1
|
Kolbeck PJ, Tišma M, Analikwu BT, Vanderlinden W, Dekker C, Lipfert J. Supercoiling-dependent DNA binding: quantitative modeling and applications to bulk and single-molecule experiments. Nucleic Acids Res 2024; 52:59-72. [PMID: 38000393 PMCID: PMC10783501 DOI: 10.1093/nar/gkad1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
DNA stores our genetic information and is ubiquitous in applications, where it interacts with binding partners ranging from small molecules to large macromolecular complexes. Binding is modulated by mechanical strains in the molecule and can change local DNA structure. Frequently, DNA occurs in closed topological forms where topology and supercoiling add a global constraint to the interplay of binding-induced deformations and strain-modulated binding. Here, we present a quantitative model with a straight-forward numerical implementation of how the global constraints introduced by DNA topology modulate binding. We focus on fluorescent intercalators, which unwind DNA and enable direct quantification via fluorescence detection. Our model correctly describes bulk experiments using plasmids with different starting topologies, different intercalators, and over a broad range of intercalator and DNA concentrations. We demonstrate and quantitatively model supercoiling-dependent binding in a single-molecule assay, where we directly observe the different intercalator densities going from supercoiled to nicked DNA. The single-molecule assay provides direct access to binding kinetics and DNA supercoil dynamics. Our model has broad implications for the detection and quantification of DNA, including the use of psoralen for UV-induced DNA crosslinking to quantify torsional tension in vivo, and for the modulation of DNA binding in cellular contexts.
Collapse
Affiliation(s)
- Pauline J Kolbeck
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Brian T Analikwu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
2
|
Jin Y, Bae J, Kim TY, Hwang H, Kim T, Yu M, Oh H, Hashiya K, Bando T, Sugiyama H, Jo K. Twelve Colors of Streptavidin–Fluorescent Proteins (SA-FPs): A Versatile Tool to Visualize Genetic Information in Single-Molecule DNA. Anal Chem 2022; 94:16927-16935. [DOI: 10.1021/acs.analchem.2c04344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yu Jin
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Jaeyoung Bae
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Tehee Yurie Kim
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Hyeseung Hwang
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Taesoo Kim
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Myungheon Yu
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Hyesoo Oh
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kyubong Jo
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
3
|
Rashid FZM, Mahlandt E, van der Vaart M, Boer DEC, Varela Alvarez M, Henneman B, Brocken DJW, Voskamp P, Blok A, Shimizu T, Meijer A, Luijsterburg M, Goedhart J, Crémazy FGE, Dame R. HI-NESS: a family of genetically encoded DNA labels based on a bacterial nucleoid-associated protein. Nucleic Acids Res 2021; 50:e10. [PMID: 34734265 PMCID: PMC8789088 DOI: 10.1093/nar/gkab993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 02/02/2023] Open
Abstract
The interplay between three-dimensional chromosome organisation and genomic processes such as replication and transcription necessitates in vivo studies of chromosome dynamics. Fluorescent organic dyes are often used for chromosome labelling in vivo. The mode of binding of these dyes to DNA cause its distortion, elongation, and partial unwinding. The structural changes induce DNA damage and interfere with the binding dynamics of chromatin-associated proteins, consequently perturbing gene expression, genome replication, and cell cycle progression. We have developed a minimally-perturbing, genetically encoded fluorescent DNA label consisting of a (photo-switchable) fluorescent protein fused to the DNA-binding domain of H-NS — a bacterial nucleoid-associated protein. We show that this DNA label, abbreviated as HI-NESS (H-NS-based indicator for nucleic acid stainings), is minimally-perturbing to genomic processes and labels chromosomes in eukaryotic cells in culture, and in zebrafish embryos with preferential binding to AT-rich chromatin.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Eike Mahlandt
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Michiel van der Vaart
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333CC, The Netherlands
| | - Daphne E C Boer
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Monica Varela Alvarez
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333CC, The Netherlands
| | - Bram Henneman
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Daan J W Brocken
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Patrick Voskamp
- Biophysical Structural Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Anneloes J Blok
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Thomas S Shimizu
- Systems Biology, AMOLF Institute, Amsterdam 1098XG, The Netherlands
| | - Annemarie H Meijer
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden 2333CC, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333ZC, The Netherlands
| | - Joachim Goedhart
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, The Netherlands
| | - Frédéric G E Crémazy
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden 2333CC, The Netherlands
| | - Remus T Dame
- To whom correspondence should be addressed. Tel: +31 71 527 5605;
| |
Collapse
|
4
|
Jin X, Hapsari ND, Lee S, Jo K. DNA binding fluorescent proteins as single-molecule probes. Analyst 2020; 145:4079-4095. [DOI: 10.1039/d0an00218f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA binding fluorescent proteins are useful probes for a broad range of biological applications.
