1
|
Khaled G, Benvegnu T, Amin K, Tranchimand S, Chamieh H. Glycosyltransferase enzymatic assays: Overview and comparative analysis. Anal Biochem 2025; 702:115826. [PMID: 40049438 DOI: 10.1016/j.ab.2025.115826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/01/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze the transfer of an activated sugar donor to a variety of acceptors including proteins, lipids, carbohydrates, and other small molecules. GTs participate in numerous cellular and physiological processes in both prokaryotic and eukaryotic cells. Those include prokaryotic cell wall biogenesis, eukaryotic post-translational protein modifications, extracellular matrix synthesis, cell signaling, biofilm formation and many others. As such, GTs are exploited as molecular therapeutical targets but also as synthetic tools for the development of polysaccharides and glycoconjugates. In vitro study of GTs activities is now essential to characterize the growing number of predicted GTs, available from sequenced genomes, in order to determine their specificities, their modes of action and their roles in vivo. However, characterization of glycosyltransferases in vitro, both on cellular extracts and on purified enzymes, faces significant challenges. Many methods are currently employed i. e. radiochemical techniques, spectrometric measurements, generally after coupling with∗ other reactions, and even more sophisticated strategies involving product separations by chromatography or/and electrophoresis, followed by detailed structural analysis by NMR or mass spectrometry. Here we overview the common methods deployed for the characterization of GTs. We highlight the challenges arising from these enzymes. The advantages and limitations of each of the presented techniques are also discussed.
Collapse
Affiliation(s)
- Ghazal Khaled
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France; Lebanese University, EDST, Azm Center for Research in Biotechnology and Its Applications, LBA3B, Tripoli, Lebanon
| | - Thierry Benvegnu
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Khadija Amin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France; Lebanese University, EDST, Azm Center for Research in Biotechnology and Its Applications, LBA3B, Tripoli, Lebanon
| | - Sylvain Tranchimand
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France.
| | - Hala Chamieh
- Lebanese University, EDST, Azm Center for Research in Biotechnology and Its Applications, LBA3B, Tripoli, Lebanon; Lebanese University, Faculty of Science, Rafic Hariri Campus, Hadat, Lebanon.
| |
Collapse
|
2
|
Srivastava P, Ghosh S. Insights into functional divergence, catalytic versatility and specificity of small molecule glycosyltransferases. Int J Biol Macromol 2025; 292:138821. [PMID: 39708858 DOI: 10.1016/j.ijbiomac.2024.138821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Glycosylation is one of the most fundamental biochemical processes in cells. It plays crucial roles in diversifying plant natural products for structures, bioavailability and bioactivity, and thus, renders the glycosylated compounds valuable as food additives, nutraceuticals and pharmaceuticals. Moreover, glycosylated compounds impact plant growth, development and stress response. Therefore, understanding the biochemical function of the glycosyltransferases (GTs) is crucial to the elucidation of natural product biosynthetic pathways, improving plant traits and development of processes for industrially-important compounds. UDP-dependent glycosyltransferases (UGTs) that belong to the glycosyltransferase family-1 (GT1) and catalyze the transfer of glycosyl moieties from UDP-sugars to various small molecules, are the key players in natural product glycosylation. Recent studies also found the involvement of non-canonical cellulose synthase-like (CesAs) and glycosyl hydrolase (GH) family enzymes in the glycosylation of plant specialized metabolites. Decades of research on GTs provided critical insights into catalytic mechanism, substrate/product specificity and catalytic promiscuity, but biochemical function and physiological roles of GTs in majority of the natural product biosynthetic pathways remain to be understood. It is also important to redefine high-throughput strategies of GT mining to uncover novel biochemical function, considering that GTs are the large superfamily members in plants and other organisms. This review underscores the roles of GTs in small molecule glycosylation, plant development and stress responses, highlighting the catalytic versatility and substrate/product specificity of GTs in shaping plant metabolic diversity, and discusses the emerging strategies for mining of uncharacterized GTs to unravel biochemical and physiological functions and to elucidate natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Payal Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India; Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA(1)
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Liu H, Borg AJE, Nidetzky B. Expanding the high-pH range of the sucrose synthase reaction by enzyme immobilization. J Biotechnol 2024; 396:150-157. [PMID: 39522733 DOI: 10.1016/j.jbiotec.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The glycosylation of an alcohol group from a sugar nucleotide substrate involves proton release, so the reaction is favored thermodynamically at high pH. Here, we explored expansion of the alkaline pH range of sucrose synthase (SuSy; EC 2.4.1.13) to facilitate enzymatic glycosylation from uridine 5'-diphosphate (UDP)-glucose. The apparent equilibrium constant of the SuSy reaction (UDP-glucose + fructose ↔ sucrose + UDP) at 30 °C increases by ∼4 orders of magnitude as the pH is raised from 5.5 to 9.0. However, the SuSy in solution loses ≥80 % of its maximum productivity at pH ∼7 when alkaline reaction conditions (pH 9.0) are used. We therefore immobilized the SuSy on nanocellulose-based biocomposite carriers (∼48 U/g carrier; ≥ 50 % effectiveness) and reveal in the carrier-bound enzyme a substantial broadening of the pH-productivity profile to high pH, with up to 80 % of maximum capacity retained at pH 9.5. Using reaction by the immobilized SuSy with automated pH control at pH ∼9.0, we demonstrate near-complete conversion (≥ 96 %) of UDP-glucose and fructose (each 100 mM) into sucrose, as expected from the equilibrium constant (Keq = ∼7 × 102) under these conditions. Collectively, our results support the idea of glycosyltransferase-catalyzed synthetic glycosylation from sugar nucleotide donor driven by high pH; and they showcase a marked adaptation to high pH of the operational activity of the soybean SuSy by immobilization.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Annika J E Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), Graz, Austria.
| |
Collapse
|
4
|
Lethe MCL, Bui D, Hu M, Wang X, Singh R, Chan CTY. Discovering New Substrates of a UDP-Glycosyltransferase with a High-Throughput Method. Int J Mol Sci 2024; 25:2725. [PMID: 38473971 PMCID: PMC10931590 DOI: 10.3390/ijms25052725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
UDP-glycosyltransferases (UGTs) form a large enzyme family that is found in a wide range of organisms. These enzymes are known for accepting a wide variety of substrates, and they derivatize xenobiotics and metabolites for detoxification. However, most UGT homologs have not been well characterized, and their potential for biomedical and environmental applications is underexplored. In this work, we have used a fluorescent assay for screening substrates of a plant UGT homolog by monitoring the formation of UDP. We optimized the assay such that it could be used for high-throughput screening of substrates of the Medicago truncatula UGT enzyme, UGT71G1, and our results show that 34 of the 159 screened compound samples are potential substrates. With an LC-MS/MS method, we confirmed that three of these candidates indeed were glycosylated by UGT71G1, which includes bisphenol A (BPA) and 7-Ethyl-10-hydroxycamptothecin (SN-38); derivatization of these toxic compounds can lead to new environmental and medical applications. This work suggests that UGT homologs may recognize a substrate profile that is much broader than previously anticipated. Additionally, it demonstrates that this screening method provides a new means to study UDP-glycosyltransferases, facilitating the use of these enzymes to tackle a wide range of problems.
