1
|
Eligini S, Porro B, Werba JP, Capra N, Genovese S, Greco A, Cavalca V, Banfi C. Oxidative Stress and Arginine/Nitric Oxide Pathway in Red Blood Cells Derived from Patients with Prediabetes. Biomedicines 2022; 10:biomedicines10061407. [PMID: 35740426 PMCID: PMC9219800 DOI: 10.3390/biomedicines10061407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022] Open
Abstract
The effects of the oral glucose tolerance test (OGTT) on red blood cells (RBCs) have not been thoroughly investigated, although it is known that the ingestion of 75 g of glucose during OGTT results in a systemic state of inflammation and oxidative stress. Therefore, we evaluated the effect of OGTT on oxidative stress and L-arginine/Nitric Oxide (L-Arg/NO) metabolic pathway in RBCs obtained from patients with prediabetes. Blood samples were collected from all participants before (T0) and at 10 (T1), 20 (T2), 30 (T3), 60 (T4), 90 (T5), 120 (T6), 150 (T7), and 180 (T8) minutes after glucose loading. Results showed a significant increase in oxidative stress status characterized by a rise in the GSSG/GSH ratio at T4 and T6 that increased in parallel with a reduction of NO production in RBCs. In addition, in this time frame, increased exposure of phosphatidylserine on RBCs membrane was observed. These metabolic modifications were rescued at T8, together with an increase in activated RBC NO synthase expression. These findings provide a possible explanation of the phenomena occurring after glucose loading and suggest that, even in the early stages of diabetes, it may be important to avoid acute variations in glycemia in order to prevent diabetic complications.
Collapse
Affiliation(s)
- Sonia Eligini
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (S.E.); (B.P.); (N.C.); (S.G.); (A.G.); (C.B.)
| | - Benedetta Porro
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (S.E.); (B.P.); (N.C.); (S.G.); (A.G.); (C.B.)
| | - José Pablo Werba
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (S.E.); (B.P.); (N.C.); (S.G.); (A.G.); (C.B.)
- Correspondence:
| | - Nicolò Capra
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (S.E.); (B.P.); (N.C.); (S.G.); (A.G.); (C.B.)
| | - Stefano Genovese
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (S.E.); (B.P.); (N.C.); (S.G.); (A.G.); (C.B.)
| | - Arianna Greco
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (S.E.); (B.P.); (N.C.); (S.G.); (A.G.); (C.B.)
| | - Viviana Cavalca
- Dipartimento di Scienze Cliniche e di Comunità, Università Degli Studi di Milano, 20122 Milano, Italy;
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, 20138 Milano, Italy; (S.E.); (B.P.); (N.C.); (S.G.); (A.G.); (C.B.)
| |
Collapse
|
2
|
Porro B, Eligini S, Conte E, Cosentino N, Capra N, Cavalca V, Banfi C. An Optimized MRM-Based Workflow of the l-Arginine/Nitric Oxide Pathway Metabolites Revealed Disease- and Sex-Related Differences in the Cardiovascular Field. Int J Mol Sci 2022; 23:ijms23031136. [PMID: 35163055 PMCID: PMC8835333 DOI: 10.3390/ijms23031136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical data indicate that low circulating l-homoarginine (HArg) concentrations are associated with cardiovascular (CV) disease, CV mortality, and all-cause mortality. A high number of LC-based analytical methods for the quantification of HArg, in combination with the l-arginine (Arg)-related pathway metabolites, have been reported. However, these methods usually consider a limited panel of analytes. Thus, in order to achieve a comprehensive picture of the Arg metabolism, we described an improved targeted metabolomic approach based on a multiple reaction monitoring (MRM) mass spectrometry method for the simultaneous quantification of the Arg/nitric oxide (NO) pathway metabolites. This methodology was then employed to quantify the plasma concentrations of these analytes in a cohort of individuals with different grades/types of coronary artery disease (CAD) in order to increase knowledge about the role of HArg and its associated metabolites in the CV field. Our results showed that the MRM method here implemented is suitable for the simultaneous assessment of a wide panel of amino acids involved in the Arg/NO metabolic pathway in plasma samples from patients with CV disease. Further, our findings highlighted an impairment of the Arg/NO metabolic pathway, and suggest a sex-dependent regulation of this metabolic route.
