1
|
Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. MATERIALS 2021; 14:ma14123217. [PMID: 34200889 PMCID: PMC8230458 DOI: 10.3390/ma14123217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Collagen fibres degradation is a complex process involving a variety of enzymes. Fibrillar collagens, namely type I, II, and III, are the most widely spread collagens in human body, e.g., they are responsible for tissue fibrillar structure and skin elasticity. Nevertheless, the hyperactivity of fibrotic process and collagen accumulation results with joints, bone, heart, lungs, kidneys or liver fibroses. Per contra, dysfunctional collagen turnover and its increased degradation leads to wound healing disruption, skin photoaging, and loss of firmness and elasticity. In this review we described the main enzymes participating in collagen degradation pathway, paying particular attention to enzymes degrading fibrillar collagen. Therefore, collagenases (MMP-1, -8, and -13), elastases, and cathepsins, together with their peptide and peptidomimetic inhibitors, are reviewed. This information, related to the design and synthesis of new inhibitors based on peptide structure, can be relevant for future research in the fields of chemistry, biology, medicine, and cosmeceuticals.
Collapse
|
2
|
Development of a colorimetric α-ketoglutarate detection assay for prolyl hydroxylase domain (PHD) proteins. J Biol Chem 2021; 296:100397. [PMID: 33571527 PMCID: PMC7961094 DOI: 10.1016/j.jbc.2021.100397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
Since the discovery of the prolyl hydroxylases domain (PHD) proteins and their canonical hypoxia-inducible factor (HIF) substrate two decades ago, a number of in vitro hydroxylation (IVH) assays for PHD activity have been developed to measure the PHD-HIF interaction. However, most of these assays either require complex proteomics mass spectrometry methods that rely on the specific PHD-HIF interaction or require the handling of radioactive material, as seen in the most commonly used assay measuring [14C]O2 release from labeled [14C]α-ketoglutarate. Here, we report an alternative rapid, cost-effective assay in which the consumption of α-ketoglutarate is monitored by its derivatization with 2,4-dinitrophenylhydrazine (2,4-DNPH) followed by treatment with concentrated base. We extensively optimized this 2,4-DNPH α-ketoglutarate assay to maximize the signal-to-noise ratio and demonstrated that it is robust enough to obtain kinetic parameters of the well-characterized PHD2 isoform comparable with those in published literature. We further showed that it is also sensitive enough to detect and measure the IC50 values of pan-PHD inhibitors and several PHD2 inhibitors in clinical trials for chronic kidney disease (CKD)-induced anemia. Given the efficiency of this assay coupled with its multiwell format, the 2,4-DNPH α-KG assay may be adaptable to explore non-HIF substrates of PHDs and potentially to high-throughput assays.
Collapse
|
3
|
Wang S, Lee KH, Araujo NV, Zhan CG, Rangnekar VM, Xu R. Develop a High-Throughput Screening Method to Identify C-P4H1 (Collagen Prolyl 4-Hydroxylase 1) Inhibitors from FDA-Approved Chemicals. Int J Mol Sci 2020; 21:ijms21186613. [PMID: 32927660 PMCID: PMC7554770 DOI: 10.3390/ijms21186613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Collagen prolyl 4-hydroxylase 1 (C-P4H1) is an α-ketoglutarate (α-KG)-dependent dioxygenase that catalyzes 4-hydroxylation of proline on collagen. C-P4H1-induced prolyl hydroxylation is required for proper collagen deposition and cancer metastasis. Therefore, targeting C-P4H1 is considered a potential therapeutic strategy for collagen-related cancer progression and metastasis. However, no C-P4H1 inhibitors are available for clinical testing, and the high content assay is currently not available for C-P4H1 inhibitor screening. In the present study, we developed a high-throughput screening assay by quantifying succinate, a byproduct of C-P4H-catalyzed hydroxylation. C-P4H1 is the major isoform of collagen prolyl 4-hydroxylases (CP4Hs) that contributes the majority prolyl 4-hydroxylase activity. Using C-P4H1 tetramer purified from the eukaryotic expression system, we showed that the Succinate-GloTM Hydroxylase assay was more sensitive for measuring C-P4H1 activity compared with the hydroxyproline colorimetric assay. Next, we performed high-throughput screening with the FDA-approved drug library and identified several new C-P4H1 inhibitors, including Silodosin and Ticlopidine. Silodosin and Ticlopidine inhibited C-P4H1 activity in a dose-dependent manner and suppressed collagen secretion and tumor invasion in 3D tissue culture. These C-P4H1 inhibitors provide new agents to test clinical potential of targeting C-P4H1 in suppressing cancer progression and metastasis.