Collapse
Affiliation(s)
- Mary C. L. Lethe
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA;
| | - Dinh Bui
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; (D.B.); (M.H.); (R.S.)
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; (D.B.); (M.H.); (R.S.)
| | - Xiaoqiang Wang
- Department of Biological Sciences, College of Science, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA;
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 4349 Martin Luther King Boulevard, Houston, TX 77204, USA; (D.B.); (M.H.); (R.S.)
- Sanarentero LLC, 514 N. Elder Grove Drive, Pearland, TX 77584, USA
| | - Clement T. Y. Chan
- Department of Biomedical Engineering, College of Engineering, University of North Texas, 3940 N Elm Street, Denton, TX 76207, USA;
- BioDiscovery Institute, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| |
Collapse
|
5
|
Wang M, Ji Q, Lai B, Liu Y, Mei K. Structure-function and engineering of plant UDP-glycosyltransferase. Comput Struct Biotechnol J 2023; 21:5358-5371. [PMID: 37965058 PMCID: PMC10641439 DOI: 10.1016/j.csbj.2023.10.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Natural products synthesized by plants have substantial industrial and medicinal values and are therefore attracting increasing interest in various related industries. Among the key enzyme families involved in the biosynthesis of natural products, uridine diphosphate-dependent glycosyltransferases (UGTs) play a crucial role in plants. In recent years, significant efforts have been made to elucidate the catalytic mechanisms and substrate recognition of plant UGTs and to improve them for desired functions. In this review, we presented a comprehensive overview of all currently published structures of plant UGTs, along with in-depth analyses of the corresponding catalytic and substrate recognition mechanisms. In addition, we summarized and evaluated the protein engineering strategies applied to improve the catalytic activities of plant UGTs, with a particular focus on high-throughput screening methods. The primary objective of this review is to provide readers with a comprehensive understanding of plant UGTs and to serve as a valuable reference for the latest techniques used to improve their activities.
Collapse
Affiliation(s)
- Mengya Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Qiushuang Ji
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Bin Lai
- BMBF junior research group Biophotovoltaics, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Yirong Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Kunrong Mei
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Zhao L, Xu Y, Chen M, Wu L, Li M, Lu Y, Lu M, Chen Y, Wu X. Design of a chimeric glycosyltransferase OleD for the site-specific O-monoglycosylation of 3-hydroxypyridine in nosiheptide. Microb Biotechnol 2023; 16:1971-1984. [PMID: 37606280 PMCID: PMC10527214 DOI: 10.1111/1751-7915.14332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
To identify the potential role of the 3-hydroxyl group of the pyridine ring in nosiheptide (NOS) for its antibacterial activity against Gram-positive pathogens, enzymatic glycosylation was utilized to regio-selectively create a monoglycosyl NOS derivative, NOS-G. For this purpose, we selected OleD, a UDP glycosyltransferase from Streptomyces antibioticus that has a low productivity for NOS-G. Activity of the enzyme was increased by swapping domains derived from OleI, both single and in combination. Activity enhancement was best in mutant OleD-10 that contained four OleI domains. This chimer was engineered by site-directed mutagenesis (single and in combination) to increase its activity further, whereby variants were screened using a newly-established colorimetric assay. OleD-10 with I117F and T118G substitutions (FG) had an increased NOS-G productivity of 56%, approximately 70 times higher than that of wild-type OleD. The reason for improved activity of FG towards NOS was structurally attributed to a closer distance (<3 Å) between NOS/sugar donor and the catalytic amino acid H25. The engineered enzyme allowed sufficient activity to demonstrate that the produced NOS-G had enhanced stability and aqueous solubility compared to NOS. Using a murine MRSA infection model, it was established that NOS-G resulted in partial protection within 20 h of administration and delayed the death of infected mice. We conclude that 3-hydroxypyridine is a promising site for structural modification of NOS, which may pave the way for producing nosiheptide derivatives as a potential antibiotic for application in clinical treatment.
Collapse
Affiliation(s)
- Ling Zhao
- Laboratory of Chemical BiologyCollege of Life Sciences and Technology, China Pharmaceutical UniversityNanjingJiangsu ProvincePR China
| | - Yuncong Xu
- Department of BiochemistryCollege of Life Sciences and Technology, China Pharmaceutical UniversityNanjingJiangsu ProvincePR China
| | - Manting Chen
- Department of BiochemistryCollege of Life Sciences and Technology, China Pharmaceutical UniversityNanjingJiangsu ProvincePR China
| | - Lingrui Wu
- Department of BiochemistryCollege of Life Sciences and Technology, China Pharmaceutical UniversityNanjingJiangsu ProvincePR China
| | - Meng Li
- Laboratory of Chemical BiologyCollege of Life Sciences and Technology, China Pharmaceutical UniversityNanjingJiangsu ProvincePR China
| | - Yuanyuan Lu
- Department of Marine PharmacyCollege of Life Sciences and Technology, China Pharmaceutical UniversityNanjingJiangsu ProvincePR China
| | - Meiling Lu
- Department of BiochemistryCollege of Life Sciences and Technology, China Pharmaceutical UniversityNanjingJiangsu ProvincePR China
| | - Yijun Chen
- Laboratory of Chemical BiologyCollege of Life Sciences and Technology, China Pharmaceutical UniversityNanjingJiangsu ProvincePR China
| | - Xuri Wu
- Department of BiochemistryCollege of Life Sciences and Technology, China Pharmaceutical UniversityNanjingJiangsu ProvincePR China
| |
Collapse
|
7
|
Cui T, Man Y, Wang F, Bi S, Lin L, Xie R. Glycoenzyme Tool Development: Principles, Screening Methods, and Recent Advances
†. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing, Jiagsu 210023 China
| | - Yi Man
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing, Jiagsu 210023 China
| | - Feifei Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing, Jiagsu 210023 China
| | - Shuyang Bi
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry Shanghai 200032 China
| | - Liang Lin
- State Key Laboratory of Bio‐organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry Shanghai 200032 China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing, Jiagsu 210023 China
| |
Collapse
|
8
|
Directed Evolution of Glycosyltransferases by a Single-Cell Ultrahigh-Throughput FACS-Based Screening Method. Methods Mol Biol 2022; 2461:211-224. [PMID: 35727453 DOI: 10.1007/978-1-0716-2152-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Engineering of glycosyltransferases (GTs) with desired substrate specificity for the synthesis of complex oligosaccharides has been of great scientific and industrial interest. Here we describe an ultra-high-throughput fluorescence activated cell sorting (FACS) method for the directed evolution of GTs, at the single cell level. This assay relies on the exquisite substrate specificity of lactose permeases (LacY) that are located in the cell membrane, which distinguish selectively the fluorescent glycosylated products from the unreacted substrates. The method described here allows facile screening 106-107 mutants per hour. We demonstrate the application of this technique in the screening of libraries of α1,3-fucosyltransferase.