Collapse
|
3
|
Unlu A, Eryavuz Onmaz D, Abusoglu S, Abusoglu G. HPLC and LC-MS/MS measurement methods for the quantification of asymmetric dimethylarginine (ADMA) and related metabolites. TURKISH JOURNAL OF BIOCHEMISTRY 2021; 46:327-347. [DOI: 10.1515/tjb-2020-0150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Methyl arginine derivatives such as asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), L-N-monomethyl arginine (L-NMMA) are formed by proteolytic catalysis following methylation of arginine residues in proteins. These metabolites reduce NO production. Methylated arginines are an important biomarker for various diseases such as cardiovascular and renal diseases. Therefore, many methods have been developed to reliably and accurately measure the levels of these metabolites. This review, HPLC and LC-MS/MS methods developed for the measurement of methylarginine derivatives are discussed. In HPLC methods, solid phase extraction, derivatization and subsequent separation by reverse phase chromatography were performed. Since these metabolites are polar, they are difficult to retain in conventional reverse phase columns. In addition, as serum levels of these metabolites are low, sensitivity problems have been observed in HPLC methods. Derivatization has been applied to eliminate these problems. However, there have been problems with the stability of derivatives formed. Another important problem is that the separation of stereoisomer ADMA and SDMA can only be achieved chromatographically. Tandem mass spectrometric methods are accurate, selective, sensitive and rapid since analytes are separated depending on m/z ratios rather than chromatographic separation. Therefore, tandem mass spectrometry methods might be considered as the goal standard for these analytes.
Collapse
Affiliation(s)
- Ali Unlu
- Department of Biochemistry , Selcuk University Faculty of Medicine , Konya , Turkey
| | - Duygu Eryavuz Onmaz
- Department of Biochemistry , Selcuk University Faculty of Medicine , Konya , Turkey
| | - Sedat Abusoglu
- Department of Biochemistry , Selcuk University Faculty of Medicine , Konya , Turkey
| | - Gulsum Abusoglu
- Department of Medical Laboratory Techniques , Selcuk University Vocational School of Health , Konya , Turkey
| |
Collapse
|
4
|
Amadio P, Porro B, Cavalca V, Barbieri SS, Eligini S, Fiorelli S, Di Minno A, Gorini A, Giuliani M, Werba JP, Cosentino N, Olivares P, Barbieri S, Veglia F, Tremoli E, Trabattoni D. Persistent long-term platelet activation and endothelial perturbation in women with Takotsubo syndrome. Biomed Pharmacother 2021; 136:111259. [PMID: 33450492 DOI: 10.1016/j.biopha.2021.111259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Takotsubo (TTS) syndrome is an acute cardiac condition characterized by transient and reversible left ventricle dysfunction that mainly affects postmenopausal women. Catecholamine burst is the most accredited mechanism underpinning TTS onset and leading to endothelial dysfunction and platelet activation. Even if the use of low dose acetylsalycilic acid (ASA) in this clinical setting is based on both clinical presentation and unfavorable long-term prognosis, its efficacy has been recently challenged. AIM This study was designed to assess endothelial function, residual thromboxane formation and platelet aggregation in TTS women on low-dose ASA treatment at long-term follow-up. METHODS Twenty-eight females with previously diagnosis of TTS syndrome were enrolled. Data were compared to those obtained from 23 coronary artery disease (CAD) women with a history of acute myocardial infarction, and 26 control subjects with no TTS or clinically evident CAD. Psychological and clinical profile were assessed in all study groups at the enrollment. Main metabolites involved in L-arginine/nitric oxide pathway, urinary prostacyclin, serum and urine thromboxane metabolites were measured by LCMS/MS methods. Thrombomodulin levels were quantified using an ELISA kit, and platelet aggregation, carried out on platelet rich-plasma, was induced by ADP or by epinephrine (EPI), norepinephrine (NORE) and TRAP-6, alone or in association with ADP and evaluated by Born's method. RESULTS In TTS women an endothelial derangement, characterized by reduced citrulline production and increased thrombomodulin concentration, with no perturbation in prostacyclin levels, was evidenced. In addition, despite ASA treatment, TTS displayed a higher residual thromboxane formation, in parallel with an enhanced platelet response to compared to CAD. CONCLUSIONS Our study highlighted the presence of endothelial perturbation in TTS patients even at long-term from the index event. The residual thromboxane production and platelet aggregation still leave open the question about the use of low dose ASA in this clinical setting.