Collapse
Affiliation(s)
- Xuelin Jin
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| | - Natalia Diyah Hapsari
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
- Chemistry Education Program
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| |
Collapse
|
5
|
Shin E, Kim W, Lee S, Bae J, Kim S, Ko W, Seo HS, Lim S, Lee HS, Jo K. Truncated TALE-FP as DNA Staining Dye in a High-salt Buffer. Sci Rep 2019; 9:17197. [PMID: 31748571 PMCID: PMC6868158 DOI: 10.1038/s41598-019-53722-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/05/2019] [Indexed: 01/19/2023] Open
Abstract
Large DNA molecules are a promising platform for in vitro single-molecule biochemical analysis to investigate DNA-protein interactions by fluorescence microscopy. For many studies, intercalating fluorescent dyes have been primary DNA staining reagents, but they often cause photo-induced DNA breakage as well as structural deformation. As a solution, we previously developed several fluorescent-protein DNA-binding peptides or proteins (FP-DBP) for reversibly staining DNA molecules without structural deformation or photo-induced damage. However, they cannot stain DNA in a condition similar to a physiological salt concentration that most biochemical reactions require. Given these concerns, here we developed a salt-tolerant FP-DBP: truncated transcription activator-like effector (tTALE-FP), which can stain DNA up to 100 mM NaCl. Moreover, we found an interesting phenomenon that the tTALE-FP stained DNA evenly in 1 × TE buffer but showed AT-rich specific patterns from 40 mM to 100 mM NaCl. Using an assay based on fluorescence resonance energy transfer, we demonstrated that this binding pattern is caused by a higher DNA binding affinity of tTALE-FP for AT-rich compared to GC-rich regions. Finally, we used tTALE-FP in a single molecule fluorescence assay to monitor real-time restriction enzyme digestion of single DNA molecules. Altogether, our results demonstrate that this protein can provide a useful alternative as a DNA stain over intercalators.
Collapse
Affiliation(s)
- Eunji Shin
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Woojung Kim
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Jaeyoung Bae
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Sanggil Kim
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Wooseok Ko
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Hyun Soo Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea.
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea.
| |
Collapse
|
6
|
Pyle JR, Piecco KWES, Vicente JR, Chen J. In Situ Sensing of Reactive Oxygen Species on Dye-Stained Single DNA Molecules under Illumination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11308-11314. [PMID: 31394036 PMCID: PMC6813813 DOI: 10.1021/acs.langmuir.9b01822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reactive oxygen species (ROS) are a necessary evil in many biological systems and have been measured with fluorescent probes at the ensemble levels both in vitro and in vivo. Measuring ROS generated from a single molecule is important for mechanistic studies, yet measuring ROS near a dye-labeled single-molecule under illumination has been challenging. Here, we use CellROX, a group of ROS probes, to sense ROS near dye-stained DNA that has been flow-stretched and immobilized on a surface. ROS is responsible for the photodamage of DNA molecules under this circumstance. In this report, we confirmed the ROS sensing reaction in bulk solutions and optimized the conditions for single-molecule experiments including the selection of substrates, dye concentrations, probes in the CellROX series, excitation lasers, and emission filter-sets. We observed a correlation between ROS and the dye-labeled DNA and localized the ROS-activated CellROX probe molecules at both the ensemble level and the single-molecule level.