Collapse
|
9
|
Ocal N, Lagarde A, L'enfant M, Charmantray F, Hecquet L. High-Throughput Solid-Phase Assay for Substrate Profiling and Directed Evolution of Transketolase. Chembiochem 2021; 22:2814-2820. [PMID: 34289225 DOI: 10.1002/cbic.202100356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/10/2022]
Abstract
Thiamine diphosphate-dependent enzymes, and specifically transketolases, form one of the most important families of biocatalytic tools for enantioselective carbon-carbon bond formation yielding various hydroxyketones of biological interest. To enable substrate profiling of transketolases for acceptance of different donors and acceptors, a simple, direct colorimetric assay based on pH reaction variation was developed to establish a high-throughput solid-phase assay. This assay reduces the screening effort in the directed evolution of transketolases, as only active variants are selected for further analysis. Transketolase activity is detected as bicarbonate anions released from the α-ketoacid donor substrate, which causes the pH to rise. A pH indicator, bromothymol blue, which changes color from yellow to blue in alkaline conditions, was used to directly detect, with the naked eye, clones expressing active transketolase variants, obviating enzyme extraction.
Collapse
Affiliation(s)
- Nazim Ocal
- Université Clermont Auvergne, CNRS, Auvergne Clermont INP, ICCF, 63000, Clermont-Ferrand, France
| | - Aurélie Lagarde
- Université Clermont Auvergne, CNRS, Auvergne Clermont INP, ICCF, 63000, Clermont-Ferrand, France
| | - Mélanie L'enfant
- Université Clermont Auvergne, CNRS, Auvergne Clermont INP, ICCF, 63000, Clermont-Ferrand, France
| | - Franck Charmantray
- Université Clermont Auvergne, CNRS, Auvergne Clermont INP, ICCF, 63000, Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, Auvergne Clermont INP, ICCF, 63000, Clermont-Ferrand, France
| |
Collapse
|
10
|
Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnol Adv 2021; 51:107702. [PMID: 33515671 DOI: 10.1016/j.biotechadv.2021.107702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Biocatalysis has found enormous applications in sorts of fields as an alternative to chemical catalysis. In the pursue of green and sustainable chemistry, ionic liquids (ILs) have been considered as promising reaction media for biocatalysis, owing to their unique characteristics, such as nonvolatility, inflammability and tunable properties as regards polarity and water miscibility behavior, compared to organic solvents. In recent years, great developments have been achieved in respects to biocatalysis in ILs, especially for preparing various chemicals. This review tends to give illustrative examples with a focus on representative chemicals production by biocatalyst in ILs and elucidate the possible mechanism in such systems. It also discusses how to regulate the catalytic efficiency from several aspects and finally provides an outlook on the opportunities to broaden biocatalysis in ILs.
Collapse
|
11
|
McGraphery K, Schwab W. Comparative Analysis of High-Throughput Assays of Family-1 Plant Glycosyltransferases. Int J Mol Sci 2020; 21:ijms21062208. [PMID: 32210023 PMCID: PMC7139940 DOI: 10.3390/ijms21062208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/16/2023] Open
Abstract
The ability of glycosyltransferases (GTs) to reduce volatility, increase solubility, and thus alter the bioavailability of small molecules through glycosylation has attracted immense attention in pharmaceutical, nutraceutical, and cosmeceutical industries. The lack of GTs known and the scarcity of high-throughput (HTP) available methods, hinders the extrapolation of further novel applications. In this study, the applicability of new GT-assays suitable for HTP screening was tested and compared with regard to harmlessness, robustness, cost-effectiveness and reproducibility. The UDP-Glo GT-assay, Phosphate GT Activity assay, pH-sensitive GT-assay, and UDP2-TR-FRET assay were applied and tailored to plant UDP GTs (UGTs). Vitis vinifera (UGT72B27) GT was subjected to glycosylation reaction with various phenolics. Substrate screening and kinetic parameters were evaluated. The pH-sensitive assay and the UDP2-TR-FRET assay were incomparable and unsuitable for HTP plant GT-1 family UGT screening. Furthermore, the UDP-Glo GT-assay and the Phosphate GT Activity assay yielded closely similar and reproducible KM, vmax, and kcat values. Therefore, with the easy experimental set-up and rapid readout, the two assays are suitable for HTP screening and quantitative kinetic analysis of plant UGTs. This research sheds light on new and emerging HTP assays, which will allow for analysis of novel family-1 plant GTs and will uncover further applications.
Collapse
Affiliation(s)
| | - Wilfried Schwab
- Correspondence: ; Tel.: +49-8161-712-912; Fax: +49-8161-712-950
| |
Collapse
|
12
|
Chen Y, Liu L, Shan X, Du G, Zhou J, Chen J. High-Throughput Screening of a 2-Keto-L-Gulonic Acid-Producing Gluconobacter oxydans Strain Based on Related Dehydrogenases. Front Bioeng Biotechnol 2019; 7:385. [PMID: 31921801 PMCID: PMC6923176 DOI: 10.3389/fbioe.2019.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/18/2019] [Indexed: 01/31/2023] Open
Abstract
High-throughput screening is a powerful tool for discovering strains in the natural environment that may be suitable for target production. Herein, a novel enzyme-based high-throughput screening method was developed for rapid screening of strains overproducing 2-keto-L-gulonic acid (2-KLG). The screening method detects changes in the fluorescence of reduced nicotinamide adenine dinucleotide (NADH) at 340 nm using a microplate reader when 2-KLG is degraded by 2-KLG reductase. In this research, three different 2-KLG reductases were expressed, purified, and studied. The 2-KLG reductase from Aspergillus niger were selected as the best appropriate reductase to establishment the method for its high activity below pH 7. Using the established method, and coupled with fluorescence-activated cell sorting, we achieved a high 2-KLG-producing strain of Gluconobacter oxydans WSH-004 from soil. When cultured with D-sorbitol as the substrate, the 2-KLG yield was 2.5 g/L from 50 g/L D-sorbitol without any side products. Compared with other reported screening methods, our enzyme-based method is more efficient and accurate for obtaining high-producing 2-KLG strains, and it is also convenient and cost-effective. The method is broadly applicable for screening keto acids and other products that can be oxidized via nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+).
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Li Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Nidetzky B, Gutmann A, Zhong C. Leloir Glycosyltransferases as Biocatalysts for Chemical Production. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00710] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| |
Collapse
|
14
|
Olsson K, Carlsen S, Semmler A, Simón E, Mikkelsen MD, Møller BL. Microbial production of next-generation stevia sweeteners. Microb Cell Fact 2016; 15:207. [PMID: 27923373 PMCID: PMC5142139 DOI: 10.1186/s12934-016-0609-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The glucosyltransferase UGT76G1 from Stevia rebaudiana is a chameleon enzyme in the targeted biosynthesis of the next-generation premium stevia sweeteners, rebaudioside D (Reb D) and rebaudioside M (Reb M). These steviol glucosides carry five and six glucose units, respectively, and have low sweetness thresholds, high maximum sweet intensities and exhibit a greatly reduced lingering bitter taste compared to stevioside and rebaudioside A, the most abundant steviol glucosides in the leaves of Stevia rebaudiana. RESULTS In the metabolic glycosylation grid leading to production of Reb D and Reb M, UGT76G1 was found to catalyze eight different reactions all involving 1,3-glucosylation of steviol C 13- and C 19-bound glucoses. Four of these reactions lead to Reb D and Reb M while the other four result in formation of side-products unwanted for production. In this work, side-product formation was reduced by targeted optimization of UGT76G1 towards 1,3 glucosylation of steviol glucosides that are already 1,2-diglucosylated. The optimization of UGT76G1 was based on homology modelling, which enabled identification of key target amino acids present in the substrate-binding pocket. These residues were then subjected to site-saturation mutagenesis and a mutant library containing a total of 1748 UGT76G1 variants was screened for increased accumulation of Reb D or M, as well as for decreased accumulation of side-products. This screen was performed in a Saccharomyces cerevisiae strain expressing all enzymes in the rebaudioside biosynthesis pathway except for UGT76G1. CONCLUSIONS Screening of the mutant library identified mutations with positive impact on the accumulation of Reb D and Reb M. The effect of the introduced mutations on other reactions in the metabolic grid was characterized. This screen made it possible to identify variants, such as UGT76G1Thr146Gly and UGT76G1His155Leu, which diminished accumulation of unwanted side-products and gave increased specific accumulation of the desired Reb D or Reb M sweeteners. This improvement in a key enzyme of the Stevia sweetener biosynthesis pathway represents a significant step towards the commercial production of next-generation stevia sweeteners.