Collapse
Affiliation(s)
- Shike Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 789 S. Limestone Rd., Lexington, KY 40536, USA
| | - Kuo-Hao Lee
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA; (K.-H.L.); (C.-G.Z.)
| | - Nathalia Victoria Araujo
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (N.V.A.); (V.M.R.)
| | - Chang-Guo Zhan
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA; (K.-H.L.); (C.-G.Z.)
| | - Vivek M. Rangnekar
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (N.V.A.); (V.M.R.)
- Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 789 S. Limestone Rd., Lexington, KY 40536, USA
- Correspondence: ; Tel.: +1-859-3237889
| |
Collapse
|
4
|
Abstract
Fluorochemicals are a widely distributed class of compounds and have been utilized across a wide range of industries for decades. Given the environmental toxicity and adverse health threats of some fluorochemicals, the development of new methods for their decomposition is significant to public health. However, the carbon-fluorine (C-F) bond is among the most chemically robust bonds; consequently, the degradation of fluorinated hydrocarbons is exceptionally difficult. Here, metalloenzymes that catalyze the cleavage of this chemically challenging bond are reviewed. These enzymes include histidine-ligated heme-dependent dehaloperoxidase and tyrosine hydroxylase, thiolate-ligated heme-dependent cytochrome P450, and four nonheme oxygenases, namely, tetrahydrobiopterin-dependent aromatic amino acid hydroxylase, 2-oxoglutarate-dependent hydroxylase, Rieske dioxygenase, and thiol dioxygenase. While much of the literature regarding the aforementioned enzymes highlights their ability to catalyze C-H bond activation and functionalization, in many cases, the C-F bond cleavage has been shown to occur on fluorinated substrates. A copper-dependent laccase-mediated system representing an unnatural radical defluorination approach is also described. Detailed discussions on the structure-function relationships and catalytic mechanisms provide insights into biocatalytic defluorination, which may inspire drug design considerations and environmental remediation of halogenated contaminants.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemistry, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249, USA.
| | | |
Collapse
|
5
|
Strowitzki MJ, Cummins EP, Taylor CT. Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous? Cells 2019; 8:cells8050384. [PMID: 31035491 PMCID: PMC6562979 DOI: 10.3390/cells8050384] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
All metazoans that utilize molecular oxygen (O2) for metabolic purposes have the capacity to adapt to hypoxia, the condition that arises when O2 demand exceeds supply. This is mediated through activation of the hypoxia-inducible factor (HIF) pathway. At physiological oxygen levels (normoxia), HIF-prolyl hydroxylases (PHDs) hydroxylate proline residues on HIF-α subunits leading to their destabilization by promoting ubiquitination by the von-Hippel Lindau (VHL) ubiquitin ligase and subsequent proteasomal degradation. HIF-α transactivation is also repressed in an O2-dependent way due to asparaginyl hydroxylation by the factor-inhibiting HIF (FIH). In hypoxia, the O2-dependent hydroxylation of HIF-α subunits by PHDs and FIH is reduced, resulting in HIF-α accumulation, dimerization with HIF-β and migration into the nucleus to induce an adaptive transcriptional response. Although HIFs are the canonical substrates for PHD- and FIH-mediated protein hydroxylation, increasing evidence indicates that these hydroxylases may also have alternative targets. In addition to PHD-conferred alterations in protein stability, there is now evidence that hydroxylation can affect protein activity and protein/protein interactions for alternative substrates. PHDs can be pharmacologically inhibited by a new class of drugs termed prolyl hydroxylase inhibitors which have recently been approved for the treatment of anemia associated with chronic kidney disease. The identification of alternative targets of HIF hydroxylases is important in order to fully elucidate the pharmacology of hydroxylase inhibitors (PHI). Despite significant technical advances, screening, detection and verification of alternative functional targets for PHDs and FIH remain challenging. In this review, we discuss recently proposed non-HIF targets for PHDs and FIH and provide an overview of the techniques used to identify these.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoin P Cummins
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Cormac T Taylor
- UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Milan M, Bietti M, Costas M. Enantioselective aliphatic C-H bond oxidation catalyzed by bioinspired complexes. Chem Commun (Camb) 2018; 54:9559-9570. [PMID: 30039814 DOI: 10.1039/c8cc03165g] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enantioselective aliphatic C-H bond oxidation simultaneously installs functionality and chirality into hydrocarbon units, converting in a single step readily available, inexpensive and typically inert hydrocarbons into precious building blocks for organic synthesis. The reaction remains however an open problem eager for catalyst development and improvement. Metal complexes reproducing structural and reactivity aspects of oxygenases are emerging as promising homogeneous catalysts for this class of reactions. The present work reviews the current status of field, analyzing the difficulties of the reaction, discussing principles of catalyst design, and critically highlighting the limitations of the current state-of-the-art methodologies.