Collapse
Affiliation(s)
- Joseph R. Pyle
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| | - Kurt Waldo E. Sy Piecco
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
- Department of Chemistry, University of the Philippines Visayas, Miagao, Iloilo 5023, Philippines
| | - Juvinch R. Vicente
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
- Department of Chemistry, University of the Philippines Visayas, Miagao, Iloilo 5023, Philippines
| | - Jixin Chen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
- Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
7
|
Lee S, Kawamoto Y, Vaijayanthi T, Park J, Bae J, Kim-Ha J, Sugiyama H, Jo K. TAMRA-polypyrrole for A/T sequence visualization on DNA molecules. Nucleic Acids Res 2019; 46:e108. [PMID: 29931115 PMCID: PMC6182132 DOI: 10.1093/nar/gky531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/29/2018] [Indexed: 01/23/2023] Open
Abstract
Fluorophore-linked, sequence-specific DNA binding reagents can visualize sequence information on a large DNA molecule. In this paper, we synthesized newly designed TAMRA-linked polypyrrole to visualize adenine and thymine base pairs. A fluorescent image of the stained DNA molecule generates an intensity profile based on A/T frequency, revealing a characteristic sequence composition pattern. Computer-aided comparison of this intensity pattern with the genome sequence allowed us to determine the DNA sequence on a visualized DNA molecule from possible intensity profile pattern candidates for a given genome. Moreover, TAMRA-polypyrrole offers robust advantages for single DNA molecule detection: no fluorophore-mediated photocleavage and no structural deformation, since it exhibits a sequence-specific pattern alone without the use of intercalating dyes such as YOYO-1. Accordingly, we were able to identify genomic DNA fragments from Escherichia coli cells by aligning them to the genomic A/T frequency map based on TAMRA-polypyrrole-generated intensity profiles. Furthermore, we showed band and interband patterns of polytene chromosomal DNA stained with TAMRA-polypyrrole because it prefers to bind AT base pairs.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Republic of Korea
| | - Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Thangavel Vaijayanthi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Jihyun Park
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Republic of Korea
| | - Jaeyoung Bae
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Republic of Korea
| | - Jeongsil Kim-Ha
- Department of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Kyubong Jo
- Department of Chemistry and Program of Integrated Biotechnology, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
8
|
Park J, Lee S, Won N, Shin E, Kim SH, Chun MY, Gu J, Jung GY, Lim KI, Jo K. Single-molecule DNA visualization using AT-specific red and non-specific green DNA-binding fluorescent proteins. Analyst 2019; 144:921-927. [PMID: 30310901 DOI: 10.1039/c8an01426d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The recent advances in the single cell genome analysis are generating a considerable amount of novel insights into complex biological systems. However, there are still technical challenges because each cell has a single copy of DNA to be amplified in most single cell genome analytical methods. In this paper, we present a novel approach to directly visualize a genomic map on a large DNA molecule instantly stained with red and green DNA-binding fluorescent proteins without DNA amplification. For this visualization, we constructed a few types of fluorescent protein-fused DNA-binding proteins: H-NS (histone-like nucleoid-structuring protein), DNA-binding domain of BRCA1 (breast cancer 1), high mobility group-1 (HMG), and lysine tryptophan (KW) repeat motif. Because H-NS and HMG preferentially bind A/T-rich regions, we combined A/T specific binder (H-NS-mCherry and HMG-mCherry as red color) and a non-specific complementary DNA binder (BRCA1-eGFP and 2(KW)2-eGFP repeat as green color) to produce a sequence-specific two-color DNA physical map for efficient optical identification of single DNA molecules.
Collapse
Affiliation(s)
- Jihyun Park
- Department of Chemistry and Interdisciplinary Program of Integrated Biotech, Sogang University, 1 Shinsudong, Mapogu, Seoul, 04107, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shining a Spotlight on DNA: Single-Molecule Methods to Visualise DNA. Molecules 2019; 24:molecules24030491. [PMID: 30704053 PMCID: PMC6384704 DOI: 10.3390/molecules24030491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 11/29/2022] Open
Abstract
The ability to watch single molecules of DNA has revolutionised how we study biological transactions concerning nucleic acids. Many strategies have been developed to manipulate DNA molecules to investigate mechanical properties, dynamics and protein–DNA interactions. Imaging methods using small molecules and protein-based probes to visualise DNA have propelled our understanding of complex biochemical reactions involving DNA. This review focuses on summarising some of the methodological developments made to visualise individual DNA molecules and discusses how these probes have been used in single-molecule biophysical assays.