Collapse
Affiliation(s)
- Kim Olsson
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Simon Carlsen
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
| | - Angelika Semmler
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
| | - Ernesto Simón
- Evolva A/S, Lersø Park Alle 42-44, 5th, 2100 Copenhagen OE, Denmark
| | | | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
- Center for Synthetic Biology “bioSYNergy”, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen Denmark
| |
Collapse
|
15
|
Pick A, Beer B, Hemmi R, Momma R, Schmid J, Miyamoto K, Sieber V. Identification and characterization of two new 5-keto-4-deoxy-D-Glucarate Dehydratases/Decarboxylases. BMC Biotechnol 2016; 16:80. [PMID: 27855668 PMCID: PMC5114784 DOI: 10.1186/s12896-016-0308-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/21/2016] [Indexed: 11/11/2022] Open
Abstract
Background Hexuronic acids such as D-galacturonic acid and D-glucuronic acid can be utilized via different pathways within the metabolism of microorganisms. One representative, the oxidative pathway, generates α-keto-glutarate as the direct link entering towards the citric acid cycle. The penultimate enzyme, keto-deoxy glucarate dehydratase/decarboxylase, catalyses the dehydration and decarboxylation of keto-deoxy glucarate to α-keto-glutarate semialdehyde. This enzymatic reaction can be tracked continuously by applying a pH-shift assay. Results Two new keto-deoxy glucarate dehydratases/decarboxylases (EC 4.2.1.41) from Comamonas testosteroni KF-1 and Polaromonas naphthalenivorans CJ2 were identified and expressed in an active form using Escherichia coli ArcticExpress(DE3). Subsequent characterization concerning Km, kcat and thermal stability was conducted in comparison with the known keto-deoxy glucarate dehydratase/decarboxylase from Acinetobacter baylyi ADP1. The kinetic constants determined for A. baylyi were Km 1.0 mM, kcat 4.5 s−1, for C. testosteroni Km 1.1 mM, kcat 3.1 s−1, and for P. naphthalenivorans Km 1.1 mM, kcat 1.7 s−1. The two new enzymes had a slightly lower catalytic activity (increased Km and a decreased kcat) but showed a higher thermal stability than that of A. baylyi. The developed pH-shift assay, using potassium phosphate and bromothymol blue as the pH indicator, enables a direct measurement. The use of crude extracts did not interfere with the assay and was tested for wild-type landscapes for all three enzymes. Conclusions By establishing a pH-shift assay, an easy measurement method for keto-deoxy glucarate dehydratase/decarboxylase could be developed. It can be used for measurements of the purified enzymes or using crude extracts. Therefore, it is especially suitable as the method of choice within an engineering approach for further optimization of these enzymes. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0308-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- André Pick
- Technical University of Munich, Straubing Center of Science, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315, Straubing, Germany
| | - Barbara Beer
- Technical University of Munich, Straubing Center of Science, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315, Straubing, Germany
| | - Risa Hemmi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, 2238522, Yokohama, Japan
| | - Rena Momma
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, 2238522, Yokohama, Japan
| | - Jochen Schmid
- Technical University of Munich, Straubing Center of Science, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315, Straubing, Germany
| | - Kenji Miyamoto
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, 2238522, Yokohama, Japan
| | - Volker Sieber
- Technical University of Munich, Straubing Center of Science, Chair of Chemistry of Biogenic Resources, Schulgasse 16, 94315, Straubing, Germany.
| |
Collapse
|
16
|
Gutmann A, Nidetzky B. Unlocking the Potential of Leloir Glycosyltransferases for Applied Biocatalysis: Efficient Synthesis of Uridine 5′-Diphosphate-Glucose by Sucrose Synthase. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600754] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| |
Collapse
|
17
|
Schmid J, Heider D, Wendel NJ, Sperl N, Sieber V. Bacterial Glycosyltransferases: Challenges and Opportunities of a Highly Diverse Enzyme Class Toward Tailoring Natural Products. Front Microbiol 2016; 7:182. [PMID: 26925049 PMCID: PMC4757703 DOI: 10.3389/fmicb.2016.00182] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/02/2016] [Indexed: 11/13/2022] Open
Abstract
The enzyme subclass of glycosyltransferases (GTs; EC 2.4) currently comprises 97 families as specified by CAZy classification. One of their important roles is in the biosynthesis of disaccharides, oligosaccharides, and polysaccharides by catalyzing the transfer of sugar moieties from activated donor molecules to other sugar molecules. In addition GTs also catalyze the transfer of sugar moieties onto aglycons, which is of great relevance for the synthesis of many high value natural products. Bacterial GTs show a higher sequence similarity in comparison to mammalian ones. Even when most GTs are poorly explored, state of the art technologies, such as protein engineering, domain swapping or computational analysis strongly enhance our understanding and utilization of these very promising classes of proteins. This perspective article will focus on bacterial GTs, especially on classification, screening and engineering strategies to alter substrate specificity. The future development in these fields as well as obstacles and challenges will be highlighted and discussed.
Collapse
Affiliation(s)
- Jochen Schmid
- Chemistry of Biogenic Resources, Technische Universität München Straubing, Germany
| | - Dominik Heider
- Department of Bioinformatics, Straubing Center of Science, University of Applied Sciences Weihenstephan-Triesdorf Straubing, Germany
| | - Norma J Wendel
- Department of Bioinformatics, Straubing Center of Science, University of Applied Sciences Weihenstephan-Triesdorf Straubing, Germany
| | - Nadine Sperl
- Chemistry of Biogenic Resources, Technische Universität München Straubing, Germany
| | - Volker Sieber
- Chemistry of Biogenic Resources, Technische Universität München Straubing, Germany
| |
Collapse
|
18
|
Production of Rebaudioside A from Stevioside Catalyzed by the Engineered Saccharomyces cerevisiae. Appl Biochem Biotechnol 2016; 178:1586-98. [PMID: 26733458 DOI: 10.1007/s12010-015-1969-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/22/2015] [Indexed: 01/02/2023]
Abstract
Rebaudioside A has superior taste quality among the steviol glycosides extracted from Stevia rebaudiana leaves. Given its high purity as a general-purpose sweetener, rebaudioside A has received significant attention and has been widely applied in food and beverages in recent decades. Stevioside is one of the major steviol glycosides and can be converted to rebaudioside A by the uridine-diphosphate dependent glucosyltransferase UGT76G1 in S. rebaudiana. To explore the applicability of and limits in producing rebaudioside A from stevioside through whole-cell biocatalysis, the engineered Saccharomyces cerevisiae expressing UGT76G1, using a newly constructed constitutive expression vector, was used as the whole-cell biocatalyst. Citrate was added to the reaction mixture to allow metabolic regulation when glucose was fed to provide the activated sugar donor UDP-glucose for glycosylation of stevioside in vivo. In an evaluation of the whole-cell reaction parameters involving cell permeability, temperature, pH, citrate and Mg(2+) concentrations, and glucose feeding, production of 1160.5 mg/L rebaudioside A from 2 g/L stevioside was achieved after 48 h without supplementation of extracellular UDP-glucose.
