1
|
Wang TY, Krylov SN. Deterministic error propagation in ITC: Revealing multi-fold errors in K d values under standard conditions. Biophys Chem 2025; 323:107455. [PMID: 40349382 DOI: 10.1016/j.bpc.2025.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
Accurate determination of the equilibrium dissociation constant (Kd) is essential in fields such as drug discovery and molecular diagnostics, where a rigorous understanding of molecular interactions drives critical decisions. Among established techniques, isothermal titration calorimetry (ITC) is highly valued for its ability to directly capture binding thermodynamics without the need for labeling or immobilization. However, while ITC is often praised for its precision, potential inaccuracies due to the systematic errors in experimental variables (analyte concentrations and measured heat) are frequently overlooked. One key reason for this oversight is the lack of a deterministic framework that explicitly demonstrates how ITC-derived Kd values can be affected by these errors. To address this gap, we derived a closed-form mathematical model for error propagation in ITC-based Kd determination, quantifying the impact of inaccuracies in analyte concentrations and measured heat on the resulting Kd. This framework provides a robust foundation for understanding and predicting the influence of these systematic errors on Kd accuracy. Using this solution, we demonstrate that even within the conventionally recommended c-value range of 10-100, expected systematic errors in concentrations and heat can potentially lead to significant multi-fold deviations in Kd. These findings underscore the need for quantitative accuracy assessments in ITC experiments and highlight the importance of developing practical tools to support such evaluations.
Collapse
Affiliation(s)
- Tong Ye Wang
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada; Centre for Research on Biomolecular Interactions, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada; Centre for Research on Biomolecular Interactions, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
2
|
Li P, Liu S, Wallerstein J, Villones RLE, Huang P, Lindkvist-Petersson K, Meloni G, Lu K, Steen Jensen K, Liin SI, Gourdon P. Closed and open structures of the eukaryotic magnesium channel Mrs2 reveal the auto-ligand-gating regulation mechanism. Nat Struct Mol Biol 2025; 32:491-501. [PMID: 39609652 PMCID: PMC11919701 DOI: 10.1038/s41594-024-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
The CorA/Mrs2 family of pentameric proteins are cardinal for the influx of Mg2+ across cellular membranes, importing the cation to mitochondria in eukaryotes. Yet, the conducting and regulation mechanisms of permeation remain elusive, particularly for the eukaryotic Mrs2 members. Here, we report closed and open Mrs2 cryo-electron microscopy structures, accompanied by functional characterization. Mg2+ flux is permitted by a narrow pore, gated by methionine and arginine residues in the closed state. Transition between the conformations is orchestrated by two pairs of conserved sensor-serving Mg2+-binding sites in the mitochondrial matrix lumen, located in between monomers. At lower levels of Mg2+, these ions are stripped, permitting an alternative, symmetrical shape, maintained by the RDLR motif that replaces one of the sensor site pairs in the open conformation. Thus, our findings collectively establish the molecular basis for selective Mg2+ influx of Mrs2 and an auto-ligand-gating regulation mechanism.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Johan Wallerstein
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Peng Huang
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kristine Steen Jensen
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
3
|
Murmiliuk A, Iwase H, Kang JJ, Mohanakumar S, Appavou MS, Wood K, Almásy L, Len A, Schwärzer K, Allgaier J, Dulle M, Gensch T, Förster B, Ito K, Nakagawa H, Wiegand S, Förster S, Radulescu A. Polyelectrolyte-protein synergism: pH-responsive polyelectrolyte/insulin complexes as versatile carriers for targeted protein and drug delivery. J Colloid Interface Sci 2024; 665:801-813. [PMID: 38555748 DOI: 10.1016/j.jcis.2024.03.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/10/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The co-assembly of polyelectrolytes (PE) with proteins offers a promising approach for designing complex structures with customizable morphologies, charge distribution, and stability for targeted cargo delivery. However, the complexity of protein structure limits our ability to predict the properties of the formed nanoparticles, and our goal is to identify the key triggers of the morphological transition in protein/PE complexes and evaluate their ability to encapsulate multivalent ionic drugs. A positively charged PE can assemble with a protein at pH above isoelectric point due to the electrostatic attraction and disassemble at pH below isoelectric point due to the repulsion. The additional hydrophilic block of the polymer should stabilize the particles in solution and enable them to encapsulate a negatively charged drug in the presence of PE excess. We demonstrated that diblock copolymers, poly(ethylene oxide)-block-poly(N,N-dimethylaminoethyl methacrylate) and poly(ethylene oxide)-block-poly(N,N,N-trimethylammonioethyl methacrylate), consisting of a polycation block and a neutral hydrophilic block, reversibly co-assemble with insulin in pH range between 5 and 8. Using small-angle neutron and X-ray scattering (SANS, SAXS), we showed that insulin arrangement within formed particles is controlled by intermolecular electrostatic forces between protein molecules, and can be tuned by varying ionic strength. For the first time, we observed by fluorescence that formed protein/PE complexes with excess of positive charges exhibited potential for encapsulating and controlled release of negatively charged bivalent drugs, protoporphyrin-IX and zinc(II) protoporphyrin-IX, enabling the development of nanocarriers for combination therapies with adjustable charge, stability, internal structure, and size.
Collapse
Affiliation(s)
- Anastasiia Murmiliuk
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany.
| | - Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan
| | - Jia-Jhen Kang
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Shilpa Mohanakumar
- Physics of Complex Fluids, University of Twente, 7522 NB Enschede, The Netherlands
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Kathleen Wood
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - László Almásy
- Neutron Spectroscopy Department, HUN-REN Centre for Energy Research, Konkoly-Thege str. 29-33, 1121 Budapest, Hungary
| | - Adél Len
- Neutron Spectroscopy Department, HUN-REN Centre for Energy Research, Konkoly-Thege str. 29-33, 1121 Budapest, Hungary; University of Pécs, Faculty of Engineering and Information Technology, Boszorkány str 2., 7624 Pécs, Hungary
| | - Kuno Schwärzer
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Jürgen Allgaier
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing, IBI-1 (Molecular and Cellular Physiology), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Beate Förster
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Physics of Nanoscale Systems (ER-C-1), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Kanae Ito
- Industrial Application Division, Spring-8, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Hiroshi Nakagawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
| | - Simone Wiegand
- IBI-4-Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany; Chemistry Department - Physical Chemistry, University Cologne, D-50939 Cologne, Germany
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Aurel Radulescu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
| |
Collapse
|
4
|
Somarathne RP, Amarasekara DL, Kariyawasam CS, Robertson HA, Mayatt R, Gwaltney SR, Fitzkee NC. Protein Binding Leads to Reduced Stability and Solvated Disorder in the Polystyrene Nanoparticle Corona. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305684. [PMID: 38247186 PMCID: PMC11209821 DOI: 10.1002/smll.202305684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Understanding the conformation of proteins in the nanoparticle corona has important implications in how organisms respond to nanoparticle-based drugs. These proteins coat the nanoparticle surface, and their properties will influence the nanoparticle's interaction with cell targets and the immune system. While some coronas are thought to be disordered, two key unanswered questions are the degree of disorder and solvent accessibility. Here, a model is developed for protein corona disorder in polystyrene nanoparticles of varying size. For two different proteins, it is found that binding affinity decreases as nanoparticle size increases. The stoichiometry of binding, along with changes in the hydrodynamic size, supports a highly solvated, disordered protein corona anchored at a small number of attachment sites. The scaling of the stoichiometry versus nanoparticle size is consistent with disordered polymer dimensions. Moreover, it is found that proteins are destabilized less in the presence of larger nanoparticles, and hydrophobic exposure decreases at lower curvatures. The observations hold for proteins on flat polystyrene surfaces, which have the lowest hydrophobic exposure. The model provides an explanation for previous observations of increased amyloid fibrillation rates in the presence of larger nanoparticles, and it may rationalize how cell receptors can recognize protein disorder in therapeutic nanoparticles.
Collapse
Affiliation(s)
- Radha P Somarathne
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Dhanush L Amarasekara
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Harley A Robertson
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Railey Mayatt
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
5
|
Moosavi-Movahedi F, Saboury AA, Ghasemi A, Pirhaghi M, Mamashli F, Mohammad-Zaheri M, Arghavani P, Yousefi R, Moosavi-Movahedi AA. Exploring the significance of potassium homeostasis in copper ion binding to human αB-Crystallin. Int J Biol Macromol 2024; 263:130261. [PMID: 38368978 DOI: 10.1016/j.ijbiomac.2024.130261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
αB-Crystallin (αB-Cry) is a small heat shock protein known for its protective role, with an adaptable structure that responds to environmental changes through oligomeric dynamics. Cu(II) ions are crucial for cellular processes but excessive amounts are linked to diseases like cataracts and neurodegeneration. This study investigated how optimal and detrimental Cu(II) concentrations affect αB-Cry oligomers and their chaperone activity, within the potassium-regulated ionic-strength environment. Techniques including isothermal titration calorimetry, differential scanning calorimetry, fluorescence spectroscopy, inductively coupled plasma atomic emission spectroscopy, cyclic voltammetry, dynamic light scattering, circular dichroism, and MTT assay were employed and complemented by computational methods. Results showed that potassium ions affected αB-Cry's structure, promoting Cu(II) binding at multiple sites and scavenging ability, and inhibiting ion redox reactions. Low concentrations of Cu(II), through modifications of oligomeric interfaces, induce regulation of surface charge and hydrophobicity, resulting in an increase in chaperone activity. Subunit dynamics were regulated, maintaining stable interfaces, thereby inhibiting further aggregation and allowing the functional reversion to oligomers after stress. High Cu(II) disrupted charge/hydrophobicity balance, sewing sizable oligomers together through subunit-subunit interactions, suppressing oligomer dissociation, and reducing chaperone efficiency. This study offers insights into how Cu(II) and potassium ions influence αB-Cry, advancing our understanding of Cu(II)-related diseases.
