure and the native heme-ligation were intact in the intermediate state of the protein. Denaturants, urea and guanidinium hydrochloride, and ionic salt destabilizes the intermediate and drive the protein to follow two-state transition. The effect of polyol class of osmolytes, glycol, glycerol, erythritol, xylitol and sorbitol (with OH-groups two to six), on the intermediate was studied using Soret absorbance and far-UV circular dichroism. With the increasing concentration of any of the polyols, the transition-midpoint temperature (Tm) and the enthalpy change (ΔH) for native to intermediate transition were decreased. This indicated that the intermediate was destabilized by the polyols. However, the polyols increased the overall stability of the protein by increasing Tm and ΔH for intermediate to unfolded transition, except for glycol which destabilized the protein. These results show that the polyols could alter the energy state of the intermediate, and the effect of lower and higher polyols might be different on the stability and folding pathway of the protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K Tejaswi Naidu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Yeast-based directed-evolution for high-throughput structural stabilization of G protein-coupled receptors (GPCRs). Sci Rep 2022; 12:8657. [PMID: 35606532 PMCID: PMC9126886 DOI: 10.1038/s41598-022-12731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
The immense potential of G protein-coupled receptors (GPCRs) as targets for drug discovery is not fully realized due to the enormous difficulties associated with structure elucidation of these profoundly unstable membrane proteins. The existing methods of GPCR stability-engineering are cumbersome and low-throughput; in addition, the scope of GPCRs that could benefit from these techniques is limited. Here, we present a yeast-based screening platform for a single-step isolation of GRCR variants stable in the presence of short-chain detergents, a feature essential for their successful crystallization using vapor diffusion method. The yeast detergent-resistant cell wall presents a unique opportunity for compartmentalization, to physically link the receptor's phenotype to its encoding DNA, and thus enable discovery of stable GPCR variants with unprecedent efficiency. The scope of mutations identified by the method reveals a surprising amenability of the GPCR scaffold to stabilization, and suggests an intriguing possibility of amending the stability properties of GPCR by varying the structural status of the C-terminus.
Collapse
|
4
|
Mollahosseini A, Abdelrasoul A. Novel Insights in Hemodialysis: Most Recent Theories on the Membrane Hemocompatibility Improvement. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
5
|
Fatma I, Sharma V, Thakur RC, Kumar A. Current trends in protein-surfactant interactions: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Jin R, Grasso M, Zhou M, Marmorstein R, Baumgart T. Unfolding Mechanisms and Conformational Stability of the Dimeric Endophilin N-BAR Domain. ACS OMEGA 2021; 6:20790-20803. [PMID: 34423187 PMCID: PMC8374900 DOI: 10.1021/acsomega.1c01905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Endophilin, which is a member of the Bin-amphiphysin-Rvs (BAR) domain protein superfamily, contains a homodimeric N-BAR domain of a characteristic crescent shape. The N-BAR domain comprises a six-helix bundle and is known to sense and generate membrane curvature. Here, we characterize aspects of the unfolding mechanism of the endophilin A1 N-BAR domain during thermal denaturation and examine factors that influence the thermal stability of this domain. Far-UV circular dichroism (CD) spectroscopy was applied to monitor changes in the secondary structure above room temperature. The protein's conformational changes were further characterized through Foerster resonance energy transfer and cross-linking experiments at varying temperatures. Our results indicate that thermal unfolding of the endophilin N-BAR is (minimally) a two-step process, with a dimeric intermediate that displays partial helicity loss. Furthermore, a thermal shift assay and temperature-dependent CD were applied to compare the unfolding processes of several truncated versions of endophilin. The melting temperature of the N-BAR domain decreased when we deleted either the N-terminal H0 helix or the unstructured linker of endophilin. This result suggests that these intrinsically disordered domains may play a role in structurally stabilizing the functional N-BAR domain in vivo. Finally, we show that single-site mutations can also compromise endophilin's thermal stability.
