1
|
Rubtsova NI, Hart MC, Arroyo AD, Osharovich SA, Liebov BK, Miller J, Yuan M, Cochran JM, Chong S, Yodh AG, Busch TM, Delikatny EJ, Anikeeva N, Popov AV. NIR Fluorescent Imaging and Photodynamic Therapy with a Novel Theranostic Phospholipid Probe for Triple-Negative Breast Cancer Cells. Bioconjug Chem 2021; 32:1852-1863. [PMID: 34139845 DOI: 10.1021/acs.bioconjchem.1c00295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New exogenous probes are needed for both imaging diagnostics and therapeutics. Here, we introduce a novel nanocomposite near-infrared (NIR) fluorescent imaging probe and test its potency as a photosensitizing agent for photodynamic therapy (PDT) against triple-negative breast cancer cells. The active component in the nanocomposite is a small molecule, pyropheophorbide a-phosphatidylethanolamine-QSY21 (Pyro-PtdEtn-QSY), which is imbedded into lipid nanoparticles for transport in the body. The probe targets abnormal choline metabolism in cancer cells; specifically, the overexpression of phosphatidylcholine-specific phospholipase C (PC-PLC) in breast, prostate, and ovarian cancers. Pyro-PtdEtn-QSY consists of a NIR fluorophore and a quencher, attached to a PtdEtn moiety. It is selectively activated by PC-PLC resulting in enhanced fluorescence in cancer cells compared to normal cells. In our in vitro investigation, four breast cancer cell lines showed higher probe activation levels than noncancerous control cells, immortalized human mammary gland cells, and normal human T cells. Moreover, the ability of this nanocomposite to function as a sensitizer in PDT experiments on MDA-MB-231 cells suggests that the probe is promising as a theranostic agent.
Collapse
Affiliation(s)
- Natalia I Rubtsova
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Michael C Hart
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Alejandro D Arroyo
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Sofya A Osharovich
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin K Liebov
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104, United States
| | - Min Yuan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey M Cochran
- Department of Physics and Astronomy, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Sanghoon Chong
- Department of Physics and Astronomy, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104, United States
| | - E James Delikatny
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - Nadia Anikeeva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Anatoliy V Popov
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Varandas PAMM, Cobb AJA, Segundo MA, Silva EMP. Emergent Glycerophospholipid Fluorescent Probes: Synthesis and Applications. Bioconjug Chem 2019; 31:417-435. [DOI: 10.1021/acs.bioconjchem.9b00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pedro A. M. M. Varandas
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexander J. A. Cobb
- Department of Chemistry, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eduarda M. P. Silva
- LAQV, REQUIMTE, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Detection and Differentiation of Breast Cancer Sub-Types using a cPLA2α Activatable Fluorophore. Sci Rep 2019; 9:6122. [PMID: 30992473 PMCID: PMC6467920 DOI: 10.1038/s41598-019-41626-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Cytosolic phospholipase A2α (cPLA2α) has been shown to be elevated in breast cancer and is a potential biomarker in the differentiation of molecular sub-types. Using a cPLA2α activatable fluorophore, DDAO arachidonate, we explore its ability to function as a contrast agent in fluorescence-guided surgery. In cell lines ranging in cPLA2α expression and representing varying breast cancer sub-types, we show DDAO arachidonate activates with a high correlation to cPLA2α expression level. Using a control probe, DDAO palmitate, in addition to cPLA2α inhibition and genetic knockdown, we show that this activation is a result of cPLA2α activity. In mouse models, using an ex vivo tumor painting technique, we show that DDAO arachidonate activates to a high degree in basal-like versus luminal-like breast tumors and healthy mammary tissue. Finally, we show that using an in vivo model, orthotopic basal-like tumors give significantly high probe activation compared to healthy mammary fat pads and surrounding tissue. Together we conclude that cPLA2α activatable fluorophores such as DDAO arachidonate may serve as a useful contrast agent for the visualization of tumor margins in the fluorescence-guided surgery of basal-like breast cancer.
Collapse
|
4
|
Liebov B, Arroyo AD, Rubtsova NI, Osharovich SA, Delikatny EJ, Popov AV. Nonprotecting Group Synthesis of a Phospholipase C Activatable Probe with an Azo-Free Quencher. ACS OMEGA 2018; 3:6867-6873. [PMID: 29978148 PMCID: PMC6026834 DOI: 10.1021/acsomega.8b00635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
The near-infrared fluorescent activatable smart probe Pyro-phosphatidylethanolamine (PtdEtn)-QSY was synthesized and observed to selectively fluoresce in the presence of phosphatidylcholine-specific phospholipase C (PC-PLC). PC-PLC is an important biological target as it is known to be upregulated in a variety of cancers, including triple negative breast cancer. Pyro-PtdEtn-QSY features a QSY21 quenching moiety instead of the Black Hole Quencher-3 (BHQ-3) used previously because the latter contains an azo bond, which could lead to biological instability.