Collapse
Affiliation(s)
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | |
Collapse
|
6
|
Grasso N, Graziano R, Marzano S, D'Aria F, Merlino F, Grieco P, Randazzo A, Pagano B, Amato J. Unveiling the interaction between DNA G-quadruplexes and RG-rich peptides. Int J Biol Macromol 2023; 253:126749. [PMID: 37689293 DOI: 10.1016/j.ijbiomac.2023.126749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023]
Abstract
G-quadruplexes are non-canonical DNA secondary structures formed within guanine-rich strands that play important roles in various biological processes, including gene regulation, telomere maintenance and DNA replication. The biological functions and formation of these DNA structures are strictly controlled by several proteins that bind and stabilize or resolve them. Many G-quadruplex-binding proteins feature an arginine and glycine-rich motif known as the RGG or RG-rich motif. Although this motif plays a crucial role in the recognition of such non-canonical structures, their interaction is still poorly understood. Here, we employed a combination of several biophysical techniques to provide valuable insights into the interaction between a peptide containing an RGG motif shared by numerous human G-quadruplex-binding proteins (NIQI) and various biologically relevant G-quadruplex DNA structures with different topologies. We also shed light on the key amino acids involved in the binding process. Our findings contribute to lay the basis for the development of a new class of peptide-based G-quadruplex ligands as an alternative to small molecules. These ligands may serve as valid tools for interfering in DNA-protein interactions, with potential therapeutic applications.
Collapse
Affiliation(s)
- Nicola Grasso
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaele Graziano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
7
|
Darlington DS, Mahurin AN, Kapusta K, Suh E, Smith C, Jarrett E, Chism CM, Meador WE, Kelly ZC, Delcamp JH, Zhao Y, Hammer NI, Kariyawasam CS, Somarathne RP, Fitzkee NC, Tanner EEL. Selective Near-Infrared Blood Detection Driven by Ionic Liquid-Dye-Albumin Nanointeractions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10806-10819. [PMID: 37501336 PMCID: PMC10506859 DOI: 10.1021/acs.langmuir.3c00727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Due to its abundance in blood, a great deal of research has been undertaken to develop efficient biosensors for serum albumin and provide insight into the interactions that take place between these biosensing molecules and the protein. Near-infrared (NIR, >700 nm) organic dyes have been shown to be effective biosensors of serum albumin, but their effectiveness is diminished in whole blood. Herein, it is shown that an NIR sulfonate indolizine-donor-based squaraine dye, SO3SQ, can be strengthened as a biosensor of albumin through the addition of biocompatible ionic liquids (ILs). Specifically, the IL choline glycolate (1:1), at a concentration of 160 mM, results in the enhanced fluorescence emission ("switch-on") of the dye in the presence of blood. The origin of the fluorescence enhancement was investigated via methods, including DLS, ITC, and molecular dynamics. Further, fluorescence measurements were conducted to see the impact the dye-IL system had on the fluorescence of the tryptophan residue of human serum albumin (HSA), as well as to determine its apparent association constants in relation to albumin. Circular dichroism (CD) spectroscopy was used to provide evidence that the dye-IL system does not alter the secondary structures of albumin or DNA. Our results suggest that the enhanced fluorescence of the dye in the presence of IL and blood is due to diversification of binding sites in albumin, controlled by the interaction of the IL-dye-albumin complex.
Collapse
Affiliation(s)
- Donovan S Darlington
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Allison N Mahurin
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Karina Kapusta
- Department of Chemistry and Physics, Tougaloo College, Tougaloo, Mississippi 39174, United States
| | - Ember Suh
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Cameron Smith
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Ethan Jarrett
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Claylee M Chism
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - William E Meador
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Zakeyia C Kelly
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
- Air Force Research Laboratory, Materials and Manufacturing Directorate (RXNC), Wright-Patterson AFB, 2230 Tenth Street B655, Dayton, Ohio 45433, United States
- UES, Inc., 4401 Dayton Xenia Rd, Dayton, Ohio 45432, United States
| | - Yongfeng Zhao
- Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Radha P Somarathne
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Eden E L Tanner
- Department of Chemistry and Biochemistry, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
8
|
Somarathne RP, Amarasekara DL, Kariyawasam CS, Robertson HA, Mayatt R, Fitzkee NC. Protein Binding Leads to Reduced Stability and Solvated Disorder in the Polystyrene Nanoparticle Corona. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548033. [PMID: 37461509 PMCID: PMC10350082 DOI: 10.1101/2023.07.06.548033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Understanding the conformation of proteins in the nanoparticle corona has important implications in how organisms respond to nanoparticle-based drugs. These proteins coat the nanoparticle surface, and their properties will influence the nanoparticle's interaction with cell targets and the immune system. While some coronas are thought to be disordered, two key unanswered questions are the degree of disorder and solvent accessibility. Here, using a comprehensive thermodynamic approach, along with supporting spectroscopic experiments, we develop a model for protein corona disorder in polystyrene nanoparticles of varying size. For two different proteins, we find that binding affinity decreases as nanoparticle size increases. The stoichiometry of binding, along with changes in the hydrodynamic size, support a highly solvated, disordered protein corona anchored at a small number of enthalpically-driven attachment sites. The scaling of the stoichiometry vs. nanoparticle size is consistent disordered polymer dimensions. Moreover, we find that proteins are destabilized less severely in the presence of larger nanoparticles, and this is supported by measurements of hydrophobic exposure, which becomes less pronounced at lower curvatures. Our observations hold for flat polystyrene surfaces, which, when controlled for total surface area, have the lowest hydrophobic exposure of all systems. Our model provides an explanation for previous observations of increased amyloid fibrillation rates in the presence of larger nanoparticles, and it may rationalize how cell receptors can recognize protein disorder in therapeutic nanoparticles.
Collapse
Affiliation(s)
- Radha P. Somarathne
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| | | | | | - Harley A. Robertson
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Railey Mayatt
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| |
Collapse
|
9
|
Kong X, Xiao Z, Chen Y, Du M, Zhang Z, Wang Z, Xu B, Cheng Y, Yu T, Gan J. Calcium-binding properties, stability, and osteogenic ability of phosphorylated soy peptide-calcium chelate. Front Nutr 2023; 10:1129548. [PMID: 37153921 PMCID: PMC10160607 DOI: 10.3389/fnut.2023.1129548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction Bioactive peptides based on foodstuffs are of particular interest as carriers for calcium delivery due to their safety and high activity. The phosphorylated peptide has been shown to enhance calcium absorption and bone formation. Method A novel complex of peptide phosphorylation modification derived from soybean protein was introduced, and the mechanism, stability, and osteogenic differentiation bioactivity of the peptide with or without calcium were studied. Result The calcium-binding capacity of phosphorylated soy peptide (SPP) reached 50.24 ± 0.20 mg/g. The result of computer stimulation and vibration spectrum showed that SPP could chelate with calcium by the phosphoric acid group, carboxyl oxygen of C-terminal Glu, Asp, and Arg, and phosphoric acid group of Ser on the SPP at a stoichiometric ratio of 1:1, resulting in the formation of the complex of ligand and peptide. Thermal stability showed that chelation enhanced peptide stability compared with SPP alone. Additionally, in vitro results showed that SPP-Ca could facilitate osteogenic proliferation and differentiation ability. Discussion SPP may function as a promising alternative to current therapeutic agents for bone loss.
Collapse
Affiliation(s)
- Xiao Kong
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong, China
| | - Ziqun Xiao
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhang Chen
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - MengDi Du
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong, China
| | - Zihui Zhang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong, China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong, China
| | - Bo Xu
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tianying Yu
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong, China
| | - Jing Gan
- Center for Mitochondria and Healthy Aging, College of Life Science, Yantai University, Yantai, Shandong, China
| |
Collapse
|
10
|
Huang X, Hu J, Chen G, Liang Y, Koh JYC, Liu D, Chen X, Zhou P. Conformational entropy of hyaluronic acid contributes to taste enhancement. Int J Biol Macromol 2023; 241:124513. [PMID: 37086774 DOI: 10.1016/j.ijbiomac.2023.124513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/02/2023] [Accepted: 04/15/2023] [Indexed: 04/24/2023]
Abstract
Natural taste/flavor enhancers are essential ingredients that could potentially address condiments overconsumption. For the first time, we report that hyaluronic acid (HA) could modulate taste perception, governed by the dynamic interactions among taste compounds, mucin, and HA. Various conformations of HA impact taste perception. The high molecular weight (Mw) of 1090 kDa HA inhibits the sense of taste due to its increased viscosity, which hinders the penetration of Na+ into the mucin layer. HA with low and medium Mw (100 kDa, 400 kDa) could enhance taste perception. Isothermal titration calorimetry analysis confirms the stronger binding between mucin and HA. The intensity of their interaction increases as the Mw of HA increases from 8 kDa to 400 kDa. Quartz crystal microbalance with dissipation characterization further indicates that the rigid conformation of 100 kDa HA facilitates the binding of Na+ with taste receptors, thereby enhancing taste perception. The flexible conformation of 400 kDa HA may conceal the taste receptor cells, reducing taste enhancement. Our work advances the understanding of conformational entropy of natural mucoadhesion and mucopenetration polymers, which lays the foundation for their potential use as taste enhancers.