Collapse
Affiliation(s)
- Rui Jin
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael Grasso
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mingyang Zhou
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson
Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ronen Marmorstein
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson
Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tobias Baumgart
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Srivastava R, Alam MS. Effect of pH and surfactant on the protein: A perspective from theory and experiments. Int J Biol Macromol 2018; 107:1519-1527. [DOI: 10.1016/j.ijbiomac.2017.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 11/16/2022]
|
8
|
Moggridge J, Biggar K, Dawson N, Storey KB. Sensitive Detection of Immunoglobulin G Stability Using in Real-Time Isothermal Differential Scanning Fluorimetry: Determinants of Protein Stability for Antibody-Based Therapeutics. Technol Cancer Res Treat 2017; 16:997-1005. [PMID: 28602127 PMCID: PMC5762059 DOI: 10.1177/1533034617714149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Protein instability is a major obstacle in the production and delivery of monoclonal antibody-based therapies for cancer. This study presents real-time isothermal differential scanning fluorimetry as an emerging method to evaluate the stability of human immunoglobulin G protein with high sensitivity. The stability of polyclonal human immunoglobulin G against urea-induced denaturation was assessed following: (1) oxidation by the free-radical generator 2,2-Azobis[2-amidinopropane]dihydrochloride and (2) in selected storage buffers. Significant differences in immunoglobulin G stability were detected by real-time isothermal differential scanning fluorimetry when the immunoglobulin G was stored in 1,4-Piperazinediethanesulfonic acid buffer compared to phosphate-buffered saline, with half-maximal rate of denaturation occurring at a higher urea concentration in 1,4-Piperazinediethanesulfonic acid than phosphate-buffered saline (Knd;PIPES = 3.56 ± 0.09 M, Knd;PBS = 2.94 ± 0.08 M; P < .01), but differential scanning fluorimetry did not detect differences in unfolding temperature (Tm;PIPES = 70.5 ± 0.3°C, Tm;PBS = 69.7 ± 0.2°C). The effects of 2,2-Azobis[2-amidinopropane]dihydrochloride-induced oxidation on immunoglobulin G stability were analyzed by real-time isothermal differential scanning fluorimetry; the oxidized protein showed greater sensitivity to urea (Knd;CNTRL = 3.96 ± 0.19 M, Knd;AAPH = 3.49 ± 0.07 M; P < .05). Similarly, differential scanning fluorimetry indicated greater thermal sensitivity of oxidized immunoglobulin G (Tm;CNTRL = 70.5 ± 0.3°C, Tm;AAPH = 62.9 ± 0.1°C; P < .001). However, a third method for assessing protein stability, pulse proteolysis, proved to be substantially less sensitive and did not detect significant effects of 2,2-Azobis[2-amidinopropane]dihydrochloride on the half-maximal concentration of urea needed to denature immunoglobulin G (Cm;CNTRL= 6.8 ± 0.1 M; Cm;AAPH = 6.4 ± 0.7 M). Overall these results demonstrate the merit of using real-time isothermal differential scanning fluorimetry as a rapid and sensitive technique for the evaluation of protein stability in solution using a quantitative real-time thermocycler.
Collapse
Affiliation(s)
- Jason Moggridge
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Neal Dawson
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Rastegari AA, Buzari B, Bordbar AK. Thermal stability of pepsin: A predictive thermodynamic model of a multi-domain protein. Biochem Biophys Rep 2017; 9:295-301. [PMID: 28956016 PMCID: PMC5614592 DOI: 10.1016/j.bbrep.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/18/2016] [Accepted: 01/17/2017] [Indexed: 10/28/2022] Open
Abstract
Pepsin is generally used in the preparation of F(ab)2 fragments from antibodies. The antibodies that are one of the largest and fastest growing categories of bio- pharmaceutical candidates. Differential scanning calorimetric is principally suitable method to follow the energetics of a multi-domain, fragment to perform a more exhaustive description of the thermodynamics in an associating system. The thermodynamical models of analysis include the construction of a simultaneous fitting of a theoretical expression. The expression depending on the equilibrium unfolding data from multimeric proteins that have a two-state monomer. The aim of the present study is considering the DSC data in connection with pepsin going through reversible thermal denaturation. Afterwards, we calculate the homology modeling identification of pepsin in complex multi-domain families with varied domain architectures. In order to analyze the DSC data, the thermal denaturation of multimer proteins were considered, the "two independent two-state sequential transitions with domains dissociation model" was introduced by using of the effective ΔG concept. The reversible unfolding of the protein description was followed by the two-state transition quantities which is a slower irreversible process of aggregation. The protein unfolding is best described by two non-ideal transitions, suggesting the presence of unfolding intermediates. These evaluations are also applicable for high throughput investigation of protein stability.