Collapse
|
10
|
Krog J, Alizadehheidari M, Werner E, Bikkarolla SK, Tegenfeldt JO, Mehlig B, Lomholt MA, Westerlund F, Ambjörnsson T. Stochastic unfolding of nanoconfined DNA: Experiments, model and Bayesian analysis. J Chem Phys 2019; 149:215101. [PMID: 30525714 DOI: 10.1063/1.5051319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanochannels provide a means for detailed experiments on the effect of confinement on biomacromolecules, such as DNA. Here we introduce a model for the complete unfolding of DNA from the circular to linear configuration. Two main ingredients are the entropic unfolding force and the friction coefficient for the unfolding process, and we describe the associated dynamics by a non-linear Langevin equation. By analyzing experimental data where DNA molecules are photo-cut and unfolded inside a nanochannel, our model allows us to extract values for the unfolding force as well as the friction coefficient for the first time. In order to extract numerical values for these physical quantities, we employ a recently introduced Bayesian inference framework. We find that the determined unfolding force is in agreement with estimates from a simple Flory-type argument. The estimated friction coefficient is in agreement with theoretical estimates for motion of a cylinder in a channel. We further validate the estimated friction constant by extracting this parameter from DNA's center-of-mass motion before and after unfolding, yielding decent agreement. We provide publically available software for performing the required image and Bayesian analysis.
Collapse
Affiliation(s)
- Jens Krog
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
| | | | - Erik Werner
- Department of Physics, Gothenburg University, Gothenburg, Sweden
| | - Santosh Kumar Bikkarolla
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Bernhard Mehlig
- Department of Physics, Gothenburg University, Gothenburg, Sweden
| | - Michael A Lomholt
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Tobias Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Lee S, Lee Y, Kim Y, Wang C, Park J, Jung GY, Chen Y, Chang R, Ikeda S, Sugiyama H, Jo K. Nanochannel-Confined TAMRA-Polypyrrole Stained DNA Stretching by Varying the Ionic Strength from Micromolar to Millimolar Concentrations. Polymers (Basel) 2018; 11:E15. [PMID: 30959999 PMCID: PMC6401831 DOI: 10.3390/polym11010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022] Open
Abstract
Large DNA molecules have been utilized as a model system to investigate polymer physics. However, DNA visualization via intercalating dyes has generated equivocal results due to dye-induced structural deformation, particularly unwanted unwinding of the double helix. Thus, the contour length increases and the persistence length changes so unpredictably that there has been a controversy. In this paper, we used TAMRA-polypyrrole to stain single DNA molecules. Since this staining did not change the contour length of B-form DNA, we utilized TAMRA-polypyrrole stained DNA as a tool to measure the persistence length by changing the ionic strength. Then, we investigated DNA stretching in nanochannels by varying the ionic strength from 0.06 mM to 47 mM to evaluate several polymer physics theories proposed by Odijk, de Gennes and recent papers to deal with these regimes.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Yelin Lee
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Yongkyun Kim
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| | - Cong Wang
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea.
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea.
| | - Gun Young Jung
- School of Material Science and Engineering, GIST, Gwangju 61005, Korea.
| | - Yenglong Chen
- Institute of Physics, Academia Sinica and Department of Chemical Engineering, National Tsing-Hua University and Department of Physics, National Taiwan University, Taipei 10617, Taiwan.