Collapse
Affiliation(s)
- Xueyao Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinhua Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Guangxue Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongxue Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Yan Cheryl Koh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Dingrong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Govind Kumar V, Polasa A, Agrawal S, Kumar TKS, Moradi M. Binding affinity estimation from restrained umbrella sampling simulations. NATURE COMPUTATIONAL SCIENCE 2023; 3:59-70. [PMID: 38177953 PMCID: PMC10766565 DOI: 10.1038/s43588-022-00389-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2024]
Abstract
The protein-ligand binding affinity quantifies the binding strength between a protein and its ligand. Computer modeling and simulations can be used to estimate the binding affinity or binding free energy using data- or physics-driven methods or a combination thereof. Here we discuss a purely physics-based sampling approach based on biased molecular dynamics simulations. Our proposed method generalizes and simplifies previously suggested stratification strategies that use umbrella sampling or other enhanced sampling simulations with additional collective-variable-based restraints. The approach presented here uses a flexible scheme that can be easily tailored for any system of interest. We estimate the binding affinity of human fibroblast growth factor 1 to heparin hexasaccharide based on the available crystal structure of the complex as the initial model and four different variations of the proposed method to compare against the experimentally determined binding affinity obtained from isothermal titration calorimetry experiments.
Collapse
Affiliation(s)
- Vivek Govind Kumar
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
12
|
Ahanger IA, Parray ZA, Raina N, Bashir S, Ahmad F, Hassan MI, Shahid M, Sharma A, Islam A. Counteraction of the cetyltrimethylammonium bromide-induced protein aggregation by Heparin: Potential impact on protein aggregation and neurodegenerative diseases using biophysical approaches. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
13
|
Vianney YM, Weisz K. High-affinity binding at quadruplex-duplex junctions: rather the rule than the exception. Nucleic Acids Res 2022; 50:11948-11964. [PMID: 36416262 PMCID: PMC9723630 DOI: 10.1093/nar/gkac1088] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
Quadruplex-duplex (Q-D) junctions constitute unique structural motifs in genomic sequences. Through comprehensive calorimetric as well as high-resolution NMR structural studies, Q-D junctions with a hairpin-type snapback loop coaxially stacked onto an outer G-tetrad were identified to be most effective binding sites for various polycyclic quadruplex ligands. The Q-D interface is readily recognized by intercalation of the ligand aromatic core structure between G-tetrad and the neighboring base pair. Based on the thermodynamic and structural data, guidelines for the design of ligands with enhanced selectivity towards a Q-D interface emerge. Whereas intercalation at Q-D junctions mostly outcompete stacking at the quadruplex free outer tetrad or intercalation between duplex base pairs to varying degrees, ligand side chains considerably contribute to the selectivity for a Q-D target over other binding sites. In contrast to common perceptions, an appended side chain that additionally interacts within the duplex minor groove may confer only poor selectivity. Rather, the Q-D selectivity is suggested to benefit from an extension of the side chain towards the exposed part of the G-tetrad at the junction. The presented results will support the design of selective high-affinity binding ligands for targeting Q-D interfaces in medicinal but also technological applications.
Collapse
Affiliation(s)
- Yoanes Maria Vianney
- Institute of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, D-17489 Greifswald, Germany
| | - Klaus Weisz
- To whom correspondence should be addressed. Tel: +49 3834 420 4426; Fax: +49 3834 420 4427;
| |
Collapse
|
14
|
Thermodynamic analysis of Zα domain-nucleic acid interactions. Biochem J 2022; 479:1727-1741. [PMID: 35969150 DOI: 10.1042/bcj20220200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
DNA/RNA molecules adopting the left-handed conformation (Z-form) have been attributed with immunogenic properties. However, their biological role and importance has been a topic of debate for many years. The discovery of Z-DNA/RNA binding domains (Zα domains) in varied proteins that are involved in the innate immune response, such as the interferon inducible form of the RNA editing enzyme ADAR1 (p150), Z-DNA binding protein 1 (ZBP1), the fish kinase PKZ and the poxvirus inhibitor of interferon response E3L, indicates important roles of Z-DNA/RNA in immunity and self/non-self-discrimination. Such Zα domain-containing proteins recognise left-handed Z-DNA/RNA in a conformation-specific manner. Recent studies have implicated these domains in virus recognition. Given these important emerging roles for the Zα domains, it is pivotal to understand the mechanism of recognition of the Z-DNA/Z-RNA by these domains. To this end, we assessed the binding thermodynamics of Zα domain from ORF112 and ADAR1 on T(CG)3 and T(CG)6 oligonucleotides which have high propensity to adopt the Z-conformation. Our study highlights important differences in the mode of oligonucleotide binding by the two Zα domains originating from different proteins. Site-directed mutagenesis was employed together with isothermal titration calorimetry to tease apart finer details of the binding thermodynamics. Our work advances the understanding on binding thermodynamics of Zα domains to their cognate nucleic acid substrates and paves the ground for future efforts to gain a complete appreciation of this process.
Collapse
|
15
|
Lauth LM, Voigt B, Bhatia T, Machner L, Balbach J, Ott M. Heparin promotes rapid fibrillation of the basic Parathyroid Hormone at physiological pH. FEBS Lett 2022; 596:2928-2939. [PMID: 35903816 DOI: 10.1002/1873-3468.14455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
In acidic secretory granules of mammalian cells, peptide hormones including the parathyroid hormone (PTH) are presumably stored in the form of functional amyloid fibrils. Mature PTH, however, is considerably positively charged in acidic environments, a condition known to impede unassisted self-aggregation into fibrils. Here, we studied the role of the polyanion heparin on promoting fibril formation of PTH. Employing ITC, CD spectroscopy, NMR, SAXS and fluorescence-based assays we could demonstrate that heparin binds PTH with submicromolar affinity and facilitates its conversion into fibrillar seeds, enabling rapid formation of amyloid fibrils under acidic conditions. In absence of heparin, PTH remained in a soluble monomeric state. We suspect that heparin-like surfaces are required in vivo to convert PTH efficiently into fibrillar deposits.
Collapse
Affiliation(s)
- Luca M Lauth
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Bruno Voigt
- Department of Biophysics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Twinkle Bhatia
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| | - Lisa Machner
- Department of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Jochen Balbach
- Department of Biophysics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Maria Ott
- Department of Biochemistry and Biotechnology, Martin-Luther-University, Halle-Wittenberg, Halle, Germany
| |
Collapse
|
16
|
The role of polymeric chains as a protective environment for improving the stability and efficiency of fluorogenic peptide substrates. Sci Rep 2022; 12:8818. [PMID: 35614307 PMCID: PMC9132916 DOI: 10.1038/s41598-022-12848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
We have faced the preparation of fully water-soluble fluorescent peptide substrate with long-term environmental stability (in solution more than 35 weeks) and, accordingly, with stable results in the use of this probe in determining the activity of enzymes. We have achieved this goal by preparing a co-polymer of the commercial N-vinyl-2-pyrrolidone (99.5% mol) and a fluorescent substrate for trypsin activity determination having a vinylic group (0.5%). The activity of trypsin has been measured in water solutions of this polymer over time, contrasted against the activity of both the commercial substrate Z-L-Arg-7-amido-4-methylcoumarin hydrochloride and its monomeric derivative, prepared ad-hoc. Initially, the activity of the sensory polymer was 74.53 ± 1.72 nmol/min/mg of enzyme, while that of the commercial substrate was 20.44 ± 0.65 nmol/min/mg of enzyme, the former maintained stable along weeks and the latter with a deep decay to zero in three weeks. The ‘protection’ effect exerted by the polymer chain has been studied by solvation studies by UV–Vis spectroscopy, steady-state & time resolved fluorescence, thermogravimetry and isothermal titration calorimetry.
Collapse
|
17
|
Reddy KD, Ciftci D, Scopelliti AJ, Boudker O. The archaeal glutamate transporter homologue GltPh shows heterogeneous substrate binding. J Gen Physiol 2022; 154:e202213131. [PMID: 35452090 PMCID: PMC9044058 DOI: 10.1085/jgp.202213131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Integral membrane glutamate transporters couple the concentrative substrate transport to ion gradients. There is a wealth of structural and mechanistic information about this protein family. Recent studies of an archaeal homologue, GltPh, revealed transport rate heterogeneity, which is inconsistent with simple kinetic models; however, its structural and mechanistic determinants remain undefined. Here, we demonstrate that in a mutant GltPh, which exclusively populates the outward-facing state, at least two substates coexist in slow equilibrium, binding the substrate with different apparent affinities. Wild type GltPh shows similar binding properties, and modulation of the substate equilibrium correlates with transport rates. The low-affinity substate of the mutant is transient following substrate binding. Consistently, cryo-EM on samples frozen within seconds after substrate addition reveals the presence of structural classes with perturbed helical packing of the extracellular half of the transport domain in regions adjacent to the binding site. By contrast, an equilibrated structure does not show such classes. The structure at 2.2-Å resolution details a pattern of waters in the intracellular half of the domain and resolves classes with subtle differences in the substrate-binding site. We hypothesize that the rigid cytoplasmic half of the domain mediates substrate and ion recognition and coupling, whereas the extracellular labile half sets the affinity and dynamic properties.