Collapse
Affiliation(s)
- Ali Asghar Rastegari
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan 84517-31167, Iran
| | - Behnaz Buzari
- Laboratory of Biophysical Chemistry, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Abdol-Khalegh Bordbar
- Laboratory of Biophysical Chemistry, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
10
|
Halim AAA, Zaroog MS, Kadir HA, Tayyab S. Alcohol-induced structural transitions in the acid-denatured Bacillus licheniformis α-amylase. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2014.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Porter JL, Collyer CA, Ollis DL. Compensatory Stabilizing Role of Surface Mutations During the Directed Evolution of Dienelactone Hydrolase for Enhanced Activity. Protein J 2015; 34:82-9. [DOI: 10.1007/s10930-015-9600-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Spectral studies on the conformational transitions of bovine insulin during denaturant-induced unfolding. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-3372-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Chang RL, Andrews K, Kim D, Li Z, Godzik A, Palsson BO. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. Science 2013; 340:1220-3. [PMID: 23744946 DOI: 10.1126/science.1234012] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genome-scale network reconstruction has enabled predictive modeling of metabolism for many systems. Traditionally, protein structural information has not been represented in such reconstructions. Expansion of a genome-scale model of Escherichia coli metabolism by including experimental and predicted protein structures enabled the analysis of protein thermostability in a network context. This analysis allowed the prediction of protein activities that limit network function at superoptimal temperatures and mechanistic interpretations of mutations found in strains adapted to heat. Predicted growth-limiting factors for thermotolerance were validated through nutrient supplementation experiments and defined metabolic sensitivities to heat stress, providing evidence that metabolic enzyme thermostability is rate-limiting at superoptimal temperatures. Inclusion of structural information expanded the content and predictive capability of genome-scale metabolic networks that enable structural systems biology of metabolism.
Collapse
Affiliation(s)
- Roger L Chang
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093-0412, USA
| | | | | | | | | | | |
Collapse
|
14
|
Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, Almey JJ, Meiering EM. Energetics of oligomeric protein folding and association. Arch Biochem Biophys 2012; 531:44-64. [PMID: 23246784 DOI: 10.1016/j.abb.2012.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
In nature, proteins most often exist as complexes, with many of these consisting of identical subunits. Understanding of the energetics governing the folding and misfolding of such homooligomeric proteins is central to understanding their function and misfunction, in disease or biotechnology. Much progress has been made in defining the mechanisms and thermodynamics of homooligomeric protein folding. In this review, we outline models as well as calorimetric and spectroscopic methods for characterizing oligomer folding, and describe extensive results obtained for diverse proteins, ranging from dimers to octamers and higher order aggregates. To our knowledge, this area has not been reviewed comprehensively in years, and the collective progress is impressive. The results provide evolutionary insights into the development of subunit interfaces, mechanisms of oligomer folding, and contributions of oligomerization to protein stability, function and regulation. Thermodynamic analyses have also proven valuable for understanding protein misfolding and aggregation mechanisms, suggesting new therapeutic avenues. Successful recent designs of novel, functional proteins demonstrate increased understanding of oligomer folding. Further rigorous analyses using multiple experimental and computational approaches are still required, however, to achieve consistent and accurate prediction of oligomer folding energetics. Modeling the energetics remains challenging but is a promising avenue for future advances.