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea.
| | - Shuji Ikeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto 606-8501, Japan.
| | - Kyubong Jo
- Department of Chemistry and Integrated Biotechnology, Sogang University, Seoul 04107, Korea.
| |
Collapse
|
12
|
Pyle JR, Chen J. Photobleaching of YOYO-1 in super-resolution single DNA fluorescence imaging. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2296-2306. [PMID: 29181286 PMCID: PMC5687005 DOI: 10.3762/bjnano.8.229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Super-resolution imaging of single DNA molecules via point accumulation for imaging in nanoscale topography (PAINT) has great potential to visualize fine DNA structures with nanometer resolution. In a typical PAINT video acquisition, dye molecules (YOYO-1) in solution sparsely bind to the target surfaces (DNA) whose locations can be mathematically determined by fitting their fluorescent point spread function. Many YOYO-1 molecules intercalate into DNA and remain there during imaging, and most of them have to be temporarily or permanently fluorescently bleached, often stochastically, to allow for the visualization of a few fluorescent events per DNA per frame of the video. Thus, controlling the fluorescence on-off rate is important in PAINT. In this paper, we study the photobleaching of YOYO-1 and its correlation with the quality of the PAINT images. At a low excitation laser power density, the photobleaching of YOYO-1 is too slow and a minimum required power density was identified, which can be theoretically predicted with the proposed method in this report.
Collapse
Affiliation(s)
- Joseph R Pyle
- Department of Chemistry and Biochemistry, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| | - Jixin Chen
- Department of Chemistry and Biochemistry, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
13
|
Friedrich SM, Zec HC, Wang TH. Analysis of single nucleic acid molecules in micro- and nano-fluidics. LAB ON A CHIP 2016; 16:790-811. [PMID: 26818700 PMCID: PMC4767527 DOI: 10.1039/c5lc01294e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nucleic acid analysis has enhanced our understanding of biological processes and disease progression, elucidated the association of genetic variants and disease, and led to the design and implementation of new treatment strategies. These diverse applications require analysis of a variety of characteristics of nucleic acid molecules: size or length, detection or quantification of specific sequences, mapping of the general sequence structure, full sequence identification, analysis of epigenetic modifications, and observation of interactions between nucleic acids and other biomolecules. Strategies that can detect rare or transient species, characterize population distributions, and analyze small sample volumes enable the collection of richer data from biosamples. Platforms that integrate micro- and nano-fluidic operations with high sensitivity single molecule detection facilitate manipulation and detection of individual nucleic acid molecules. In this review, we will highlight important milestones and recent advances in single molecule nucleic acid analysis in micro- and nano-fluidic platforms. We focus on assessment modalities for single nucleic acid molecules and highlight the role of micro- and nano-structures and fluidic manipulation. We will also briefly discuss future directions and the current limitations and obstacles impeding even faster progress toward these goals.
Collapse
Affiliation(s)
- Sarah M Friedrich
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Helena C Zec
- Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tza-Huei Wang
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA. and Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Lee S, Oh Y, Lee J, Choe S, Lim S, Lee HS, Jo K, Schwartz DC. DNA binding fluorescent proteins for the direct visualization of large DNA molecules. Nucleic Acids Res 2016; 44:e6. [PMID: 26264666 PMCID: PMC4705684 DOI: 10.1093/nar/gkv834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022] Open
Abstract
Fluorescent proteins that also bind DNA molecules are useful reagents for a broad range of biological applications because they can be optically localized and tracked within cells, or provide versatile labels for in vitro experiments. We report a novel design for a fluorescent, DNA-binding protein (FP-DBP) that completely 'paints' entire DNA molecules, whereby sequence-independent DNA binding is accomplished by linking a fluorescent protein to two small peptides (KWKWKKA) using lysine for binding to the DNA phosphates, and tryptophan for intercalating between DNA bases. Importantly, this ubiquitous binding motif enables fluorescent proteins (Kd = 14.7 μM) to confluently stain DNA molecules and such binding is reversible via pH shifts. These proteins offer useful robust advantages for single DNA molecule studies: lack of fluorophore mediated photocleavage and staining that does not perturb polymer contour lengths. Accordingly, we demonstrate confluent staining of naked DNA molecules presented within microfluidic devices, or localized within live bacterial cells.