Collapse
Affiliation(s)
- Krishna D. Reddy
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
| | - Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Tri-Institutional Training Program in Chemical Biology, New York, NY
| | | | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
18
|
Xu S, Sun Y, Dong X. Design of Gallic Acid-Glutamine Conjugate and Chemical Implications for Its Potency Against Alzheimer's Amyloid-β Fibrillogenesis. Bioconjug Chem 2022; 33:677-690. [PMID: 35380783 DOI: 10.1021/acs.bioconjchem.2c00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) has been widely recognized as a potent inhibitor of Alzheimer's amyloid-β (Aβ) fibrillogenesis. We found that gallic acid (GA) has superior inhibitory effects over EGCG at the same mass concentrations and assumed the pivotal role of the carboxyl group in GA. Therefore, we designed five GA-derivatives to investigate the significance of carboxyl groups in modulating Aβ fibrillogenesis, including carboxyl-amidated GA (GA-NH2), GA-glutamic acid conjugate (GA-E), and GA-E derivatives with amidated either of the two carboxyl groups (GA-Q and GA-E-NH2) or with two amidated-carboxyl groups (GA-Q-NH2). Intriguingly, only GA-Q shows significantly stronger potency than GA and extends the life span of the AD transgenic nematode by over 30%. Thermodynamic studies reveal that GA-Q has a strong binding affinity for Aβ42 with two binding sites, one stronger (site 1, Ka1 = 3.1 × 106 M-1) and the other weaker (site 2, Ka2 = 0.8 × 106 M-1). In site 1, hydrogen bonding, electrostatic interactions, and hydrophobic interactions all have contributions, while in site 2, only hydrogen bonding and electrostatic interactions work. The two sites are confirmed by molecular simulations, and the computations specified the key residues. GA-Q has strong binding to Asp23, Gly33, Gly38, Ala30, Ile31, and Leu34 via hydrogen bonding and electrostatic interactions, while it interacts with Phe19, Ala21 Gly25, and Asn27 via hydrophobic interactions. Consequently, GA-Q destroys Asp23-Lys28 salt bridges and restricts β-sheet/bridge structures. The thermodynamic and molecular insight into the GA-Q functions on inhibiting Aβ fibrillogenesis would pave a new way to the design of potent molecules against Alzheimer's amyloid.
Collapse
Affiliation(s)
- Shaoying Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
19
|
Xu X. Development of the Sequential Binding Model and Application for Anticooperative Protein Adsorption onto Charged Dendrimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4102-4110. [PMID: 35324205 DOI: 10.1021/acs.langmuir.2c00173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Langmuir binding model provides one of the simplest and elegant methods for characterizing an adsorption process. Despite its wide-ranging applications, enormous effort has been spent to further integrate complexity onto the standard Langmuir isotherm to incorporate a wide breadth of binding kinetics with the heterogeneity and cooperative effect among ligands and receptors. Here, we use statistical mechanics as a convenient theoretical framework to depict several adsorption processes on a Langmuir-like description. With regard to the system with a two-component mixture of macromolecular binders, we have derived the two-group sequential binding isotherm as an important extension of the original sequential model with more applications, including systems of non-identical binders. Via comparison of the Langmuir equilibrium with the Boltzmann equilibrium, for the first time the binding free energy defined in the Langmuir-like models can be meaningfully compared with simulations. In a practical example of the adsorption between the lysozyme protein and charged dendrimer, we have demonstrated how the calorimetry data of this system could be interpreted by the binding models described above, with an accurate description of the adsorption process, including the cooperative effect and dendrimer heterogeneity. Using the computer simulation as a benchmark, we also reveal and discuss the strengths and limitations of the proposed binding models. The entire analysis serves as a starting point for extending the standard Langmuir model to access more complicated binding processes.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| |
Collapse
|
20
|
Migliore R, Biver T, Barone G, Sgarlata C. Quantitative Analysis of the Interactions of Metal Complexes and Amphiphilic Systems: Calorimetric, Spectroscopic and Theoretical Aspects. Biomolecules 2022; 12:biom12030408. [PMID: 35327600 PMCID: PMC8946196 DOI: 10.3390/biom12030408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Metals and metal-based compounds have many implications in biological systems. They are involved in cellular functions, employed in the formation of metal-based drugs and present as pollutants in aqueous systems, with toxic effects for living organisms. Amphiphilic molecules also play important roles in the above bio-related fields as models of membranes, nanocarriers for drug delivery and bioremediating agents. Despite the interest in complex systems involving both metal species and surfactant aggregates, there is still insufficient knowledge regarding the quantitative aspects at the basis of their binding interactions, which are crucial for extensive comprehension of their behavior in solution. Only a few papers have reported quantitative analyses of the thermodynamic, kinetic, speciation and binding features of metal-based compounds and amphiphilic aggregates, and no literature review has yet addressed the quantitative study of these complexes. Here, we summarize and critically discuss the recent contributions to the quantitative investigation of the interactions of metal-based systems with assemblies made of amphiphilic molecules by calorimetric, spectrophotometric and computational techniques, emphasizing the unique picture and parameters that such an analytical approach may provide, to support a deep understanding and beneficial use of these systems for several applications.
Collapse
Affiliation(s)
- Rossella Migliore
- Institute of Biomolecular Chemistry, National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy;
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy;
| | - Carmelo Sgarlata
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Correspondence:
| |
Collapse
|
21
|
Chang JW, Armaou A, Rioux RM. Continuous Injection Isothermal Titration Calorimetry for In Situ Evaluation of Thermodynamic Binding Properties of Ligand-Receptor Binding Models. J Phys Chem B 2021; 125:8075-8087. [PMID: 34259524 DOI: 10.1021/acs.jpcb.1c01821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We utilize a continuous injection approach (CIA) rather than the traditional incremental injection approach (IIA) to deliver ligand (or receptor) to the calorimeter cell to evaluate thermodynamic binding parameters for three common ligand-receptor binding models-single independent, competitive, and two independent binding sites-using isothermal titration calorimetry (ITC). A general mathematical expression for the binding isotherm for any binding stoichiometry under continuous delivery of ligand (or receptor) resulting in an analytical solution for the thermodynamic binding parameters is presented. The advantages of CIA include reduction in experimental time, estimation of thermodynamic binding parameter values, and automation of the experiment since thermodynamic parameters are estimated in situ. We demonstrate the inherent advantages of CIA over IIA for the three binding models. For the single independent site model, we utilized the binding of Ba2+ ions to ethylenediaminetetraacetic acid (EDTA), while competitive binding was captured by titration of Ca2+ ions into a buffered solution of Ba2+ and EDTA. We experimentally simulated a two independent binding site system by injecting Ca2+ into a solution of EDTA and 1,3-diaminopropane-N,N,N',N'-tetraacetic acid (DPTA). The results demonstrate estimation of thermodynamic parameters with greater confidence and simultaneous reduction in the experimental time of 83% and titrating reagent of 50%, as compared to IIA.
Collapse
Affiliation(s)
- Ji Woong Chang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi-si, Gyeongsangbuk-do 39177, South Korea
| | - Antonios Armaou
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,FORTH Institute of Chemical Engineering Sciences, Rio 26504, Greece
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
22
|
Yu AC, Lian H, Kong X, Lopez Hernandez H, Qin J, Appel EA. Physical networks from entropy-driven non-covalent interactions. Nat Commun 2021; 12:746. [PMID: 33531475 PMCID: PMC7854746 DOI: 10.1038/s41467-021-21024-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Physical networks typically employ enthalpy-dominated crosslinking interactions that become more dynamic at elevated temperatures, leading to network softening. Moreover, standard mathematical frameworks such as time-temperature superposition assume network softening and faster dynamics at elevated temperatures. Yet, deriving a mathematical framework connecting the crosslinking thermodynamics to the temperature-dependent viscoelasticity of physical networks suggests the possibility for entropy-driven crosslinking interactions to provide alternative temperature dependencies. This framework illustrates that temperature negligibly affects crosslink density in reported systems, but drastically influences crosslink dynamics. While the dissociation rate of enthalpy-driven crosslinks is accelerated at elevated temperatures, the dissociation rate of entropy-driven crosslinks is negligibly affected or even slowed under these conditions. Here we report an entropy-driven physical network based on polymer-nanoparticle interactions that exhibits mechanical properties that are invariant with temperature. These studies provide a foundation for designing and characterizing entropy-driven physical crosslinking motifs and demonstrate how these physical networks access thermal properties that are not observed in current physical networks.
Collapse
Affiliation(s)
- Anthony C Yu
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
| | - Huada Lian
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Xian Kong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Abstract
Calorimetry is a classical biophysical method that by definition measures heat. In isothermal titration calorimetry (ITC), the heat is the result of titrating interacting components together and allows direct determination of the thermodynamics for this process. The measured heat reflects the enthalpy change (ΔH), and the prospect of determining this in biological systems where high-resolution structural information is available has led to the possibility of rational thermodynamics-guided design of ligands. Although there are limitations to this approach due to the participation of solvent in the thermodynamics, ITC has become an established technique in many labs providing a valuable tool with which to quantify protein-protein interactions. With careful use, ITC can also provide additional insights into the binding process or be used in increasingly complex systems and where interaction is coupled to other molecular events.
Collapse
|
24
|
Schneeberger EM, Halper M, Palasser M, Heel SV, Vušurović J, Plangger R, Juen M, Kreutz C, Breuker K. Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA. Nat Commun 2020; 11:5750. [PMID: 33188169 PMCID: PMC7666190 DOI: 10.1038/s41467-020-19144-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/29/2020] [Indexed: 11/24/2022] Open
Abstract
Nuclear export complexes composed of rev response element (RRE) ribonucleic acid (RNA) and multiple molecules of rev protein are promising targets for the development of therapeutic strategies against human immunodeficiency virus type 1 (HIV-1), but their assembly remains poorly understood. Using native mass spectrometry, we show here that rev initially binds to the upper stem of RRE IIB, from where it is relayed to binding sites that allow for rev dimerization. The newly discovered binding region implies initial rev recognition by nucleotides that are not part of the internal loop of RRE stem IIB RNA, which was previously identified as the preferred binding region. Our study highlights the unique capability of native mass spectrometry to separately study the binding interfaces of RNA/protein complexes of different stoichiometry, and provides a detailed understanding of the mechanism of RRE/rev association with implications for the rational design of potential drugs against HIV-1 infection.