Collapse
|
5
|
Chiorazzo MG, Bloch NB, Popov AV, Delikatny EJ. Synthesis and Evaluation of Cytosolic Phospholipase A(2) Activatable Fluorophores for Cancer Imaging. Bioconjug Chem 2015; 26:2360-70. [PMID: 26426140 DOI: 10.1021/acs.bioconjchem.5b00417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Activatable fluorophores selective to cytosolic phospholipase A2 (cPLA2) were synthesized and evaluated for their ability to image triple negative breast cancer cells. The activatable constructs were synthesized by esterification of a small molecule fluorophore with a fatty acid resulting in ablated fluorescence. Selectivity for cPLA2 was generated through the choice of fluorophore and fatty acid. Esterification with arachidonic acid was sufficient to impart specificity to cPLA2 when compared to esterification with palmitic acid. In vitro analysis of probes incorporated into phosphatidylcholine liposomes demonstrated that a nonselective phospholipase (sPLA2 group IB) was able to hydrolyze both arachidonate and palmitate coupled fluorophores resulting in the generation of fluorescence. Of the four fluorophores tested, DDAO (7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one)) was observed to perform optimally in vitro and was analyzed further in 4175-Luc+ cells, a metastatic triple negative human breast cancer cell line expressing high levels of cPLA2. In contrast to the in vitro analysis, DDAO arachidonate was shown to activate selectively in 4175-Luc+ cells compared to the control DDAO palmitate as measured by fluorescence microscopy and quantitated with fluorescence spectroscopy. The addition of two agents known to activate cPLA2 enhanced DDAO arachidonate fluorescence without inducing any change to DDAO palmitate. Inhibition of cPLA2 resulted in reduced fluorescence of DDAO arachidonate but not DDAO palmitate. Together, we report the synthesis of a cPLA2 selective activatable fluorophore capable of detecting cPLA2 in triple negative breast cancer cells.
Collapse
Affiliation(s)
- Michael G Chiorazzo
- Department of Pharmacology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States.,Department of Radiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Noah B Bloch
- Department of Radiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Anatoliy V Popov
- Department of Radiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Edward J Delikatny
- Department of Radiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
1,7-Bis-( N, N-dialkylamino)perylene Bisimides: Facile Synthesis and Characterization as Near-Infrared Fluorescent Dyes. MATERIALS 2014; 7:7548-7565. [PMID: 28788262 PMCID: PMC5512673 DOI: 10.3390/ma7117548] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 01/09/2023]
Abstract
Three symmetric alkylamino-substituted perylene bisimides with different n-alkyl chain lengths (n = 6, 12, or 18), 1,7-bis-(N,N-dialkylamino)perylene bisimides (1a–1c), were synthesized under mild condition and were characterized by 1H NMR, 13C NMR and high resolution mass spectroscopy. Their optical and electrochemical properties were measured using UV-Vis and emission spectroscopic techniques as well as cyclic voltammetry (CV). These compounds show deep green color in both solution and solid state, and are highly soluble in dichloromethane and even in nonpolar solvents such as hexane. The shapes of the absorption spectra of 1a–1c in the solution and solid state were found to be almost the same, indicating that the long alkyl chains could efficiently prevent intermolecular contact and aggregation. They show a unique charge transfer emission in the near-infrared region, of which the peak wavelengths exhibit strong solvatochromism. The dipole moments of the molecules have been estimated using the Lippert–Mataga equation, and upon excitation, they show larger dipole moment changes than that of 1,7-diaminoperylene bisimide (2). Moreover, all the dyes exhibit two irreversible one-electron oxidations and two quasi-reversible one-electron reductions in dichloromethane at modest potentials. Complementary density functional theory calculations performed on these chromophores are reported in order to rationalize their electronic structure and optical properties.
Collapse
|
7
|
Anikeeva N, Sykulev Y, Delikatny EJ, Popov AV. Core-based lipid nanoparticles as a nanoplatform for delivery of near-infrared fluorescent imaging agents. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2014; 4:507-524. [PMID: 25250201 PMCID: PMC4171838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
Pyropheophorbide a (Pyro) is a near-infrared (NIR) fluorescent dye and photosensitizer with high quantum yield that makes the dye suitable for tumor treatment both as an imaging and therapy agent. We have designed and synthesized a series of a Pyro-based NIR probes, based on the conjugation of Pyro with lipids. The nature of our probes requires the use of a lipophilic carrier to deliver the probes to cancer cell membranes. To address this, we have utilized lipid-based nanoparticles (LNPs) consisting of PEGylated lipids, which form the nanoparticle shell, and a lipid core. To endow the LNPs with targeting properties, nitrilotriacetic acid (NTA) lipids were included in the composition that enables the non-covalent attachment of His-tag targeting proteins preserving their functional activity. We found that the nature of the core molecules influence the nanoparticle size, shelf-life and stability at physiological temperature. Two different Pyro-lipid conjugates were loaded either into the core or shell of the LNPs. The conjugates revealed differential ability to be accumulated in the cell membrane of the target cells with time. Thus, the modular organization of the core-shell LNPs allows facile adjustment of their composition with goal to fine tuning the nanoparticle properties for in vivo application.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, Pennsylvania, USA
| | - Yuri Sykulev
- Department of Microbiology and Immunology and Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphia, Pennsylvania, USA
| | - Edward J Delikatny
- Department of Radiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| | - Anatoliy V Popov
- Department of Radiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, Pennsylvania, USA
| |
Collapse
|