Collapse
Affiliation(s)
- Michela Milan
- QBIS Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain.
| | | | | |
Collapse
|
7
|
Abstract
Collagen is the dominant protein of the extracellular matrix. Its distinguishing feature is a three-stranded helix of great tensile strength. (2 S,4 R)-4-Hydroxyproline residues are essential for the stability of this triple helix. These residues arise from the post-translational modification of (2 S)-proline residues by collagen prolyl 4-hydroxylases (CP4Hs), which are members of the Fe(II)- and α-ketoglutarate (AKG)-dependent dioxygenase family. Here, we provide a framework for the inhibition of CP4Hs as the basis for treating fibrotic diseases and cancer metastasis. We begin with a summary of the structure and enzymatic reaction mechanism of CP4Hs. Then, we review the metal ions, metal chelators, mimetics of AKG and collagen strands, and natural products that are known to inhibit CP4Hs. Our focus is on inhibitors with potential utility in the clinic. We conclude with a prospectus for more effective inhibitors.
Collapse
Affiliation(s)
| | - Ronald T Raines
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
8
|
Vasta JD, Choudhary A, Jensen KH, McGrath NA, Raines RT. Prolyl 4-Hydroxylase: Substrate Isosteres in Which an (E)- or (Z)-Alkene Replaces the Prolyl Peptide Bond. Biochemistry 2016; 56:219-227. [PMID: 28001367 DOI: 10.1021/acs.biochem.6b00976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Collagen prolyl 4-hydroxylases (CP4Hs) catalyze a prevalent posttranslational modification, the hydroxylation of (2S)-proline residues in protocollagen strands. The ensuing (2S,4R)-4-hydroxyproline residues are necessary for the conformational stability of the collagen triple helix. Prolyl peptide bonds isomerize between cis and trans isomers, and the preference of the enzyme is unknown. We synthesized alkene isosteres of the cis and trans isomers to probe the conformational preferences of human CP4H1. We discovered that the presence of a prolyl peptide bond is necessary for catalysis. The cis isostere is, however, an inhibitor with a potency greater than that of the trans isostere, suggesting that the cis conformation of a prolyl peptide bond is recognized preferentially. Comparative studies with a Chlamydomonas reinhardtii P4H, which has a similar catalytic domain but lacks an N-terminal substrate-binding domain, showed a similar preference for the cis isostere. These findings support the hypothesis that the catalytic domain of CP4Hs recognizes the cis conformation of the prolyl peptide bond and inform the use of alkenes as isosteres for peptide bonds.
Collapse
Affiliation(s)
- James D Vasta
- Department of Biochemistry, ‡Graduate Program in Biophysics, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Amit Choudhary
- Department of Biochemistry, ‡Graduate Program in Biophysics, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Katrina H Jensen
- Department of Biochemistry, ‡Graduate Program in Biophysics, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Nicholas A McGrath
- Department of Biochemistry, ‡Graduate Program in Biophysics, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Ronald T Raines
- Department of Biochemistry, ‡Graduate Program in Biophysics, and §Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Choudhary A, Kamer KJ, Shoulders MD, Raines RT. 4-ketoproline: An electrophilic proline analog for bioconjugation. Biopolymers 2016; 104:110-5. [PMID: 25656588 DOI: 10.1002/bip.22620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/05/2015] [Accepted: 01/24/2015] [Indexed: 12/15/2022]
Abstract
Installing an electrophilic amino-acid residue can engender a peptide or protein with chemoselective reactivity. Such a modification to collagen, which is the most abundant protein in animals, could facilitate the development of new biomaterials. Collagen has an abundance of proline-like residues. Here, we report on the incorporation of an electrophilic proline congener, (2S)-4-ketoproline (Kep), into a collagen-mimetic peptide (CMP). An ab initio conformational analysis of Kep revealed its potential to be accommodated within a collagen triple helix. A synthetic CMP containing a Kep residue was indeed able to form a stable triple helix. Moreover, the condensation of its carbonyl group with aminooxy-biotin did not compromise the conformational stability of the triple helix. These data encourage the use of 4-ketoproline as an electrophilic congener of proline.