Collapse
Affiliation(s)
- Eva-Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Halper
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Michael Palasser
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Sarah Viola Heel
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Jovana Vušurović
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Michael Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Roche Diagnostics GmbH, 82377, Penzberg, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
25
|
Archer WR, Schulz MD. Isothermal titration calorimetry: practical approaches and current applications in soft matter. SOFT MATTER 2020; 16:8760-8774. [PMID: 32945316 DOI: 10.1039/d0sm01345e] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Isothermal Titration Calorimetry (ITC) elucidates the thermodynamic profile (ΔH, ΔS, ΔG, Ka, and stoichiometry) of binding and dissociation reactions in solution. While ITC has primarily been used to investigate the thermodynamics of interactions between biological macromolecules and small molecules, it has become increasingly common for measuring binding interactions between synthetic polymers and small molecules, ions, or nanoparticles. This tutorial review describes applications of ITC in studying synthetic macromolecules and provides experimental guidelines for performing ITC experiments. We also highlight specific examples of using ITC to study soft matter, then discuss the limitations and the future of ITC in this field.
Collapse
Affiliation(s)
- William R Archer
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Michael D Schulz
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
26
|
Jugl A, Pekař M. Hyaluronan-Arginine Interactions-An Ultrasound and ITC Study. Polymers (Basel) 2020; 12:polym12092069. [PMID: 32932626 PMCID: PMC7570013 DOI: 10.3390/polym12092069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
High-resolution ultrasound spectroscopy and isothermal titration calorimetry were used to characterize interactions between hyaluronan and arginine oligomers. The molecular weight of arginine oligomer plays an important role in interactions with hyaluronan. Interactions were observable for arginine oligomers with eight monomer units and longer chains. The effect of the ionic strength and molecular weight of hyaluronan on interactions was tested. In an environment with increased ionic strength, the length of the arginine oligomer was crucial. Generally, sufficiently high ionic strength suppresses interactions between hyaluronan and arginine oligomers, which demonstrated interactions in water. From the point of view of the molecular weight of hyaluronan, the transition between the rod conformation and the random coil conformation appeared to be important.
Collapse
|
27
|
Totea AM, Dorin I, Laity PR, Sabin J, Conway BR, Waters L, Asare-Addo K. A molecular understanding of magnesium aluminium silicate - drug, drug - polymer, magnesium aluminium silicate - polymer nanocomposite complex interactions in modulating drug release: Towards zero order release. Eur J Pharm Biopharm 2020; 154:270-282. [PMID: 32717386 DOI: 10.1016/j.ejpb.2020.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
This study reports the use of ITC in understanding the thermodynamics occurring for a controlled release system in which complexation has been exploited. In this study, a model drug, propranolol hydrochloride (PPN) was complexed with magnesium aluminium silicate (MAS) and these complexes were used in combination with polyethylene oxide (PEO) as a hydrophilic carrier at various concentrations to sustain the release of PPN. DSC, XRPD, ATR-FTIR and SEM/EDX were successfully used in characterising the produced complexes. 2D- SAXS data patterns for MAS and the produced complexes were shown to be symmetric and circular with the particles showing no preferred orientation at the nanometre scale. ITC studies showed differences between PPN adsorption onto MAS compared with PPN adsorption onto a MAS-PEO mixture. At both temperatures studied the binding affinity Ka was greater for the titration of PPN into the MAS-PEO mixture (5.37E + 04 ± 7.54E + 03 M at 25 °C and 8.63E + 04 ± 6.11E + 03 M at 37 °C), compared to the affinity obtained upon binding between PPN and MAS as previously reported suggesting a stronger binding with implications for the dissolution process. MAS-PPN complexes with the PEO polymer compacts displayed desired manufacturing and formulation properties for a formulator including, reduced plastic recovery therefore potentially reducing the risk of cracking/splitting and on tooling wear, controlled release of PPN at a significantly low (5%) polymer level as well as a zero-order release profile (case II transport) using up to 50% polymer level.
Collapse
Affiliation(s)
- A M Totea
- School of Applied Sciences, Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - I Dorin
- Biomolecular Formulation and Characterization Sciences, UCB, Slough SL3WE, UK
| | - P R Laity
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - Juan Sabin
- AFFINImeter, Edificio Emprendia, Campus Vida, Santiago de Compostela, Spain
| | - B R Conway
- School of Applied Sciences, Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - L Waters
- School of Applied Sciences, Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - K Asare-Addo
- School of Applied Sciences, Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
28
|
Maruno T, Ohkubo T, Uchiyama S. Stirring rate affects thermodynamics and unfolding kinetics in isothermal titration calorimetry. J Biochem 2020; 168:53-62. [PMID: 32134445 DOI: 10.1093/jb/mvaa028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/10/2020] [Indexed: 11/13/2022] Open
Abstract
Isothermal titration calorimetry (ITC) directly provides thermodynamic parameters depicting the energetics of intermolecular interactions in solution. During ITC experiments, a titration syringe with a paddle is continuously rotating to promote a homogeneous mixing. Here, we clarified that the shape of the paddles (flat, corkscrew and small-pitched corkscrew) and the stirring rates influence on the thermodynamic parameters of protein-ligand interaction. Stirring with the flat paddle at lower and higher rate both yielded a lower exothermic heat due to different reasons. The complete reaction with no incompetent fractions was achieved only when the stirring was performed at 500 or 750 rpm using the small-pitched corkscrew paddle. The evaluation of the protein solution after 1,500 rpm stirring indicated that proteins in the soluble fraction decreased to 94% of the initial amount, among which 6% was at an unfolded state. In addition, a significant increase of micron aggregates was confirmed. Furthermore, a new approach for the determination of the unfolding kinetics based on the time dependence of the total reaction heat was developed. This study demonstrates that a proper stirring rate and paddle shape are essential for the reliable estimation of thermodynamic parameters in ITC experiments.
Collapse
Affiliation(s)
- Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
29
|
Hollingsworth WR, Williams V, Ayzner AL. Semiconducting Eggs and Ladders: Understanding Exciton Landscape Formation in Aqueous π-Conjugated Inter-Polyelectrolyte Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- William R. Hollingsworth
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Vanessa Williams
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Alexander L. Ayzner
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
30
|
Krishnamoorthy GK, Alluvada P, Hameed Mohammed Sherieff S, Kwa T, Krishnamoorthy J. Isothermal titration calorimetry and surface plasmon resonance analysis using the dynamic approach. Biochem Biophys Rep 2020; 21:100712. [PMID: 31890903 PMCID: PMC6926116 DOI: 10.1016/j.bbrep.2019.100712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Biophysical techniques such as isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) are routinely used to ascertain the global binding mechanisms of protein-protein or protein-ligand interaction. Recently, Dumas etal, have explicitly modelled the instrument response of the ligand dilution and analysed the ITC thermogram to obtain kinetic rate constants. Adopting a similar approach, we have integrated the dynamic instrument response with the binding mechanism to simulate the ITC profiles of equivalent and independent binding sites, equivalent and sequential binding sites and aggregating systems. The results were benchmarked against the standard commercial software Origin-ITC. Further, the experimental ITC chromatograms of 2′-CMP + RNASE and BH3I-1 + hBCLXL interactions were analysed and shown to be comparable with that of the conventional analysis. Dynamic approach was applied to simulate the SPR profiles of a two-state model, and could reproduce the experimental profile accurately. Incorporated instrument response within the kinetic framework using dynamic approach to analyse ITC and SPR data. Different modelling approaches for instrument response such as lumped and kinetic modelling were compared and their equivalence were shown. (1) equivalent single site, (2) equivalent sequential sites, (3) equivalent parallel sites and (4) aggregating molecular system were modelled using dynamic approach.
Collapse
|
31
|
Totea A, Dorin I, Gavrilov G, Laity P, Conway B, Waters L, Asare-Addo K. Real time calorimetric characterisation of clay – drug complex dispersions and particles. Int J Pharm X 2019; 1:100003. [PMID: 31545854 PMCID: PMC6733304 DOI: 10.1016/j.ijpx.2018.100003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 11/17/2022] Open
Abstract
Single loaded and double loaded MAS-PPN complexes successfully made. ATR-FTIR confirmed adsorption of PPN onto MAS via hydrogen bonding. SEM/EDX showed changes in MAS microstructure upon complexation. Drug recovery varied in three media types. SIM and MIM experiments showed overall change in enthalpy to be exothermic SIM and MIM showed small entropic contribution to the total change in Gibbs free energy.
Isothermal titration calorimetry (ITC) along with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) and high-performance liquid chromatography (HPLC) were employed to investigate the process of adsorption of propranolol hydrochloride (PPN) onto magnesium aluminium silicate (MAS) and to characterise the MAS-PPN particles formed upon complexation. The composition of MAS was confirmed by infrared (IR) spectroscopy and a calcimeter. The calorimetric results confirmed the binding between PPN and MAS at various pHs and temperatures. The overall change in enthalpy was found to be exothermic with a comparatively small entropic contribution to the total change in Gibbs free energy. These findings suggest that the binding process was enthalpically driven and entropically unfavourable (lower affinity) suggesting hydrogen bonding and electrostatic interactions dominating the interaction. The variation of pH and temperature did not have a great impact on the thermodynamics of the binding process, as observed from the similarity in enthalpy (ΔH), entropy (ΔS) or Gibbs free energy (ΔG). A slight reduction in the binding affinity (Ka) with varing pH and temperature was however observed. SEM/EDX studies showed the occurrence of changes in the microstructural properties of MAS following complexation which may explain the potential of MAS-PPN complexes for controlled drug release promoting pharmaceutical innovation.