Collapse
|
19
|
Buß O, Jager S, Dold SM, Zimmermann S, Hamacher K, Schmitz K, Rudat J. Statistical Evaluation of HTS Assays for Enzymatic Hydrolysis of β-Keto Esters. PLoS One 2016; 11:e0146104. [PMID: 26730596 PMCID: PMC4711668 DOI: 10.1371/journal.pone.0146104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/14/2015] [Indexed: 01/15/2023] Open
Abstract
β-keto esters are used as precursors for the synthesis of β-amino acids, which are building blocks for some classes of pharmaceuticals. Here we describe the comparison of screening procedures for hydrolases to be used for the hydrolysis of β-keto esters, the first step in the preparation of β-amino acids. Two of the tested high throughput screening (HTS) assays depend on coupled enzymatic reactions which detect the alcohol released during ester hydrolysis by luminescence or absorption. The third assay detects the pH shift due to acid formation using an indicator dye. To choose the most efficient approach for screening, we assessed these assays with different statistical methods—namely, the classical Z’-factor, standardized mean difference (SSMD), the Kolmogorov-Smirnov-test, and t-statistics. This revealed that all three assays are suitable for HTS, the pH assay performing best. Based on our data we discuss the explanatory power of different statistical measures. Finally, we successfully employed the pH assay to identify a very fast hydrolase in an enzyme-substrate screening.
Collapse
Affiliation(s)
- O. Buß
- Karlsruhe Institute of Technology, Technical Biology, Karlsruhe, Germany
- * E-mail: (OB); (SJ)
| | - S. Jager
- Technische Universität Darmstadt, Computational Biology and Simulation, Darmstadt, Germany
- * E-mail: (OB); (SJ)
| | - S. -M. Dold
- Karlsruhe Institute of Technology, Technical Biology, Karlsruhe, Germany
| | - S. Zimmermann
- Karlsruhe Institute of Technology, Biomolecular Separation Engineering, Karlsruhe, Germany
| | - K. Hamacher
- Technische Universität Darmstadt, Computational Biology and Simulation, Darmstadt, Germany
| | - K. Schmitz
- Technische Universität Darmstadt, Biological Chemistry, Darmstadt, Germany
| | - J. Rudat
- Karlsruhe Institute of Technology, Technical Biology, Karlsruhe, Germany
| |
Collapse
|
20
|
Schmölzer K, Gutmann A, Diricks M, Desmet T, Nidetzky B. Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnol Adv 2015; 34:88-111. [PMID: 26657050 DOI: 10.1016/j.biotechadv.2015.11.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 01/24/2023]
Abstract
Sucrose synthase (SuSy, EC 2.4.1.13) is a glycosyltransferase (GT) long known from plants and more recently discovered in bacteria. The enzyme catalyzes the reversible transfer of a glucosyl moiety between fructose and a nucleoside diphosphate (NDP) (sucrose+NDP↔NDP-glucose+fructose). The equilibrium for sucrose conversion is pH dependent, and pH values between 5.5 and 7.5 promote NDP-glucose formation. The conversion of a bulk chemical to high-priced NDP-glucose in a one-step reaction provides the key aspect for industrial interest. NDP-sugars are important as such and as key intermediates for glycosylation reactions by highly selective Leloir GTs. SuSy has gained renewed interest as industrially attractive biocatalyst, due to substantial scientific progresses achieved in the last few years. These include biochemical characterization of bacterial SuSys, overproduction of recombinant SuSys, structural information useful for design of tailor-made catalysts, and development of one-pot SuSy-GT cascade reactions for production of several relevant glycosides. These advances could pave the way for the application of Leloir GTs to be used in cost-effective processes. This review provides a framework for application requirements, focusing on catalytic properties, heterologous enzyme production and reaction engineering. The potential of SuSy biocatalysis will be presented based on various biotechnological applications: NDP-sugar synthesis; sucrose analog synthesis; glycoside synthesis by SuSy-GT cascade reactions.
Collapse
Affiliation(s)
- Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.
| | - Margo Diricks
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.
| |
Collapse
|
21
|
Bubner P, Czabany T, Luley-Goedl C, Nidetzky B. Comparison of broad-scope assays of nucleotide sugar-dependent glycosyltransferases. Anal Biochem 2015; 490:46-51. [PMID: 26297818 DOI: 10.1016/j.ab.2015.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 12/23/2022]
Abstract
Glycosyltransferases (GTs) are abundant in nature and diverse in their range of substrates. Application of GTs is, however, often complicated by their narrow substrate specificity. GTs with tailored specificities are highly demanded for targeted glycosylation reactions. Engineering of such GTs is, however, restricted by lack of practical and broad-scope assays currently available. Here we present an improvement of an inexpensive and simple assay that relies on the enzymatic detection of inorganic phosphate cleaved from nucleoside phosphate products released in GT reactions. This phosphatase-coupled assay (PCA) is compared with other GT assays: a pH shift assay and a commercially available immunoassay in Escherichia coli cell-free extract (CE). Furthermore, we probe PCA with three GTs with different specificities. Our results demonstrate that PCA is a versatile and apparently general GT assay with a detection limit as low as 1 mU. The detection limit of the pH shift assay is roughly 4 times higher. The immunoassay, by contrast, detected only nucleoside diphosphates (NDPs) but had the lowest detection limit. Compared with these assays, PCA showed superior robustness and, therefore, appears to be a suitable general screening assay for nucleotide sugar-dependent GTs.
Collapse
Affiliation(s)
- Patricia Bubner
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria
| | - Tibor Czabany
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria
| | - Christiane Luley-Goedl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, A-8010 Graz, Austria.
| |
Collapse
|
22
|
Engineering of a CPC acylase using a facile pH indicator assay. ACTA ACUST UNITED AC 2014; 41:1617-25. [DOI: 10.1007/s10295-014-1501-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/13/2014] [Indexed: 11/25/2022]
Abstract
Abstract
Cephalosporin C (CPC) acylase is important for the one-step production of 7-aminocephalosporanic acid (7-ACA), a key intermediate for cephalosporin antibiotics. However, its application is hampered by the low activity, substrate inhibition, and product inhibition. In this study, two rounds of combinatorial active-site saturation testing (CASTing) were carried out on the CPC acylase acyII from Pseudomonas SE83, and one mutant H57βA/H70βY with no substrate inhibition was obtained. For further engineering to reduce the product inhibition, a quick pH indicator assay was developed, allowing for real-time monitoring of the product inhibition in the presence of added 7-ACA. The utility of the assay was demonstrated by screening six libraries of site-directed saturation mutagenesis libraries of H57βA/H70βY. A new mutant H57βA/H70βY/I176βN was obtained, which showed a k cat 3.26-fold and a K IP 3.08-fold that of the wild type, respectively. Given the commercial value of the enzyme, both this pH indicator assay and the triple mutant should be useful for further engineering of the enzyme to increase the specific activity and to decrease the product inhibition.