Collapse
Affiliation(s)
- Amit Choudhary
- Graduate Program in Biophysics, University of Wisconsin-Madison, Madison, WI
| | | | | | | |
Collapse
|
10
|
Yevglevskis M, Lee GL, Sun J, Zhou S, Sun X, Kociok-Köhn G, James TD, Woodman TJ, Lloyd MD. A study on the AMACR catalysed elimination reaction and its application to inhibitor testing. Org Biomol Chem 2016; 14:612-622. [PMID: 26537174 PMCID: PMC4718014 DOI: 10.1039/c5ob01541c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
α-Methylacyl-CoA racemase (AMACR; P504S) catalyses a key step in the degradation of branched-chain fatty acids and is important for the pharmacological activation of Ibuprofen and related drugs. Levels of AMACR are increased in prostate and other cancers, and it is a drug target. Development of AMACR as a drug target is hampered by lack of a convenient assay. AMACR irreversibly catalyses the elimination of HF from 3-fluoro-2-methylacyl-CoA substrates, and this reaction was investigated for use as an assay. Several known inhibitors and alternative substrates reduced conversion of 3-fluoro-2-methyldecanoyl-CoA by AMACR, as determined by (1)H NMR. The greatest reduction of activity was observed with known potent inhibitors. A series of novel acyl-CoA esters with aromatic side chains were synthesised for testing as chromophoric substrates. These acyl-CoA esters were converted to unsaturated products by AMACR, but their use was limited by non-enzymatic elimination. Fluoride sensors were also investigated as a method of quantifying released fluoride and thus AMACR activity. These sensors generally suffered from high background signal and lacked reproducibility under the assay conditions. In summary, the elimination reaction can be used to characterise inhibitors, but it was not possible to develop a convenient colorimetric or fluorescent assay using 3-fluoro-2-methylacyl-CoA substrates.
Collapse
Affiliation(s)
- Maksims Yevglevskis
- Medicinal Chemistry , Department of Pharmacy & Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , UK . ; Fax: +44 (0)1225 386114
| | - Guat L. Lee
- Medicinal Chemistry , Department of Pharmacy & Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , UK . ; Fax: +44 (0)1225 386114
| | - Jenny Sun
- Medicinal Chemistry , Department of Pharmacy & Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , UK . ; Fax: +44 (0)1225 386114
- Department of Pharmacy , Shandong University , People's Republic of China
| | - Shiyi Zhou
- Medicinal Chemistry , Department of Pharmacy & Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , UK . ; Fax: +44 (0)1225 386114
- Department of Pharmacy , Shandong University , People's Republic of China
| | - Xiaolong Sun
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , UK
| | - Gabriele Kociok-Köhn
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , UK
| | - Tony D. James
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , UK
| | - Timothy J. Woodman
- Medicinal Chemistry , Department of Pharmacy & Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , UK . ; Fax: +44 (0)1225 386114
| | - Matthew D. Lloyd
- Medicinal Chemistry , Department of Pharmacy & Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , UK . ; Fax: +44 (0)1225 386114
| |
Collapse
|
11
|
Newberry RW, Raines RT. 4-Fluoroprolines: Conformational Analysis and Effects on the Stability and Folding of Peptides and Proteins. TOPICS IN HETEROCYCLIC CHEMISTRY 2016; 48:1-25. [PMID: 28690684 PMCID: PMC5501414 DOI: 10.1007/7081_2015_196] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proline is unique among proteinogenic amino acids because a pyrrolidine ring links its amino group to its side chain. This heterocycle constrains the conformations of the main chain and thus templates particular secondary structures. Proline residues undergo post-translational modification at the 4-position to yield 4-hydroxyproline, which is especially prevalent in collagen. Interest in characterizing the effects of this modification led to the use of 4-fluoroprolines to enhance inductive properties relative to the hydroxyl group of 4-hydroxyproline and to eliminate contributions from hydrogen bonding. The strong inductive effect of the fluoro group has three main consequences: enforcing a particular pucker upon the pyrrolidine ring, biasing the conformation of the preceding peptide bond, and accelerating cis/trans prolyl peptide bond isomerization. These subtle, yet reliable modulations make 4-fluoroproline-incorporation a complement to traditional genetic approaches for exploring structure-function relationships in peptides and proteins, as well as for endowing peptides and proteins with conformational stability.