Collapse
Affiliation(s)
- A.M. Totea
- School of Applied Sciences, Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - I. Dorin
- Malvern Panalytical Ltd., Malvern, UK
| | - G. Gavrilov
- Wienerberger, Baneasa Business & Technology Park, Bucharest, Romania
| | - P.R. Laity
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK
| | - B.R. Conway
- School of Applied Sciences, Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - L. Waters
- School of Applied Sciences, Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - K. Asare-Addo
- School of Applied Sciences, Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Corresponding author.
| |
Collapse
|
32
|
Alatrash N, Issa FH, Bawazir NS, West SJ, Van Manen-Brush KE, Shelor CP, Dayoub AS, Myers KA, Janetopoulos C, Lewis EA, MacDonnell FM. Disruption of microtubule function in cultured human cells by a cytotoxic ruthenium(ii) polypyridyl complex. Chem Sci 2019; 11:264-275. [PMID: 34040721 PMCID: PMC8133002 DOI: 10.1039/c9sc05671h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Treatment of malignant and non-malignant cultured human cell lines with a cytotoxic IC50 dose of ∼2 μM tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(ii) chloride (RPC2) retards or arrests microtubule motion as tracked by visualizing fluorescently-tagged microtubule plus end-tracking proteins. Immunofluorescent microscopic images of the microtubules in fixed cells show substantial changes to cellular microtubule network and to overall cell morphology upon treatment with RPC2. Flow cytometry with MCF7 and H358 cells reveals only minor elevations of the number of cells in G2/M phase, suggesting that the observed cytotoxicity is not tied to mitotic arrest. In vitro studies with purified tubulin reveal that RPC2 acts to promote tubulin polymerization and when imaged by electron microscopy, these microtubules look normal in appearance. Isothermal titration calorimetry measurements show an associative binding constant of 4.8 × 106 M-1 for RPC2 to preformed microtubules and support a 1 : 1 RPC2 to tubulin dimer stoichiometry. Competition experiments show RPC2 does not compete for the taxane binding site. Consistent with this tight binding, over 80% of the ruthenium in treated cells is co-localized with the cytoskeletal proteins. These data support RPC2 acting as an in vivo microtubule stabilizing agent and sharing many similarities with cells treated with paclitaxel.
Collapse
Affiliation(s)
- Nagham Alatrash
- Department of Chemistry and Biochemistry, University of Texas at Arlington Arlington TX 76019 USA
| | - Faiza H Issa
- Department of Chemistry and Biochemistry, University of Texas at Arlington Arlington TX 76019 USA
| | - Nada S Bawazir
- Department of Biological Sciences, University of the Sciences Philadelphia PA 19104 USA
| | - Savannah J West
- Department of Chemistry, Mississippi State University Starkville MS 39762 USA
| | | | - Charles P Shelor
- Department of Chemistry and Biochemistry, University of Texas at Arlington Arlington TX 76019 USA
| | - Adam S Dayoub
- Department of Chemistry and Biochemistry, University of Texas at Arlington Arlington TX 76019 USA
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences Philadelphia PA 19104 USA
| | | | - Edwin A Lewis
- Department of Chemistry, Mississippi State University Starkville MS 39762 USA
| | - Frederick M MacDonnell
- Department of Chemistry and Biochemistry, University of Texas at Arlington Arlington TX 76019 USA
| |
Collapse
|
33
|
Hobson JJ, Curley P, Savage AC, Al-Khouja A, Siccardi M, Flexner C, Meyers CF, Owen A, Rannard SP. Anhydrous nanoprecipitation for the preparation of nanodispersions of tenofovir disoproxil fumarate in oils as candidate long-acting injectable depot formulations. NANOSCALE ADVANCES 2019; 1:4301-4307. [PMID: 36134394 PMCID: PMC9417103 DOI: 10.1039/c9na00529c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/07/2019] [Indexed: 06/16/2023]
Abstract
The facile formation of drug nanoparticles in injectable/ingestible oils, of water-soluble antiretroviral tenofovir disoproxil fumarate, using a novel nanoprecipitation is presented with studies showing drug release into relevant aqueous media.
Collapse
Affiliation(s)
- James J Hobson
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Paul Curley
- Department of Molecular and Clinical Pharmacology, University of Liverpool Block H, 70 Pembroke Place Liverpool L69 3GF UK
| | - Alison C Savage
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Amer Al-Khouja
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine 725 North Wolfe St. Baltimore MD 21205 USA
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, University of Liverpool Block H, 70 Pembroke Place Liverpool L69 3GF UK
| | - Charles Flexner
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine 725 North Wolfe St. Baltimore MD 21205 USA
- Department of Medicine, The Johns Hopkins University School of Medicine 575 Osler Building, 600 N. Wolfe St. Baltimore MD 21287 USA
| | - Caren Freel Meyers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine 725 North Wolfe St. Baltimore MD 21205 USA
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool Block H, 70 Pembroke Place Liverpool L69 3GF UK
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
34
|
Witkowska D, Rowińska-Żyrek M. Biophysical approaches for the study of metal-protein interactions. J Inorg Biochem 2019; 199:110783. [PMID: 31349072 DOI: 10.1016/j.jinorgbio.2019.110783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions play important roles for a variety of cell functions, often involving metal ions; in fact, metal-ion binding mediates and regulates the activity of a wide range of biomolecules. Enlightening all of the specific features of metal-protein and metal-mediated protein-protein interactions can be a very challenging task; a detailed knowledge of the thermodynamic and spectroscopic parameters and the structural changes of the protein is normally required. For this purpose, many experimental techniques are employed, embracing all fields of Analytical and Bioinorganic Chemistry. In addition, the use of peptide models, reproducing the primary sequence of the metal-binding sites, is also proved to be useful. In this paper, a review of the most useful techniques for studying ligand-protein interactions with a special emphasis on metal-protein interactions is provided, with a critical summary of their strengths and limitations.
Collapse
Affiliation(s)
- Danuta Witkowska
- Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland.
| | | |
Collapse
|
35
|
Kudrev AG. Application of the Matrix Method for Calculating Internal Equilibrium Constants and Complex Formation Microconstants. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219060057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Funke A, Weisz K. Revealing the Energetics of Ligand-Quadruplex Interactions Using Isothermal Titration Calorimetry. Methods Mol Biol 2019; 2035:45-61. [PMID: 31444743 DOI: 10.1007/978-1-4939-9666-7_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The thermodynamic characterization of G4-ligand interactions has shown to be a powerful adjunct to structural information in the rational design and optimization of potent G-quadruplex ligands for use in therapeutics, diagnostics, or other technological applications. Isothermal titration calorimetry (ITC) can resolve energetic contributions to complex formation and constitutes the only available experimental method to directly measure binding enthalpies. A general protocol for using ITC in studies on quadruplex-ligand interactions with details on the experimental setup, data analysis, and potential pitfalls is presented. The methodologies used are illustrated on results obtained from the targeting of a parallel DNA G-quadruplex with a G4-binding indoloquinoline derivative.
Collapse
Affiliation(s)
- Andrea Funke
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
37
|
Taube F, Drobot B, Rossberg A, Foerstendorf H, Acker M, Patzschke M, Trumm M, Taut S, Stumpf T. Thermodynamic and Structural Studies on the Ln(III)/An(III) Malate Complexation. Inorg Chem 2018; 58:368-381. [DOI: 10.1021/acs.inorgchem.8b02474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Franziska Taube
- TU Dresden, Central Radionuclide Laboratory, 01062 Dresden, Germany
| | - Björn Drobot
- TU Dresden, Central Radionuclide Laboratory, 01062 Dresden, Germany
| | - André Rossberg
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Harald Foerstendorf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Margret Acker
- TU Dresden, Central Radionuclide Laboratory, 01062 Dresden, Germany
| | - Michael Patzschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| | - Michael Trumm
- Karlsruher Institut für Technologie, Institut für Nukleare Entsorgung, 76021 Karlsruhe, Germany
| | - Steffen Taut
- TU Dresden, Central Radionuclide Laboratory, 01062 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany
| |
Collapse
|
38
|
Kudrev AG. Scheme of the Complex Formation of DNA Telomeric Sequence with TMPyP4 Porphyrine. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218120198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Gudlur A, Zeraik AE, Hirve N, Rajanikanth V, Bobkov AA, Ma G, Zheng S, Wang Y, Zhou Y, Komives EA, Hogan PG. Calcium sensing by the STIM1 ER-luminal domain. Nat Commun 2018; 9:4536. [PMID: 30382093 PMCID: PMC6208404 DOI: 10.1038/s41467-018-06816-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) monitors ER-luminal Ca2+ levels to maintain cellular Ca2+ balance and to support Ca2+ signalling. The prevailing view has been that STIM1 senses reduced ER Ca2+ through dissociation of bound Ca2+ from a single EF-hand site, which triggers a dramatic loss of secondary structure and dimerization of the STIM1 luminal domain. Here we find that the STIM1 luminal domain has 5-6 Ca2+-binding sites, that binding at these sites is energetically coupled to binding at the EF-hand site, and that Ca2+ dissociation controls a switch to a second structured conformation of the luminal domain rather than protein unfolding. Importantly, the other luminal-domain Ca2+-binding sites interact with the EF-hand site to control physiological activation of STIM1 in cells. These findings fundamentally revise our understanding of physiological Ca2+ sensing by STIM1, and highlight molecular mechanisms that govern the Ca2+ threshold for activation and the steep Ca2+ concentration dependence.