Collapse
Affiliation(s)
- Colleen M Doyle
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, and Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Stabilizing effect of saccharides on bovine plasma protein: A calorimetric study. Meat Sci 2012; 91:478-85. [DOI: 10.1016/j.meatsci.2012.02.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 12/23/2011] [Accepted: 02/27/2012] [Indexed: 11/22/2022]
|
16
|
Chou DK, Krishnamurthy R, Manning MC, Randolph TW, Carpenter JF. Physical Stability of Albinterferon-α2b in Aqueous Solution: Effects of Conformational Stability and Colloidal Stability on Aggregation. J Pharm Sci 2012; 101:2702-19. [DOI: 10.1002/jps.23215] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 03/28/2012] [Accepted: 05/08/2012] [Indexed: 11/12/2022]
|
17
|
Goli KK, Rojas OJ, Özçam AE, Genzer J. Generation of Functional Coatings on Hydrophobic Surfaces through Deposition of Denatured Proteins Followed by Grafting from Polymerization. Biomacromolecules 2012; 13:1371-82. [DOI: 10.1021/bm300075u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kiran K. Goli
- Department of Materials
Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907,
United States
| | - Orlando J. Rojas
- Department of Forest
Biomaterials, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
- Department of Forest
Products Technology, Aalto University, FI-00076 Aalto, Espoo, Finland
| | - A. Evren Özçam
- Department of Chemical
and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905,
United States
| | - Jan Genzer
- Department of Chemical
and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905,
United States
| |
Collapse
|
18
|
Carvalho FAO, Santiago PS, Tabak M. On the stability of the extracellular hemoglobin of Glossoscolex paulistus, in two iron oxidation states, in the presence of urea. Arch Biochem Biophys 2012; 519:46-58. [DOI: 10.1016/j.abb.2012.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/04/2012] [Accepted: 01/10/2012] [Indexed: 01/04/2023]
|
19
|
Wang Q, Christiansen A, Samiotakis A, Wittung-Stafshede P, Cheung MS. Comparison of chemical and thermal protein denaturation by combination of computational and experimental approaches. II. J Chem Phys 2012; 135:175102. [PMID: 22070324 DOI: 10.1063/1.3656692] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chemical and thermal denaturation methods have been widely used to investigate folding processes of proteins in vitro. However, a molecular understanding of the relationship between these two perturbation methods is lacking. Here, we combined computational and experimental approaches to investigate denaturing effects on three structurally different proteins. We derived a linear relationship between thermal denaturation at temperature T(b) and chemical denaturation at another temperature T(u) using the stability change of a protein (ΔG). For this, we related the dependence of ΔG on temperature, in the Gibbs-Helmholtz equation, to that of ΔG on urea concentration in the linear extrapolation method, assuming that there is a temperature pair from the urea (T(u)) and the aqueous (T(b)) ensembles that produces the same protein structures. We tested this relationship on apoazurin, cytochrome c, and apoflavodoxin using coarse-grained molecular simulations. We found a linear correlation between the temperature for a particular structural ensemble in the absence of urea, T(b), and the temperature of the same structural ensemble at a specific urea concentration, T(u). The in silico results agreed with in vitro far-UV circular dichroism data on apoazurin and cytochrome c. We conclude that chemical and thermal unfolding processes correlate in terms of thermodynamics and structural ensembles at most conditions; however, deviations were found at high concentrations of denaturant.