Collapse
Affiliation(s)
- Robert W Newberry
- Departments of Chemistry and Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Ronald T Raines
- Departments of Chemistry and Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
12
|
Vasta JD, Higgin JJ, Kersteen EA, Raines RT. Bioavailable affinity label for collagen prolyl 4-hydroxylase. Bioorg Med Chem 2013; 21:3597-601. [PMID: 23702396 DOI: 10.1016/j.bmc.2013.04.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/14/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022]
Abstract
Collagen is the most abundant protein in animals. Its prevalent 4-hydroxyproline residues contribute greatly to its conformational stability. The hydroxyl groups arise from a post-translational modification catalyzed by the nonheme iron-dependent enzyme, collagen prolyl 4-hydroxylase (P4H). Here, we report that 4-oxo-5,6-epoxyhexanoate, a mimic of the α-ketoglutarate co-substrate, inactivates human P4H. The inactivation installs a ketone functionality in P4H, providing a handle for proteomic experiments. Caenorhabditis elegans exposed to the esterified epoxy ketone displays the phenotype of a worm lacking P4H. Thus, this affinity label can be used to mediate collagen stability in an animal, as is desirable in the treatment of a variety of fibrotic diseases.
Collapse
Affiliation(s)
- James D Vasta
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA
| | | | | | | |
Collapse
|
13
|
Rydzik AM, Leung IKH, Kochan GT, Thalhammer A, Oppermann U, Claridge TDW, Schofield CJ. Development and Application of a Fluoride-Detection-Based Fluorescence Assay for γ-Butyrobetaine Hydroxylase. Chembiochem 2012; 13:1559-63. [DOI: 10.1002/cbic.201200256] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Indexed: 01/30/2023]
|
14
|
Salwiczek M, Nyakatura EK, Gerling UIM, Ye S, Koksch B. Fluorinated amino acids: compatibility with native protein structures and effects on protein-protein interactions. Chem Soc Rev 2011; 41:2135-71. [PMID: 22130572 DOI: 10.1039/c1cs15241f] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorinated analogues of the canonical α-L-amino acids have gained widespread attention as building blocks that may endow peptides and proteins with advantageous biophysical, chemical and biological properties. This critical review covers the literature dealing with investigations of peptides and proteins containing fluorinated analogues of the canonical amino acids published over the course of the past decade including the late nineties. It focuses on side-chain fluorinated amino acids, the carbon backbone of which is identical to their natural analogues. Each class of amino acids--aliphatic, aromatic, charged and polar as well as proline--is presented in a separate section. General effects of fluorine on essential properties such as hydrophobicity, acidity/basicity and conformation of the specific side chains and the impact of these altered properties on stability, folding kinetics and activity of peptides and proteins are discussed (245 references).