Collapse
Affiliation(s)
- Aparna Gudlur
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - Ana Eliza Zeraik
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, CEP 13563-120, SP, Brazil
| | - Nupura Hirve
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
| | - V Rajanikanth
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA
- H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Andrey A Bobkov
- Protein Production and Analysis Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Sisi Zheng
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA, 92037, USA
| | - Patrick G Hogan
- Division of Signalling and Gene Expression, La Jolla Institute for Allergy & Immunology, La Jolla, CA, 92037, USA.
- Program in Immunology, University of California-San Diego, La Jolla, CA, 92037, USA.
- Moores Cancer Center, University of California-San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
40
|
Mikek C, West SJ, Gwin JC, Dayal N, Sintim HO, Lewis EA. Berenil Binds Tightly to Parallel and Mixed Parallel/Antiparallel G-Quadruplex Motifs with Varied Thermodynamic Signatures. ACS OMEGA 2018; 3:11582-11591. [PMID: 30320266 PMCID: PMC6173502 DOI: 10.1021/acsomega.8b01621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Diminazene, DMZ, (or berenil) has been reported as a tight binder of G-quadruplexes. G-Quadruplex structures are often located in the promotor regions of oncogenes and may play a regulatory role in gene expression based on the stability of the folding topology. In this study, attempts have been made to characterize the specificity of DMZ binding toward multiple G-quadruplex topologies or foldamers. Mutant sequences of the G-quadruplex forming promotor regions of several oncogenes were designed to exhibit restricted loop lengths and folding topologies. Circular dichroism was used to confirm the quadruplex topology of mutant BCL2, KRAS, and c-MYC sequences, human telomere (Na+ and K+) G-quadruplexes and their complexes with DMZ and analogs thereof. Isothermal titration calorimetry was used to generate a complete thermodynamic profile (ΔG, ΔH, -TΔS) for the formation of DMZ and analog complexes with the target G-quadruplexes. DMZ binds to parallel and/or mixed parallel/antiparallel quadruplex DNA motifs with stoichiometries up to 8:1 and via three binding modes with varying affinities. In the case of the parallel G-quadruplexes, with the exception of the long-looped c-MYC mutant, the highest affinity binding event (mode 1) is driven by enthalpy. DMZ binding to the long-looped c-MYC mutant exhibits a very favorable entropy change in addition to a moderately favorable enthalpy change. Mode 1 binding to the antiparallel and mixed parallel/antiparallel hTel quadruplexes is also driven by favorable enthalpy changes. In all cases, the intermediate DMZ affinity binding (mode 2) is driven almost entirely by entropy, with small or unfavorable enthalpic contributions. The weakest binding event (mode 3) is also entropically driven with small or moderate enthalpic contributions.
Collapse
Affiliation(s)
- Clinton
G. Mikek
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Center
for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Savannah J. West
- Department
of Chemistry, Mississippi State University, 310 President’s Circle, Mississippi, Mississippi State 39762, United States
| | - J. Cole Gwin
- Department
of Chemistry, Mississippi State University, 310 President’s Circle, Mississippi, Mississippi State 39762, United States
| | - Neetu Dayal
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Center
for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Herman O. Sintim
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Center
for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Edwin A. Lewis
- Department
of Chemistry, Mississippi State University, 310 President’s Circle, Mississippi, Mississippi State 39762, United States
| |
Collapse
|
41
|
Murmiliuk A, Matějíček P, Filippov SK, Janata M, Šlouf M, Pispas S, Štěpánek M. Formation of core/corona nanoparticles with interpolyelectrolyte complex cores in aqueous solution: insight into chain dynamics in the complex from fluorescence quenching. SOFT MATTER 2018; 14:7578-7585. [PMID: 30140809 DOI: 10.1039/c8sm01174e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Formation of interpolyelectrolyte complexes (IPECs) of poly(methacrylic acid) (PMAA) bearing a fluorescent label (umbelliferone) at the chain end and poly[3,5-bis(trimethyl ammoniummethyl)-4-hydroxystyrene iodide]-block-poly(ethylene oxide) (QNPHOS-PEO) acting as a fluorescence quencher, was followed using a combination of scattering, calorimetry, microscopy and fluorescence spectroscopy techniques. While scattering and microscopy measurements indicated formation of spherical core/corona nanoparticles with the core of the QNPHOS/PMAA complex and the PEO corona, fluorescence measurements showed that both static and dynamic quenching efficiency were increased in the nanoparticle stability region. As the dynamic quenching rate constant remained unchanged, the quenching enhancement was caused by the increase in the local concentration of QNPHOS segments in the microenvironment of the label. This finding implies that the local dynamics of PMAA end chains affecting the interaction of the label with QNPHOS segments was independent of both PMAA and QNPHOS chain conformations.
Collapse
Affiliation(s)
- Anastasiia Murmiliuk
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 128 00 Prague 2, Czech Republic Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
42
|
Sprakel LMJ, Schuur B. Thermal Activity in Affinity Separation Techniques Such as Liquid-Liquid Extraction Analyzed by Isothermal Titration Calorimetry and Accuracy Analysis of the Technique in the Molar Concentration Domain. Ind Eng Chem Res 2018; 57:12574-12582. [PMID: 30270979 PMCID: PMC6156095 DOI: 10.1021/acs.iecr.8b03066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/16/2018] [Accepted: 08/22/2018] [Indexed: 11/30/2022]
Abstract
![]()
The applicability and accuracy of
isothermal titration calorimetry
(ITC) to investigate intermolecular interactions in a high concentration
domain applicable to liquid–liquid extraction (LLX) was studied
for acid–base interactions. More accurate fits can be obtained
using a sequential binding mechanism compared to a single reaction
model, at the risk of finding a local minimum. Experiments with 0.24
M tri-n-octylamine (TOA) resulted in a residue of
fit of 4.3% for the single reaction model, with a standard deviation
σ of 1.6% in the stoichiometry parameter n,
12% in the complexation constant Kn,1, and 2.5% in the enthalpy ΔHn,1. For the sequential model, σ was
higher: 11% in K1,1, 26% in Kn+1,1, and 12% in ΔHn+1,1. This study clearly showed that,
at higher concentrations (order of moles per liter), accurate parameter
estimation is possible and parameter values are concentration dependent.
It is thus important to do ITC at the application concentration.
Collapse
Affiliation(s)
- Lisette M J Sprakel
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Meander 221, 7522 NB Enschede, The Netherlands
| | - Boelo Schuur
- Sustainable Process Technology Group, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Meander 221, 7522 NB Enschede, The Netherlands
| |
Collapse
|
43
|
Bartold K, Pietrzyk-Le A, Golebiewska K, Lisowski W, Cauteruccio S, Licandro E, D'Souza F, Kutner W. Oligonucleotide Determination via Peptide Nucleic Acid Macromolecular Imprinting in an Electropolymerized CG-Rich Artificial Oligomer Analogue. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27562-27569. [PMID: 30071156 DOI: 10.1021/acsami.8b09296] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We devised and fabricated a chemosensor for determination of the genetically relevant 5'-GCGGCGGC-3' (G = guanine; C = cytosine) oligonucleotide. For that, we simultaneously electrosynthesized and electrode-immobilized a sequence-defined octakis(2,2'-bithien-5-yl) DNA hybridizing probe using both a "macromolecular imprinting in polymer strategy" and a sequence-programmable peptide nucleic acid (PNA) template. With electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR) transductions under stagnant-solution and flow injection analysis (FIA) conditions, respectively, we determined the above oligonucleotide with 200-pM EIS limit of detection. With its EIS-determined apparent imprinting factor of ∼4.0, the chemosensor was discriminative to both mismatched oligonucleotides and Dulbecco's modified Eagle's medium sample interferences.
Collapse
Affiliation(s)
- Katarzyna Bartold
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Agnieszka Pietrzyk-Le
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Karolina Golebiewska
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Wojciech Lisowski
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Silvia Cauteruccio
- Department of Chemistry , University of Milan , Via Golgi 19 , I-20133 Milan , Italy
| | - Emanuela Licandro
- Department of Chemistry , University of Milan , Via Golgi 19 , I-20133 Milan , Italy
| | - Francis D'Souza
- Department of Chemistry , University of North Texas , 1155 Union Circle , No. 305070, Denton , Texas 76203-5017 , United States
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences , Cardinal Stefan Wyszynski University in Warsaw , Wóycickiego 1/3 , 01-938 Warsaw , Poland
| |
Collapse
|
44
|
Bauer A, Jäschke A, Schöne S, Barthen R, März J, Schmeide K, Patzschke M, Kersting B, Fahmy K, Oertel J, Brendler V, Stumpf T. Uranium(VI) Complexes with a Calix[4]arene-Based 8-Hydroxyquinoline Ligand: Thermodynamic and Structural Characterization Based on Calorimetry, Spectroscopy, and Liquid-Liquid Extraction. ChemistryOpen 2018; 7:467-474. [PMID: 29930893 PMCID: PMC6010010 DOI: 10.1002/open.201800085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 01/13/2023] Open
Abstract
The environmental aspects of ore processing and waste treatment call for an optimization of applied technologies. There, understanding of the structure and complexation mechanism on a molecular scale is indispensable. Here, the complexation of UVI with a calix[4]arene-based 8-hydroxyquinoline ligand was investigated by applying a wide range of complementary methods. In solution, the formation of two complex species was proven with stability constants of log ß1:1=5.94±0.02 and log ß2:1=6.33±0.01, respectively. The formation of the 1:1 complex was found to be enthalpy driven [ΔH1:1=(-71.5±10.0) kJ mol-1; TΔS1:1=(-37.57±10.0) kJ mol-1], whereas the second complexation step was found to be endothermic and entropy driven [ΔH2:1=(32.8±4.0) kJ mol-1; TΔS2:1=(68.97±4.0) kJ mol-1]. Moreover, the molecular structure of [UO2(H6L)(NO3)](NO3) (1) was determined by single-crystal X-ray diffraction. Concluding, radiotoxic UVI was separated from a EuIII-containing solution by the calix[4]arene-based ligand in solvent extractions.