Collapse
|
23
|
Johal AR, Blackler RJ, Alfaro JA, Schuman B, Borisova S, Evans SV. pH-induced conformational changes in human ABO(H) blood group glycosyltransferases confirm the importance of electrostatic interactions in the formation of the semi-closed state. Glycobiology 2013; 24:237-46. [PMID: 24265507 DOI: 10.1093/glycob/cwt098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The homologous human ABO(H) A and B blood group glycosyltransferases GTA and GTB have two mobile polypeptide loops surrounding their active sites that serve to allow substrate access and product egress and to recognize and sequester substrates for catalysis. Previous studies have established that these enzymes can move from the "open" state to the "semi-closed" then "closed" states in response to addition of a substrate. The contribution of electrostatic interactions to these conformational changes has now been demonstrated by the determination at various pH of the structures of GTA, GTB and the chimeric enzyme ABBA. At near-neutral pH, GTA displays the closed state in which both mobile loops order around the active site, whereas ABBA and GTB display the open state. At low pH, the apparent protonation of the DXD motif in GTA leads to the expulsion of the donor analog to yield the open state, whereas at high pH, both ABBA and GTB form the semi-closed state in which the first mobile loop becomes an ordered α-helix. Step-wise deprotonation of GTB in increments of 0.5 between pH 6.5 and 10.0 shows that helix ordering is gradual, which indicates that the formation of the semi-closed state is dependent on electrostatic forces consistent with the binding of substrate. Spectropolarimetric studies of the corresponding stand-alone peptide in solution reveal no tendency toward helix formation from pH 7.0 to 10.0, which shows that pH-dependent stability is a product of the larger protein environment and underlines the importance of substrate in active site ordering.
Collapse
Affiliation(s)
- Asha R Johal
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 3P6
| | | | | | | | | | | |
Collapse
|
24
|
Genome Shuffling of Aspergillus niger for Improving Transglycosylation Activity. Appl Biochem Biotechnol 2013; 172:50-61. [DOI: 10.1007/s12010-013-0421-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
|
25
|
Wang D, Wang J, Wang B, Yu H. A new and efficient colorimetric high-throughput screening method for triacylglycerol lipase directed evolution. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.05.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Yi D, Devamani T, Abdoul-Zabar J, Charmantray F, Helaine V, Hecquet L, Fessner WD. A pH-Based High-Throughput Assay for Transketolase: Fingerprinting of Substrate Tolerance and Quantitative Kinetics. Chembiochem 2012; 13:2290-300. [DOI: 10.1002/cbic.201200364] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Indexed: 11/05/2022]
|
27
|
Patil SA, Chandrasekaran EV, Matta KL, Parikh A, Tzanakakis ES, Neelamegham S. Scaling down the size and increasing the throughput of glycosyltransferase assays: activity changes on stem cell differentiation. Anal Biochem 2012; 425:135-44. [PMID: 22449497 PMCID: PMC3371656 DOI: 10.1016/j.ab.2012.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/04/2012] [Accepted: 03/16/2012] [Indexed: 12/27/2022]
Abstract
Glycosyltransferases (glycoTs) catalyze the transfer of monosaccharides from nucleotide-sugars to carbohydrate-, lipid-, and protein-based acceptors. We examined strategies to scale down and increase the throughput of glycoT enzymatic assays because traditional methods require large reaction volumes and complex chromatography. Approaches tested used (i) microarray pin printing, an appropriate method when glycoT activity was high; (ii) microwells and microcentrifuge tubes, a suitable method for studies with cell lysates when enzyme activity was moderate; and (iii) C(18) pipette tips and solvent extraction, a method that enriched reaction product when the extent of reaction was low. In all cases, reverse-phase thin layer chromatography (RP-TLC) coupled with phosphorimaging quantified the reaction rate. Studies with mouse embryonic stem cells (mESCs) demonstrated an increase in overall β(1,3)galactosyltransferase and α(2,3)sialyltransferase activity and a decrease in α(1,3)fucosyltransferases when these cells differentiate toward cardiomyocytes. Enzymatic and lectin binding data suggest a transition from Lewis(x)-type structures in mESCs to sialylated Galβ1,3GalNAc-type glycans on differentiation, with more prominent changes in enzyme activity occurring at later stages when embryoid bodies differentiated toward cardiomyocytes. Overall, simple, rapid, quantitative, and scalable glycoT activity analysis methods are presented. These use a range of natural and synthetic acceptors for the analysis of complex biological specimens that have limited availability.
Collapse
Affiliation(s)
- Shilpa A. Patil
- Chemical and Biological Engineering, State University of New York, Buffalo, NY 14260
| | | | - Khushi L. Matta
- Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Abhirath Parikh
- Chemical and Biological Engineering, State University of New York, Buffalo, NY 14260
| | - Emmanuel S. Tzanakakis
- Chemical and Biological Engineering, State University of New York, Buffalo, NY 14260
- NY State Center for Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, NY 14260
- Western New York Stem Cell Culture and Analysis Center, State University of New York, Buffalo, NY 14260
| | - Sriram Neelamegham
- Chemical and Biological Engineering, State University of New York, Buffalo, NY 14260
- NY State Center for Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, NY 14260
| |
Collapse
|
28
|
Flexibility of Substrate Binding of Cytosine-5′-Monophosphate-N-Acetylneuraminate Synthetase (CMP-Sialate Synthetase) from Neisseria meningitidis: An Enabling Catalyst for the Synthesis of Neo-sialoconjugates. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100412] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Yu K, Hu S, Huang J, Mei LH. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase. Enzyme Microb Technol 2011; 49:272-6. [DOI: 10.1016/j.enzmictec.2011.06.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 05/03/2011] [Accepted: 06/06/2011] [Indexed: 11/25/2022]
|
30
|
Going Beyond Continuous Glucose Monitoring with Boronic Acid-Appended Bipyridinium Salts. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-1-4419-9672-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
31
|
Henderson GE, Isett KD, Gerngross TU. Site-specific modification of recombinant proteins: a novel platform for modifying glycoproteins expressed in E. coli. Bioconjug Chem 2011; 22:903-12. [PMID: 21395336 DOI: 10.1021/bc100510g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The site-specific modification of proteins is expected to be an important capability for the synthesis of bioconjugates in the future. However, the traditional repertoire of reactions available for the direct modification of proteins suffers from lack of specificity, necessitating costly downstream processing to isolate the specific species of interest. (1) Here, we use a well-established, glycan-specific chemistry to PEGylate model glycoproteins, each containing a unique reactive GalNAc attached to a specifically engineered threonine residue. By engineering E. coli to execute the initial steps of human, mucin-type O-glycosylation, we were able to obtain homogeneous site-specifically modified glycoproteins with fully human glycan linkages. Two mucin-based reporters as well as several fusion proteins containing eight-amino-acid GalNAc-T recognition sequences were glycosylated in this engineered glycocompetent strain of E. coli. The use of one sequence in particular, PPPTSGPT, resulted in site-specific glycan occupancy of approximately 69% at the engineered threonine. The GalNAc present on the purified glycoprotein was oxidized by galactose oxidase and then coupled to hydroxylamine functionalized 20 kDa PEG in the presence of aniline. The glycoprotein could be converted to the PEGylated product at approximately 85% yield and >98% purity as determined by comparison to the products of control reactions.