Collapse
Affiliation(s)
- Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, 1 Shinsudong, Mapogu, Seoul, 121-742, Korea
| | - Yeeun Oh
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, 1 Shinsudong, Mapogu, Seoul, 121-742, Korea
| | - Jungyoon Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, 1 Shinsudong, Mapogu, Seoul, 121-742, Korea
| | - Sojeong Choe
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, 1 Shinsudong, Mapogu, Seoul, 121-742, Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup 580-185, Korea
| | - Hyun Soo Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, 1 Shinsudong, Mapogu, Seoul, 121-742, Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, 1 Shinsudong, Mapogu, Seoul, 121-742, Korea
| | - David C Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
15
|
Geertsema HJ, Schulte AC, Spenkelink LM, McGrath WJ, Morrone SR, Sohn J, Mangel WF, Robinson A, van Oijen AM. Single-molecule imaging at high fluorophore concentrations by local activation of dye. Biophys J 2015; 108:949-956. [PMID: 25692599 DOI: 10.1016/j.bpj.2014.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022] Open
Abstract
Single-molecule fluorescence microscopy is a powerful tool for observing biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Making use of short-distance energy-transfer mechanisms, only the fluorescence from those proteins that bind to their substrate is activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease on DNA in the presence of a background of hundreds of nanomolar Cy5 fluorophore.
Collapse
Affiliation(s)
| | - Aartje C Schulte
- Zernike Institute for Advanced Materials, Groningen, The Netherlands
| | | | | | | | - Jungsan Sohn
- Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Andrew Robinson
- Zernike Institute for Advanced Materials, Groningen, The Netherlands
| | | |
Collapse
|
16
|
Frykholm K, Nyberg LK, Lagerstedt E, Noble C, Fritzsche J, Karami N, Ambjörnsson T, Sandegren L, Westerlund F. Fast size-determination of intact bacterial plasmids using nanofluidic channels. LAB ON A CHIP 2015; 15:2739-2743. [PMID: 25997119 DOI: 10.1039/c5lc00378d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate how nanofluidic channels can be used as a tool to rapidly determine the number and sizes of plasmids in bacterial isolates. Each step can be automated at low cost, opening up opportunities for general use in microbiology labs.
Collapse
Affiliation(s)
- K Frykholm
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sørensen KT, Lopacinska JM, Tommerup N, Silahtaroglu A, Kristensen A, Marie R. Automation of a single-DNA molecule stretching device. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:063702. [PMID: 26133839 DOI: 10.1063/1.4922068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We automate the manipulation of genomic-length DNA in a nanofluidic device based on real-time analysis of fluorescence images. In our protocol, individual molecules are picked from a microchannel and stretched with pN forces using pressure driven flows. The millimeter-long DNA fragments free flowing in micro- and nanofluidics emit low fluorescence and change shape, thus challenging the image analysis for machine vision. We demonstrate a set of image processing steps that increase the intrinsically low signal-to-noise ratio associated with single-molecule fluorescence microscopy. Furthermore, we demonstrate how to estimate the length of molecules by continuous real-time image stitching and how to increase the effective resolution of a pressure controller by pulse width modulation. The sequence of image-processing steps addresses the challenges of genomic-length DNA visualization; however, they should also be general to other applications of fluorescence-based microfluidics.
Collapse
Affiliation(s)
- Kristian Tølbøl Sørensen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Joanna M Lopacinska
- Department of Cellular and Molecular Medicine, University of Copenhagen, København, Denmark
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, København, Denmark
| | - Asli Silahtaroglu
- Department of Cellular and Molecular Medicine, University of Copenhagen, København, Denmark
| | - Anders Kristensen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rodolphe Marie
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
18
|
The fluorescence properties and binding mechanism of SYTOX green, a bright, low photo-damage DNA intercalating agent. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:337-48. [PMID: 26024786 DOI: 10.1007/s00249-015-1027-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
DNA intercalators are widely used in cancer therapeutics, to probe protein-DNA interactions and to investigate the statistical-mechanical properties of DNA. Here, we employ single-molecule fluorescence microscopy, magnetic tweezers, and ensemble-binding assays to investigate the fluorescence properties and binding mechanism of SYTOX green, a DNA labeling dye previously used for staining dead cells and becoming of common use for single-molecule methodologies. Specifically, we show that SYTOX green presents several advantages with respect to other dyes: (1) binds DNA rapidly and with high affinity; (2) has a good signal-to-noise ratio even at low concentrations; (3) exhibits a low photobleaching rate; and (4) induces lower light-induced DNA degradation. Finally, we show that SYTOX green is a DNA intercalator that binds DNA cooperatively with a binding site of 3.5 bp, increasing the DNA length upon binding by 43%, while not affecting its mechanical properties.