Collapse
Affiliation(s)
- Qian Wang
- Department of Physics, University of Houston, Houston, Texas 77204-5005, USA
| | | | | | | | | |
Collapse
|
20
|
Chitosan–bovine serum albumin complex formation: A model to design an enzyme isolation method by polyelectrolyte precipitation. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:1543-8. [DOI: 10.1016/j.jchromb.2010.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 04/06/2010] [Accepted: 04/11/2010] [Indexed: 11/19/2022]
|
21
|
Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res 2010; 27:544-75. [PMID: 20143256 DOI: 10.1007/s11095-009-0045-6] [Citation(s) in RCA: 777] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/27/2009] [Indexed: 12/16/2022]
Abstract
In 1989, Manning, Patel, and Borchardt wrote a review of protein stability (Manning et al., Pharm. Res. 6:903-918, 1989), which has been widely referenced ever since. At the time, recombinant protein therapy was still in its infancy. This review summarizes the advances that have been made since then regarding protein stabilization and formulation. In addition to a discussion of the current understanding of chemical and physical instability, sections are included on stabilization in aqueous solution and the dried state, the use of chemical modification and mutagenesis to improve stability, and the interrelationship between chemical and physical instability.
Collapse
|
22
|
How Flexible Polymers Interact with Proteins and Its Relationship with the Protein Separation Method by Protein–Polymer Complex Formation. Protein J 2009; 28:233-9. [DOI: 10.1007/s10930-009-9188-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Boeris V, Romanini D, Farruggia B, Picó G. Interaction and complex formation between catalase and cationic polyelectrolytes: chitosan and Eudragit E100. Int J Biol Macromol 2009; 45:103-8. [PMID: 19397924 DOI: 10.1016/j.ijbiomac.2009.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 04/16/2009] [Accepted: 04/18/2009] [Indexed: 11/30/2022]
Abstract
Interactions between catalase and the cationic polyelectrolytes: chitosan and Eudragit E100 have been investigated owing to their scientific and technological importance. These interactions have been characterized by turbidimetry, circular dichroism and fluorescence spectroscopy. It was found that the catalase conformation does not change significantly during the chain entanglements between the protein and the polyelectrolytes. The effects of pH, ionic strength and anions which modify the water structure were evaluated on the polymer-protein complex formation. A net coulombic interaction force between them was found since the insoluble complex formation decreased after the NaCl addition. Both polymers were found to precipitate around 80% of the protein in solution. No modification of the tertiary and secondary protein structure or the enzymatic activity was observed when the precipitate was dissolved by changing the pH of the medium. Chitosan and Eudragit E100 proved to be a useful framework to isolate catalase or proteins with a slightly acid isoelectrical pH by means of precipitation.
Collapse
Affiliation(s)
- Valeria Boeris
- Bioseparation Lab. Chemical-Physics Department, Faculty of Biochemical and Pharmaceutical Sciences, CONICET, FonCyT and CIUNR, National University of Rosario, Suipacha 570 (S2002RLK) Rosario, Argentina
| | | | | | | |
Collapse
|
24
|
Boehm K, Guddorf J, Albers A, Kamiyama T, Fetzner S, Hinz HJ. Thermodynamic analysis of denaturant-induced unfolding of HodC69S protein supports a three-state mechanism. Biochemistry 2008; 47:7116-26. [PMID: 18549245 DOI: 10.1021/bi800554v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermodynamic stability parameters and the equilibrium unfolding mechanism of His 6HodC69S, a mutant of 1 H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod) having a Cys to Ser exchange at position 69 and an N-terminal hexahistidine tag (His 6HodC69S), have been derived from isothermal unfolding studies using guanidine hydrochloride (GdnHCl) or urea as denaturants. The conformational changes were monitored by following changes in circular dichroism (CD), fluorescence, and dynamic light scattering (DLS), and the resulting transition curves were analyzed on the basis of a sequential three-state model N = I = D. The structural changes have been correlated to catalytic activity, and the contribution to stability of the disulfide bond between residues C37 and C184 in the native protein has been established. A prominent result of the present study is the finding that, independent of the method used for denaturing the protein, the unfolding mechanism always comprises three states which can be characterized by, within error limits, identical sets of thermodynamic parameters. Apparent deviations from three-state unfolding can be rationalized by the inability of a spectroscopic probe to discriminate clearly between native, intermediate, and unfolded ensembles. This was the case for the CD-monitored urea unfolding curve.
Collapse
Affiliation(s)
- Kristian Boehm
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|