Collapse
Affiliation(s)
| | | | | | | | - Sonia Eligini
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | | | | | - Alessandra Gorini
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | | | | | | | | | - Elena Tremoli
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | | |
Collapse
|
5
|
Moschetta D, Di Minno MND, Porro B, Perrucci GL, Valerio V, Alfieri V, Massaiu I, Orekhov AN, Di Minno A, Songia P, Cavalca V, Myasoedova VA, Poggio P. Relationship Between Plasma Osteopontin and Arginine Pathway Metabolites in Patients With Overt Coronary Artery Disease. Front Physiol 2020; 11:982. [PMID: 32848891 PMCID: PMC7424048 DOI: 10.3389/fphys.2020.00982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Osteopontin (OPN) is involved in ectopic calcification. Its circulating form is upregulated in coronary artery disease (CAD) patients. Circulating OPN levels positively correlate with oxidative stress, one of the major triggers of endothelial dysfunction. Endothelial dysfunction is, in turn, associated with reduced nitric oxide (NO) bioavailability due to the impaired arginine pathway. The aim of this study was to better understand the correlations between OPN, oxidative stress markers, and the arginine pathway metabolites. Methods and Results ELISA and mass spectrometry techniques have been used to evaluate circulating OPN and arginine pathway/oxidative stress metabolites, respectively, in twenty-five control subjects and thirty-three patients with overt atherosclerosis. OPN positively correlates with 2,3-dinor-8isoPGF2a levels (p = 0.02), ornithine (p = 0.01), ADMA (p = 0.001), SDMA (p = 0.03), and citrulline (p = 0.008) levels only in CAD patients. In addition, citrulline positively correlated with ADMA (p = 0.02) levels, possibly as result of other sources of citrulline biosynthetic pathways. Conclusion The association between OPN and impaired arginine/NO pathway could play a role in the inhibition of endothelial NO synthase (eNOS) and/or in the arginase activation in the context of CAD patients. However, further studies are needed to verify the cause-effect relationship between OPN, oxidative stress, and arginine/NO pathway dysregulation.
Collapse
Affiliation(s)
- Donato Moschetta
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy.,Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | | | - Benedetta Porro
- Unità di Metabolomica, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gianluca L Perrucci
- Unità di Medicina Rigenerativa e Biologia Vascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Vincenza Valerio
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy.,Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Valentina Alfieri
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Ilaria Massaiu
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, Russia
| | - Alessandro Di Minno
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Paola Songia
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Viviana Cavalca
- Unità di Metabolomica, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Veronika A Myasoedova
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Paolo Poggio
- Unità per lo Studio delle Patologie Aortiche, Valvolari e Coronariche, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
6
|
Porro B, Songia P, Myasoedova VA, Valerio V, Moschetta D, Gripari P, Fusini L, Cavallotti L, Canzano P, Turnu L, Alamanni F, Camera M, Cavalca V, Poggio P. Endothelial Dysfunction in Patients with Severe Mitral Regurgitation. J Clin Med 2019; 8:jcm8060835. [PMID: 31212807 PMCID: PMC6616454 DOI: 10.3390/jcm8060835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/05/2023] Open
Abstract
Mitral valve prolapse (MVP) is the most common cause of severe mitral regurgitation. It has been reported that MVP patients—candidates for mitral valve repair (MVRep)—showed an alteration in the antioxidant defense systems as well as in the L-arginine metabolic pathway. In this study, we investigate if oxidative stress and endothelial dysfunction are an MVP consequence or driving factors. Forty-five patients undergoing MVRep were evaluated before and 6 months post surgery and compared to 29 controls. Oxidized (GSSG) and reduced (GSH) forms of glutathione, and L-arginine metabolic pathway were analyzed using liquid chromatography-tandem mass spectrometry methods while osteoprotegerin (OPG) through the ELISA kit and circulating endothelial microparticles (EMP) by flow cytometry. Six-month post surgery, in MVP patients, the GSSG/GSH ratio decreased while symmetric and asymmetric dimethylarginines levels remained comparable to the baseline. Conversely, OPG levels significantly increased when compared to their baseline. Finally, pre-MVRep EMP levels were significantly higher in patients than in controls and did not change post surgery. Overall, these results highlight that MVRep completely restores the increased oxidative stress levels, as evidenced in MVP patients. Conversely, no amelioration of endothelial dysfunction was evidenced after surgery. Thus, therapies aimed to restore a proper endothelial function before and after surgical repair could benefit MVP patients.