Collapse
|
32
|
Gantt RW, Peltier-Pain P, Thorson JS. Enzymatic methods for glyco(diversification/randomization) of drugs and small molecules. Nat Prod Rep 2011; 28:1811-53. [DOI: 10.1039/c1np00045d] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Yang G, Rich JR, Gilbert M, Wakarchuk WW, Feng Y, Withers SG. Fluorescence activated cell sorting as a general ultra-high-throughput screening method for directed evolution of glycosyltransferases. J Am Chem Soc 2010; 132:10570-7. [PMID: 20662530 DOI: 10.1021/ja104167y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosyltransferases (GTs) offer very attractive approaches to the synthesis of complex oligosaccharides. However, the limited number of available GTs, together with their instability and strict substrate specificity, have severely hampered the broad application of these enzymes. Previous attempts to broaden the range of substrate scope and to increase the activity of GTs via protein engineering have met with limited success, partially because of the lack of effective high-throughput screening methods. Recently, we reported an ultra-high-throughput screening method for sialyltransferases based on fluorescence-activated cell sorting (Aharoni et al. Nat. Methods 2006, 3, 609-614). Here, we considerably improve this method via the introduction of a two-color screening protocol to minimize the probability of false positive mutants and demonstrate its generality through directed evolution of a neutral sugar transferase, beta-1,3-galactosyltransferase CgtB. A variant with broader substrate tolerance than the wild-type enzyme and 300-fold higher activity was identified rapidly from a library of >10(7) CgtB mutants. Importantly, the variant effected much more efficient synthesis of G(M1a) and asialo G(M1) oligosaccharides, the building blocks of important therapeutic glycosphingolipids, than did the parent enzyme. This work not only establishes a new methodology for the directed evolution of galactosyltransferases, but also suggests a powerful strategy for the screening of almost all GT activities, thereby facilitating the engineering of glycosyltransferases.
Collapse
Affiliation(s)
- Guangyu Yang
- Centre for High-throughput Biology (CHiBi) and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Wu ZL, Ethen CM, Prather B, Machacek M, Jiang W. Universal phosphatase-coupled glycosyltransferase assay. Glycobiology 2010; 21:727-33. [PMID: 21081508 DOI: 10.1093/glycob/cwq187] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A nonradioactive glycosyltransferase assay is described here. This method takes advantage of specific phosphatases that can be added into glycosyltransferase reactions to quantitatively release inorganic phosphate from the leaving groups of glycosyltransferase reactions. The released phosphate group is then detected using colorimetric malachite-based reagents. Because the amount of phosphate released is directly proportional to the sugar molecule transferred in a glycosyltransferase reaction, this method can be used to obtain accurate kinetic parameters of the glycosyltransferase. The assay can be performed in multiwell plates and quantitated by a plate reader, thus making it amenable to high-throughput screening. It has been successfully applied to all glycosyltransferases available to us, including glucosyltransferases, N-acetylglucosaminyltransferases, N-acetylgalactosyltransferases, galactosyltransferases, fucosyltransferases and sialyltransferases. As examples, we first assayed Clostridium difficile toxin B, a protein O-glucosyltransferase that specifically monoglucosylates and inactivates Rho family small GTPases; we then showed that human KTELC1, a homolog of Rumi from Drosophila, was able to hydrolyze UDP-Glc; and finally, we measured the kinetic parameters of human sialyltransferase ST6GAL1.
Collapse
|
35
|
Shen R, Wang S, Ma X, Xian J, Li J, Zhang L, Wang P. An easy colorimetric assay for glycosyltransferases. BIOCHEMISTRY (MOSCOW) 2010; 75:944-50. [PMID: 20673220 DOI: 10.1134/s0006297910070187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glycosyltransferases are involved in biosynthesis of both protein-bound and non-bound glycans that have multiple and important biological functions in all species. A variety of methods for assaying glycosyltransferase activity have been developed driven by the specific interests and type of information required by researchers. In this work, a novel colorimetric assay for the glycosyltransferase-catalyzed reaction was established. Compared with measuring the newly formed product, which might not exhibit visible absorption, the unreacted acceptor could be readily detected by measuring the visible absorption of the hydrolysis product. In the assay, 4-nitrophenyl-beta-D-glycoside (glycosyl-beta-pNP) is used as the glycosyl acceptor, which can be hydrolyzed by a special exoglycosidase to release the p-nitrophenol before glycosylation reactions. Absorbance change of the p-nitrophenolate corresponds to unreacted glycosyl acceptor that accompanied the glycosyl transfer. The assay is demonstrated to be useful in the initial characterization of recombinant glycosyltransferases for their kinetic parameters, optimal metal cofactor, and pH value. It provides a simple, sensitive, and quantitative method for assessing glycosyltransferase activity and is thus expected to have broad applications including automated high-throughput screening.
Collapse
Affiliation(s)
- Rui Shen
- Nankai University, Tianjin, P R China
| | | | | | | | | | | | | |
Collapse
|
36
|
A high-throughput method for screening of Aspergillus niger mutants with high transglycosylation activity by detecting non-fermentable reducing sugar. World J Microbiol Biotechnol 2010; 27:1519-23. [DOI: 10.1007/s11274-010-0595-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/13/2010] [Indexed: 11/25/2022]
|
37
|
Pesnot T, Palcic MM, Wagner GK. A novel fluorescent probe for retaining galactosyltransferases. Chembiochem 2010; 11:1392-8. [PMID: 20533489 DOI: 10.1002/cbic.201000013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosyltransferases (GTs) are a large class of carbohydrate-active enzymes that are involved, in both pro- and eukaryotic organisms, in numerous important biological processes, from cellular adhesion to carcinogenesis. GTs have enormous potential as molecular targets for chemical biology and drug discovery. For the full realisation of this potential, operationally simple and generally applicable GT bioassays, especially for inhibitor screening, are indispensable tools. In order to facilitate the development of GT high-throughput screening assays for the identification of GT inhibitors, we have developed novel, fluorescent derivatives of UDP-galactose (UDP-Gal) that are recognised as donor analogues by several different retaining galactosyltransferases (GalTs). We demonstrate for one of these derivatives that fluorescence emission is quenched upon specific binding to individual GalTs, and that this effect can be used as the read-out in ligand-displacement experiments. The novel fluorophore acts as an excellent sensor for several different enzymes and is suitable for the development of a new type of GalT bioassay, whose modular nature and operational simplicity will significantly facilitate inhibitor screening. Importantly, the structural differences between the natural donor UDP-Gal and the new fluorescent derivatives are minimal, and the general assay principle described herein may therefore also be applicable to other GalTs and/or proteins that use nucleotides or nucleotide conjugates as their cofactor.