Collapse
Affiliation(s)
- Mario Salwiczek
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
15
|
Osmekhina E, Neubauer A, Klinzing K, Myllyharju J, Neubauer P. Sandwich ELISA for quantitative detection of human collagen prolyl 4-hydroxylase. Microb Cell Fact 2010; 9:48. [PMID: 20565744 PMCID: PMC2895579 DOI: 10.1186/1475-2859-9-48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/17/2010] [Indexed: 11/28/2022] Open
Abstract
Background We describe a method for specific, quantitative and quick detection of human collagen prolyl 4-hydroxylase (C-P4H), the key enzyme for collagen prolyl-4 hydroxylation, in crude samples based on a sandwich ELISA principle. The method is relevant to active C-P4H level monitoring during recombinant C-P4H and collagen production in different expression systems. The assay proves to be specific for the active C-P4H α2β2 tetramer due to the use of antibodies against its both subunits. Thus in keeping with the method C-P4H is captured by coupled to an anti-α subunit antibody magnetic beads and an anti-β subunit antibody binds to the PDI/β subunit of the protein. Then the following holoenzyme detection is accomplished by a goat anti-rabbit IgG labeled with alkaline phosphatase which AP catalyzes the reaction of a substrate transformation with fluorescent signal generation. Results We applied an experimental design approach for the optimization of the antibody concentrations used in the sandwich ELISA. The assay sensitivity was 0.1 ng of C-P4H. The method was utilized for the analysis of C-P4H accumulation in crude cell extracts of E. coli overexpressing C-P4H. The sandwich ELISA signals obtained demonstrated a very good correlation with the detected protein activity levels measured with the standard radioactive assay. The developed assay was applied to optimize C-P4H production in E. coli Origami in a system where the C-P4H subunits expression acted under control by different promoters. The experiments performed in a shake flask fed-batch system (EnBase®) verified earlier observations that cell density and oxygen supply are critical factors for the use of the inducer anhydrotetracycline and thus for the soluble C-P4H yield. Conclusions Here we show an example of sandwich ELISA usage for quantifying multimeric proteins. The method was developed for monitoring the amount of recombinant C-P4H tetramer in crude E. coli extracts. Due to the specificity of the antibodies used in the assay against the different C-P4H subunits, the method detects the entire holoenzyme, and the signal is not disturbed by background expression of the separate subunits.
Collapse
Affiliation(s)
- Ekaterina Osmekhina
- Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, P.O. Box 4300, FIN-90014 University of Oulu, Finland.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Posttranslational modifications can cause profound changes in protein function. Typically, these modifications are reversible, and thus provide a biochemical on-off switch. In contrast, proline residues are the substrates for an irreversible reaction that is the most common posttranslational modification in humans. This reaction, which is catalyzed by prolyl 4-hydroxylase (P4H), yields (2S,4R)-4-hydroxyproline (Hyp). The protein substrates for P4Hs are diverse. Likewise, the biological consequences of prolyl hydroxylation vary widely, and include altering protein conformation and protein-protein interactions, and enabling further modification. The best known role for Hyp is in stabilizing the collagen triple helix. Hyp is also found in proteins with collagen-like domains, as well as elastin, conotoxins, and argonaute 2. A prolyl hydroxylase domain protein acts on the hypoxia inducible factor alpha, which plays a key role in sensing molecular oxygen, and could act on inhibitory kappaB kinase and RNA polymerase II. P4Hs are not unique to animals, being found in plants and microbes as well. Here, we review the enzymic catalysts of prolyl hydroxylation, along with the chemical and biochemical consequences of this subtle but abundant posttranslational modification.
Collapse
Affiliation(s)
- Kelly L. Gorres
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, U.S.A
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, U.S.A
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, U.S.A
| |
Collapse
|
17
|
Gorres KL, Pua KH, Raines RT. Stringency of the 2-His-1-Asp active-site motif in prolyl 4-hydroxylase. PLoS One 2009; 4:e7635. [PMID: 19890397 PMCID: PMC2767507 DOI: 10.1371/journal.pone.0007635] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/06/2009] [Indexed: 11/18/2022] Open
Abstract
The non-heme iron(II) dioxygenase family of enzymes contain a common 2-His-1-carboxylate iron-binding motif. These enzymes catalyze a wide variety of oxidative reactions, such as the hydroxylation of aliphatic C-H bonds. Prolyl 4-hydroxylase (P4H) is an alpha-ketoglutarate-dependent iron(II) dioxygenase that catalyzes the post-translational hydroxylation of proline residues in protocollagen strands, stabilizing the ensuing triple helix. Human P4H residues His412, Asp414, and His483 have been identified as an iron-coordinating 2-His-1-carboxylate motif. Enzymes that catalyze oxidative halogenation do so by a mechanism similar to that of P4H. These halogenases retain the active-site histidine residues, but the carboxylate ligand is replaced with a halide ion. We replaced Asp414 of P4H with alanine (to mimic the active site of a halogenase) and with glycine. These substitutions do not, however, convert P4H into a halogenase. Moreover, the hydroxylase activity of D414A P4H cannot be rescued with small molecules. In addition, rearranging the two His and one Asp residues in the active site eliminates hydroxylase activity. Our results demonstrate a high stringency for the iron-binding residues in the P4H active site. We conclude that P4H, which catalyzes an especially demanding chemical transformation, is recalcitrant to change.
Collapse
Affiliation(s)
- Kelly L. Gorres
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Khian Hong Pua
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|