Collapse
Affiliation(s)
- Benedetta Porro
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Paola Songia
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | | | - Vincenza Valerio
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80138 Naples, Italy.
| | | | - Paola Gripari
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Laura Fusini
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | | | - Paola Canzano
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Linda Turnu
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | | | - Marina Camera
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Viviana Cavalca
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| | - Paolo Poggio
- Centro Cardiologico Monzino, I.R.C.C.S., 20138 Milan, Italy.
| |
Collapse
|
7
|
LC-QTOF-MS-based targeted metabolomics of arginine-creatine metabolic pathway-related compounds in plasma: application to identify potential biomarkers in pediatric chronic kidney disease. Anal Bioanal Chem 2015; 408:747-60. [DOI: 10.1007/s00216-015-9153-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/15/2015] [Accepted: 10/27/2015] [Indexed: 12/25/2022]
|
8
|
Tsikas D. WITHDRAWN: Editor's Forum. Redox Biol 2015; 5:151-152. [DOI: 10.1016/j.redox.2015.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
|
10
|
Cheng D, Zhu H. Determination of L-arginine content in Radix isatidis by a composite fluorescent probe of Pd (II). J Food Drug Anal 2014; 22:537-541. [PMID: 28911471 PMCID: PMC9355012 DOI: 10.1016/j.jfda.2014.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 11/30/2022] Open
Abstract
In the presence of Britton-Robinson buffer solution (pH = 9.5) and surfactant of Tween-80, fluorescence intensity of calcein was quenched by Pd2+. However, the fluorescence intensity can be enhanced after adding a certain concentration of L-arginine, and the rate of the enhancement showed a good liner relationship with the added amount of L-arginine. We then established a fluorescence spectrometry for the determination of L-arginine. In addition, the linear range, along with detection limit, was different when the slit width changed. Thus, we could use a different slit width to meet our requirements according to the samples we treated. By testing actual samples and the reliability of our method, we found that our method was reliable for determining the content of L-arginine in Radix isatidis.
Collapse
Affiliation(s)
- Dingxi Cheng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang City, Henan Province, People's Republic of China.
| | - Huiyu Zhu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang City, Henan Province, People's Republic of China
| |
Collapse
|
11
|
Nitric oxide synthetic pathway in patients with microvascular angina and its relations with oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:726539. [PMID: 24864190 PMCID: PMC4016928 DOI: 10.1155/2014/726539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/28/2014] [Accepted: 03/29/2014] [Indexed: 11/17/2022]
Abstract
A decreased nitric oxide (NO) bioavailability and an increased oxidative stress play a pivotal role in different cardiovascular pathologies. As red blood cells (RBCs) participate in NO formation in the bloodstream, the aim of this study was to outline the metabolic profile of L-arginine (Arg)/NO pathway and of oxidative stress status in RBCs and in plasma of patients with microvascular angina (MVA), investigating similarities and differences with respect to coronary artery disease (CAD) patients or healthy controls (Ctrl). Analytes involved in Arg/NO pathway and the ratio of oxidized and reduced forms of glutathione were measured by LC-MS/MS. The arginase and the NO synthase (NOS) expression were evaluated by immunofluorescence staining. RBCs from MVA patients show increased levels of NO synthesis inhibitors, parallel to that found in plasma, and a reduction of NO synthase expression. When summary scores were computed, both patient groups were associated with a positive oxidative score and a negative NO score, with the CAD group located in a more extreme position with respect to Ctrl. This finding points out to an impairment of the capacity of RBCs to produce NO in a pathological condition characterized mostly by alterations at the microvascular bed with no significant coronary stenosis.
Collapse
|
12
|
Martens-Lobenhoffer J, Bode-Böger SM. Mass spectrometric quantification of L-arginine and its pathway related substances in biofluids: the road to maturity. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 964:89-102. [PMID: 24210895 DOI: 10.1016/j.jchromb.2013.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/18/2022]
Abstract
The amino acid L-arginine together with its metabolites and related substances is in the center of many biologically important pathways, especially the urea cycle and the nitric oxide (NO) synthesis. Therefore, the concentrations of these substances in various biological fluids are of great interest as predictive markers for health and disease. Yet, they provide major analytical difficulties as they are very polar in nature and therefore not easily to be separated on standard reversed phase HPLC stationary phases. Furthermore, as endogenous substances, no analyte-free matrix is available, a fact that results in complicated calibration procedures. This review evaluates the analytical literature for the determination of L-arginine, symmetric dimethylarginine, asymmetric dimethylarginine, monomethylarginine, L-citrulline, L-ornithine, L-homoarginine, agmatine and dimethylguanidinovaleric acid in biological fluids. Papers are discussed, which were published since 2007 and describe methods applying capillary electrophoresis (CE), gas chromatography (GC), reversed phase HPLC or polar phase HPLC, coupled to mass spectrometric quantification. Nowadays, many carefully developed and validated methods for L-arginine and its related substances are available to the scientific community. The use of stable isotope labeled internal standards enables high precision and accuracy in mass spectrometry-based quantitative analysis.