Collapse
Affiliation(s)
- Thomas Pesnot
- School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ UK
| | | | | |
Collapse
|
38
|
|
39
|
Chemoenzymatic and Bioenzymatic Synthesis of Carbohydrate Containing Natural Products. NATURAL PRODUCTS VIA ENZYMATIC REACTIONS 2010; 297:105-48. [DOI: 10.1007/128_2010_78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Wang B, Tang X, Ren G, Liu J, Yu H. A new high-throughput screening method for determining active and enantioselective hydrolases. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Abstract
Anthropogenic compounds used as pesticides, solvents and explosives often persist in the environment and can cause toxicity to humans and wildlife. The persistence of anthropogenic compounds is due to their recent introduction into the environment; microbes in soil and water have had relatively little time to evolve efficient mechanisms for degradation of these new compounds. Some anthropogenic compounds are easily degraded, whereas others are degraded very slowly or only partially, leading to accumulation of toxic products. This review examines the factors that affect the ability of microbes to degrade anthropogenic compounds and the mechanisms by which new pathways emerge in nature. New approaches for engineering microbes with enhanced degradative abilities include assembly of pathways using enzymes from multiple organisms, directed evolution of inefficient enzymes, and genome shuffling to improve microbial fitness under the challenging conditions posed by contaminated environments.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado, USA.
| |
Collapse
|
42
|
Jamaluddin H, Tumbale P, Ferns TA, Thiyagarajan N, Brew K, Acharya KR. Crystal structure of alpha-1,3-galactosyltransferase (alpha3GT) in a complex with p-nitrophenyl-beta-galactoside (pNPbetaGal). Biochem Biophys Res Commun 2009; 385:601-4. [PMID: 19486884 DOI: 10.1016/j.bbrc.2009.05.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 05/26/2009] [Indexed: 01/19/2023]
Abstract
The specificities of glycosyltransferases make them useful for the synthesis of biologically active oligosaccharides, but also restrict their range of products. In substrate engineering, substrate promiscuity is enhanced by attaching removable interactive groups to weak substrates. Thus, the attachment of betap-nitrophenyl converts galactose from a poor into a good substrate of alpha-1,3-galactosyltransferase. The crystallographic structure of a complex of alpha3GT containing p-nitrophenyl-beta-galactoside shows that the p-nitrophenyl binds similarly to the N-acetylglucosamine of the substrate, N-acetyllactosamine, interacting with the indole of Trp249. p-Nitrophenyl, unlike N-acetylglucosamine, makes no H-bonds but has more non-polar interactions, making it an effective monosaccharide mimetic.
Collapse
Affiliation(s)
- Haryati Jamaluddin
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA27AY, UK
| | | | | | | | | | | |
Collapse
|
43
|
Williams GJ, Gantt RW, Thorson JS. The impact of enzyme engineering upon natural product glycodiversification. Curr Opin Chem Biol 2009; 12:556-64. [PMID: 18678278 DOI: 10.1016/j.cbpa.2008.07.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 07/07/2008] [Indexed: 12/20/2022]
Abstract
Glycodiversification of natural products is an effective strategy for small molecule drug development. Recently, improved methods for chemo-enzymatic synthesis of glycosyl donors has spurred the characterization of natural product glycosyltransferases (GTs), revealing that the substrate specificity of many naturally occurring GTs as too stringent for use in glycodiversification. Protein engineering of natural product GTs has emerged as an attractive approach to overcome this limitation. This review highlights recent progress in the engineering/evolution of enzymes relevant to natural product glycodiversification with a particular focus upon GTs.
Collapse
Affiliation(s)
- Gavin J Williams
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, National Cooperative Drug Discovery Program, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | |
Collapse
|
44
|
Osmani SA, Bak S, Møller BL. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. PHYTOCHEMISTRY 2009; 70:325-47. [PMID: 19217634 DOI: 10.1016/j.phytochem.2008.12.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/01/2008] [Accepted: 12/05/2008] [Indexed: 05/05/2023]
Abstract
Plant family 1 UDP-dependent glycosyltransferases (UGTs) catalyze the glycosylation of a plethora of bioactive natural products. In Arabidopsis thaliana, 120 UGT encoding genes have been identified. The crystal-based 3D structures of four plant UGTs have recently been published. Despite low sequence conservation, the UGTs show a highly conserved secondary and tertiary structure. The sugar acceptor and sugar donor substrates of UGTs are accommodated in the cleft formed between the N- and C-terminal domains. Several regions of the primary sequence contribute to the formation of the substrate binding pocket including structurally conserved domains as well as loop regions differing both with respect to their amino acid sequence and sequence length. In this review we provide a detailed analysis of the available plant UGT crystal structures to reveal structural features determining substrate specificity. The high 3D structural conservation of the plant UGTs render homology modeling an attractive tool for structure elucidation. The accuracy and utility of UGT structures obtained by homology modeling are discussed and quantitative assessments of model quality are performed by modeling of a plant UGT for which the 3D crystal structure is known. We conclude that homology modeling offers a high degree of accuracy. Shortcomings in homology modeling are also apparent with modeling of loop regions remaining as a particularly difficult task.
Collapse
Affiliation(s)
- Sarah A Osmani
- University of Copenhagen, Department of Plant Biology and Biotechnology, Plant Biochemistry Laboratory, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
45
|
Thibodeaux C, Melançon C, Liu HW. Biosynthese von Naturstoffzuckern und enzymatische Glycodiversifizierung. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801204] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Gantt R, Goff R, Williams G, Thorson J. Probing the Aglycon Promiscuity of an Engineered Glycosyltransferase. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803508] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Abstract
Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.
Collapse
Affiliation(s)
- Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, Berne, 3012, Switzerland.
| | | | | |
Collapse
|
48
|
Selective removal of anti-α-Gal antibodies from human serum by using synthetic α-Gal epitope on a core-shell type resin. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0141-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Thibodeaux CJ, Melançon CE, Liu HW. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew Chem Int Ed Engl 2008; 47:9814-59. [PMID: 19058170 PMCID: PMC2796923 DOI: 10.1002/anie.200801204] [Citation(s) in RCA: 335] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many biologically active small-molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and alter the glycosylation patterns of natural products through metabolic pathway engineering and enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity.
Collapse
Affiliation(s)
- Christopher J. Thibodeaux
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Charles E. Melançon
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| | - Hung-wen Liu
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX. (USA), 78712
| |
Collapse
|
50
|
Gantt RW, Goff RD, Williams GJ, Thorson PJS. Probing the aglycon promiscuity of an engineered glycosyltransferase. Angew Chem Int Ed Engl 2008; 47:8889-92. [PMID: 18924204 PMCID: PMC2963038 DOI: 10.1002/anie.200803508] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Richard W. Gantt
- UW National Cooperative Drug Discovery Group, Laboratory for Biosynthetic Chemistry, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Randal D. Goff
- UW National Cooperative Drug Discovery Group, Laboratory for Biosynthetic Chemistry, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Gavin J. Williams
- UW National Cooperative Drug Discovery Group, Laboratory for Biosynthetic Chemistry, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Prof. Jon S. Thorson
- UW National Cooperative Drug Discovery Group, Laboratory for Biosynthetic Chemistry, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|