Collapse
|
19
|
Alizadehheidari M, Werner E, Noble C, Reiter-Schad M, Nyberg LK, Fritzsche J, Mehlig B, Tegenfeldt JO, Ambjörnsson T, Persson F, Westerlund F. Nanoconfined Circular and Linear DNA: Equilibrium Conformations and Unfolding Kinetics. Macromolecules 2015. [DOI: 10.1021/ma5022067] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Erik Werner
- Department
of Physics, Gothenburg University, Gothenburg, Sweden
| | | | | | | | | | - Bernhard Mehlig
- Department
of Physics, Gothenburg University, Gothenburg, Sweden
| | | | | | - Fredrik Persson
- Department of Cell and
Molecular Biology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
20
|
Chong S, Chen C, Ge H, Xie XS. Mechanism of transcriptional bursting in bacteria. Cell 2014; 158:314-326. [PMID: 25036631 DOI: 10.1016/j.cell.2014.05.038] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/17/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022]
Abstract
Transcription of highly expressed genes has been shown to occur in stochastic bursts. But the origin of such ubiquitous phenomenon has not been understood. Here, we present the mechanism in bacteria. We developed a high-throughput, in vitro, single-molecule assay to follow transcription on individual DNA templates in real time. We showed that positive supercoiling buildup on a DNA segment by transcription slows down transcription elongation and eventually stops transcription initiation. Transcription can be resumed upon gyrase binding to the DNA segment. Furthermore, using single-cell mRNA counting fluorescence in situ hybridization (FISH), we found that duty cycles of transcriptional bursting depend on the intracellular gyrase concentration. Together, these findings prove that transcriptional bursting of highly expressed genes in bacteria is primarily caused by reversible gyrase dissociation from and rebinding to a DNA segment, changing the supercoiling level of the segment.
Collapse
Affiliation(s)
- Shasha Chong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chongyi Chen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hao Ge
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China; Beijing International Center for Mathematical Research (BICMR), Peking University, Beijing 100871, China
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Single-molecule analysis reveals human UV-damaged DNA-binding protein (UV-DDB) dimerizes on DNA via multiple kinetic intermediates. Proc Natl Acad Sci U S A 2014; 111:E1862-71. [PMID: 24760829 DOI: 10.1073/pnas.1323856111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How human DNA repair proteins survey the genome for UV-induced photoproducts remains a poorly understood aspect of the initial damage recognition step in nucleotide excision repair (NER). To understand this process, we performed single-molecule experiments, which revealed that the human UV-damaged DNA-binding protein (UV-DDB) performs a 3D search mechanism and displays a remarkable heterogeneity in the kinetics of damage recognition. Our results indicate that UV-DDB examines sites on DNA in discrete steps before forming long-lived, nonmotile UV-DDB dimers (DDB1-DDB2)2 at sites of damage. Analysis of the rates of dissociation for the transient binding molecules on both undamaged and damaged DNA show multiple dwell times over three orders of magnitude: 0.3-0.8, 8.1, and 113-126 s. These intermediate states are believed to represent discrete UV-DDB conformers on the trajectory to stable damage detection. DNA damage promoted the formation of highly stable dimers lasting for at least 15 min. The xeroderma pigmentosum group E (XP-E) causing K244E mutant of DDB2 found in patient XP82TO, supported UV-DDB dimerization but was found to slide on DNA and failed to stably engage lesions. These findings provide molecular insight into the loss of damage discrimination observed in this XP-E patient. This study proposes that UV-DDB recognizes lesions via multiple kinetic intermediates, through a conformational proofreading mechanism.