Collapse
Affiliation(s)
| | - Stefanie M Bode-Böger
- Institute of Clinical Pharmacology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
13
|
Cavalca V, Tremoli E, Porro B, Veglia F, Myasoedova V, Squellerio I, Manzone D, Zanobini M, Trezzi M, Di Minno MND, Werba JP, Tedesco C, Alamanni F, Parolari A. Oxidative stress and nitric oxide pathway in adult patients who are candidates for cardiac surgery: patterns and differences. Interact Cardiovasc Thorac Surg 2013; 17:923-30. [PMID: 24014619 DOI: 10.1093/icvts/ivt386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We investigated whether oxidative stress and the arginine/nitric oxide pathway differ in control subjects and in adult patients who are candidates for the three most common cardiac surgical operations: coronary bypass surgery, aortic valve replacement for calcific non-rheumatic aortic stenosis or mitral valve repair for degenerative mitral insufficiency. METHODS In this prospective observational study, we studied 165 consecutive patients undergoing surgery from January to June 2011 (coronary bypass surgery, n = 63; aortic valve replacement for calcific non-rheumatic aortic stenosis, n = 51; mitral valve repair for degenerative mitral insufficiency, n = 51). Thirty-three healthy subjects with cardiovascular risk factors similar to surgery patients were also studied (Controls). Oxidative stress (the ratio of reduced and oxidized glutathione and urinary isoprostane), antioxidants (alpha- and gamma tocopherol) and factors involved in nitric oxide synthesis (arginine, symmetric and asymmetric dimethylarginine) were measured before surgery. Analysis of variance general linear models and principal component analysis were used for statistical analysis. RESULTS Surgical patients had increased levels of oxidative stress and decreased levels of antioxidants. Increased levels of nitric oxide inhibitor asymmetric dimethylarginine were detected in surgical candidates, suggesting arginine/nitric oxide pathway impairment. Concerning the differences among surgical procedures, higher oxidative stress and a major imbalance of the ratio between substrate and inhibitors of nitric oxide synthesis were evidenced in patients who were candidates for mitral valve repair with respect to coronary bypass surgery patients and patients with calcific non-rheumatic aortic stenosis. CONCLUSIONS Patients undergoing cardiac surgery have increased oxidative stress and a trend towards an impaired arginine/nitric oxide pathway with respect to Controls. Patients affected by mitral valve regurgitation show more pronounced perturbations in these pathways. The clinical implications of these findings need to be investigated.
Collapse
Affiliation(s)
- Viviana Cavalca
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nitric oxide synthetic pathway in red blood cells is impaired in coronary artery disease. PLoS One 2013; 8:e66945. [PMID: 23940508 PMCID: PMC3734222 DOI: 10.1371/journal.pone.0066945] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/13/2013] [Indexed: 11/19/2022] Open
Abstract
Background All the enzymatic factors/cofactors involved in nitric oxide (NO) metabolism have been recently found in red blood cells. Increased oxidative stress impairs NO bioavailability and has been described in plasma of coronary artery disease (CAD) patients. The aim of the study was to highlight a potential dysfunction of the metabolic profile of NO in red blood cells and in plasma from CAD patients compared with healthy controls. Methods We determined L-arginine/NO pathway by liquid-chromatography tandem mass spectrometry and high performance liquid chromatography methods. The ratio of oxidized and reduced forms of glutathione, as index of oxidative stress, was measured by liquid-chromatography tandem mass spectrometry method. NO synthase expression and activity were evaluated by immunofluorescence staining and ex-vivo experiments of L-[15N2]arginine conversion to L-[15N]citrulline respectively. Results Increased amounts of asymmetric and symmetric dimethylarginines were found both in red blood cells and in plasma of CAD patients in respect to controls. Interestingly NO synthase expression and activity were reduced in CAD red blood cells. In contrast, oxidized/reduced glutathione ratio was increased in CAD and was associated to arginase activity. Conclusion Our study analyzed for the first time the whole metabolic pathway of L-arginine/NO, both in red blood cells and in plasma, highlighting an impairment of NO pathway in erythrocytes from CAD patients, associated with decreased NO synthase expression/activity and increased oxidative stress.
Collapse
|
15
|
Saiapina O, Dzyadevych S, Jaffrezic-Renault N, Soldatkin O. Development and optimization of a novel conductometric bi-enzyme biosensor for l-arginine determination. Talanta 2012; 92:58-64. [DOI: 10.1016/j.talanta.2012.01.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|