Collapse
|
22
|
Robison AD, Finkelstein IJ. Rapid prototyping of multichannel microfluidic devices for single-molecule DNA curtain imaging. Anal Chem 2014; 86:4157-63. [PMID: 24734940 DOI: 10.1021/ac500267v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Single-molecule imaging and manipulation of biochemical reactions continues to reveal numerous biological insights. To facilitate these studies, we have developed and implemented a high-throughput approach to organize and image hundreds of individual DNA molecules at aligned diffusion barriers. Nonetheless, obtaining statistically relevant data sets under a variety of reaction conditions remains challenging. Here, we present a method for integrating high-throughput single-molecule "DNA curtain" imaging with poly(dimethylsiloxane) (PDMS)-based microfluidics. Our benchtop fabrication method can be accomplished in minutes with common tools found in all molecular biology laboratories. We demonstrate the utility of this approach by simultaneous imaging of two independent biochemical reaction conditions in a laminar flow device. In addition, five different reaction conditions can be observed concurrently in a passive linear gradient generator. Combining rapid microfluidic fabrication with high-throughput DNA curtains greatly expands our capability to interrogate complex biological reactions.
Collapse
Affiliation(s)
- Aaron D Robison
- Department of Molecular Biosciences, ‡Institute for Cellular and Molecular Biology, and §Center for Systems and Synthetic Biology, The University of Texas at Austin , Austin, Texas 78712, United States
| | | |
Collapse
|
23
|
Daddysman MK, Tycon MA, Fecko CJ. Photoinduced damage resulting from fluorescence imaging of live cells. Methods Mol Biol 2014; 1148:1-17. [PMID: 24718791 DOI: 10.1007/978-1-4939-0470-9_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The widespread application of fluorescence microscopy to study live cells has led to a greater understanding of numerous biological processes. Many techniques have been developed to uniquely label structures and track metabolic pathways using fluorophores in live cells. However, the photochemistry of nonnative compounds and the deposition of energy into the cell during imaging can result in unexpected and unwanted side effects. Herein, we examine potential live cell damage by first discussing common imaging considerations and modalities in fluorescence microscopy. We then consider several mechanisms by which various photochemical and photophysical phenomena cause cellular damage and introduce techniques that have leveraged these phenomena to intentionally create damage inside cells. Reviewing conditions under which intentional damage occurs can allow one to better predict when unintentional damage may be important. Finally, we delineate ways of checking for and reducing photochemical and photophysical damage.
Collapse
Affiliation(s)
- Matthew K Daddysman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3290, USA
| | | | | |
Collapse
|
24
|
Shimobayashi SF, Iwaki T, Mori T, Yoshikawa K. Probability of double-strand breaks in genome-sized DNA by γ-ray decreases markedly as the DNA concentration increases. J Chem Phys 2013; 138:174907. [PMID: 23656159 DOI: 10.1063/1.4802993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By use of the single-molecule observation, we count the number of DNA double-strand breaks caused by γ-ray irradiation with genome-sized DNA molecules (166 kbp). We find that P1, the number of double-strand breaks (DSBs) per base pair per unit Gy, is nearly inversely proportional to the DNA concentration above a certain threshold DNA concentration. The inverse relationship implies that the total number of DSBs remains essentially constant. We give a theoretical interpretation of our experimental results in terms of attack of reactive species upon DNA molecules, indicating the significance of the characteristics of genome-sized giant DNA as semiflexible polymers for the efficiency of DSBs.
Collapse
|
25
|
Gibb B, Silverstein TD, Finkelstein IJ, Greene EC. Single-stranded DNA curtains for real-time single-molecule visualization of protein-nucleic acid interactions. Anal Chem 2012; 84:7607-12. [PMID: 22950646 DOI: 10.1021/ac302117z] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule imaging of biological macromolecules has dramatically impacted our understanding of many types of biochemical reactions. To facilitate these studies, we have established new strategies for anchoring and organizing DNA molecules on the surfaces of microfluidic sample chambers that are otherwise coated with fluid lipid bilayers. This previous work was reliant upon the use of double-stranded DNA, precluding access to information on biological processes involving single-stranded nucleic acid substrates. Here, we present procedures for aligning and visualizing single-stranded DNA molecules along the leading edges of nanofabricated barriers to lipid diffusion, in both "single-tethered" and "double-tethered" experimental formats. This new single-molecule approach provides long-awaited access to critical biological reactions involving single-stranded DNA binding proteins.
Collapse
Affiliation(s)
- Bryan Gibb
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| | | | | | | |
Collapse
|