Collapse
Affiliation(s)
- Anne Bauer
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Resource EcologyBautzner Landstraße 40001328DresdenGermany), Fax: (+49) 351 260 3553
| | - Astrid Jäschke
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Resource EcologyBautzner Landstraße 40001328DresdenGermany), Fax: (+49) 351 260 3553
| | - Sebastian Schöne
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Resource EcologyBautzner Landstraße 40001328DresdenGermany), Fax: (+49) 351 260 3553
| | - Robert Barthen
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Resource EcologyBautzner Landstraße 40001328DresdenGermany), Fax: (+49) 351 260 3553
| | - Juliane März
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Resource EcologyBautzner Landstraße 40001328DresdenGermany), Fax: (+49) 351 260 3553
| | - Katja Schmeide
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Resource EcologyBautzner Landstraße 40001328DresdenGermany), Fax: (+49) 351 260 3553
| | - Michael Patzschke
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Resource EcologyBautzner Landstraße 40001328DresdenGermany), Fax: (+49) 351 260 3553
| | - Berthold Kersting
- Universität LeipzigInstitute of Inorganic ChemistryJohannisallee 2904103LeipzigGermany
| | - Karim Fahmy
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Resource EcologyBautzner Landstraße 40001328DresdenGermany), Fax: (+49) 351 260 3553
| | - Jana Oertel
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Resource EcologyBautzner Landstraße 40001328DresdenGermany), Fax: (+49) 351 260 3553
| | - Vinzenz Brendler
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Resource EcologyBautzner Landstraße 40001328DresdenGermany), Fax: (+49) 351 260 3553
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden–RossendorfInstitute of Resource EcologyBautzner Landstraße 40001328DresdenGermany), Fax: (+49) 351 260 3553
| |
Collapse
|
45
|
Mårtensson AKF, Lincoln P. Competitive DNA binding of Ru(bpy) 2dppz 2+ enantiomers studied with isothermal titration calorimetry (ITC) using a direct and general binding isotherm algorithm. Phys Chem Chem Phys 2018; 20:7920-7930. [PMID: 29308462 DOI: 10.1039/c7cp03184j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While isothermal titration calorimetry (ITC) is widely used and sometimes referred to as the "gold standard" for quantitative measurements of biomolecular interactions, its usage has so far been limited to the analysis of the binding to isolated, non-cooperative binding sites. Studies on more complicated systems, where the binding sites interact, causing either cooperativity or anti-cooperativity between neighboring bound ligands, are rare, probably due to the complexity of the methods currently available. Here we have developed a simple algorithm not limited by the complexity of a binding system, meaning that it can be implemented by anyone, from analyzing systems of simple, isolated binding sites to complicated interactive multiple-site systems. We demonstrate here that even complicated competitive binding calorimetric isotherms can be properly analyzed, provided that ligand-ligand interactions are taken into account. As a practical example, the competitive binding interactions between the two enantiomers of Ru(bpy)2dppz2+ (Ru-bpy) and poly(dAdT)2 (AT-DNA) are analyzed using our new algorithm, which provided an excellent global fit for the ITC experimental data.
Collapse
Affiliation(s)
- Anna K F Mårtensson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Per Lincoln
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| |
Collapse
|
46
|
Andree SNL, Aakeröy CB. Molecular electrostatic potentials as a quantitative measure of hydrogen bonding preferences in solution. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1418876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Machha VR, Mikek CG, Wellman S, Lewis EA. Temperature and osmotic stress dependence of the thermodynamics for binding linker histone H1 0, Its carboxyl domain (H1 0-C) or globular domain (H1 0-G) to B-DNA. Biochem Biophys Rep 2017; 12:158-165. [PMID: 29090277 PMCID: PMC5645174 DOI: 10.1016/j.bbrep.2017.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/21/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
Linker histones (H1) are the basic proteins in higher eukaryotes that are responsible for the final condensation of chromatin. In contrast to the nucleosome core histone proteins, the role of H1 in compacting DNA is not clearly understood. In this study ITC was used to measure the binding constant, enthalpy change, and binding site size for the interactions of H10, or its C-terminal (H10-C) and globular (H10-G) domains to highly polymerized calf-thymus DNA at temperatures from 288 K to 308 K. Heat capacity changes, ΔCp, for these same H10 binding interactions were estimated from the temperature dependence of the enthalpy changes. The enthalpy changes for binding H10, H10-C, or H10-G to CT-DNA are all endothermic at 298 K, becoming more exothermic as the temperature is increased. The ΔH for binding H10-G to CT-DNA is exothermic at temperatures above approximately 300 K. Osmotic stress experiments indicate that the binding of H10 is accompanied by the release of approximately 35 water molecules. We estimate from our naked DNA titration results that the binding of the H10 to the nucleosome places the H10 protein in close contact with approximately 41 DNA bp. The breakdown is that the H10 carboxyl terminus interacts with 28 bp of linker DNA on one side of the nucleosome, the H10 globular domain binds directly to 7 bp of core DNA, and shields another 6 linker DNA bases, 3 bp on either side of the nucleosome where the linker DNA exits the nucleosome core.
Collapse
Affiliation(s)
- V R Machha
- Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - C G Mikek
- Department of Chemistry, Mississippi State University, Mississippi, MS 39762, USA
| | - S Wellman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - E A Lewis
- Department of Chemistry, Mississippi State University, Mississippi, MS 39762, USA
| |
Collapse
|
48
|
Beulin DSJ, Radhakrishnan D, Suresh SC, Sadasivan C, Yamaguchi M, Kawabata S, Ponnuraj K. Streptococcus pneumoniae
surface protein PfbA is a versatile multidomain and multiligand-binding adhesin employing different binding mechanisms. FEBS J 2017; 284:3404-3421. [DOI: 10.1111/febs.14200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/31/2017] [Accepted: 08/11/2017] [Indexed: 02/05/2023]
Affiliation(s)
| | - Deepthi Radhakrishnan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| | - Sharanya C. Suresh
- Department of Biotechnology & Microbiology; School of Life Sciences; Kannur University; Palayad India
| | - Chittalakottu Sadasivan
- Department of Biotechnology & Microbiology; School of Life Sciences; Kannur University; Palayad India
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| |
Collapse
|
49
|
Mikek CG, Machha VR, White JC, Martin LR, West SJ, Butrin A, Shumaker C, Gwin JC, Alatrash N, MacDonnell FM, Lewis EA. The Thermodynamic Effects of Ligand Structure on the Molecular Recognition of Mono‐ and Biruthenium Polypyridyl Complexes with G‐Quadruplex DNA. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Clinton G. Mikek
- Department of Chemistry Mississippi State University 39762 Mississippi State Mississippi USA
| | - Venkata R. Machha
- Division of Hematology Departments of Internal Medicine and Biochemistry and Molecular Biology Mayo Clinic 55905 Rochester Minnesota USA
| | - Jake C. White
- Department of Chemistry Mississippi State University 39762 Mississippi State Mississippi USA
| | - Logan R. Martin
- Department of Chemistry Mississippi State University 39762 Mississippi State Mississippi USA
| | - Savannah J. West
- Department of Chemistry Mississippi State University 39762 Mississippi State Mississippi USA
| | - Arseniy Butrin
- Department of Chemistry Mississippi State University 39762 Mississippi State Mississippi USA
| | - Carmen Shumaker
- Department of Chemistry Mississippi State University 39762 Mississippi State Mississippi USA
| | - J. Cole Gwin
- Department of Chemistry Mississippi State University 39762 Mississippi State Mississippi USA
| | - Nagham Alatrash
- Department of Chemistry and Biochemistry University of Texas at Arlington 76019 Arlington Texas USA
| | - Frederick M. MacDonnell
- Department of Chemistry and Biochemistry University of Texas at Arlington 76019 Arlington Texas USA
| | - Edwin A. Lewis
- Department of Chemistry Mississippi State University 39762 Mississippi State Mississippi USA
| |
Collapse
|
50
|
Extrafibrillar collagen demineralization-based chelate-and-rinse technique bridges the gap between wet and dry dentin bonding. Acta Biomater 2017; 57:435-448. [PMID: 28499631 DOI: 10.1016/j.actbio.2017.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 11/20/2022]
Abstract
Limitations associated with wet-bonding led to the recent development of a selective demineralization strategy in which dentin was etched with a reduced concentration of phosphoric acid to create exclusive extrafibrillar demineralization of the collagen matrix. However, the use of acidic conditioners removes calcium via diffusion of very small hydronium ions into the intrafibrillar collagen water compartments. This defeats the purpose of limiting the conditioner to the extrafibrillar space to create a collagen matrix containing only intrafibrillar minerals to prevent collapse of the collagen matrix. The present work examined the use of polymeric chelators (the sodium salt of polyacrylic acid) of different molecular weights to selectively demineralize extrafibrillar dentin. These polymeric chelators exhibit different affinities for calcium ions (isothermal titration calorimetry), penetrated intrafibrillar dentin collagen to different extents based on their molecular sizes (modified size-exclusion chromatography), and preserve the dynamic mechanical properties of mineralized dentin more favorably compared with completely demineralized phosphoric acid-etched dentin (nanoscopical dynamic mechanical analysis). Scanning and transmission electron microscopy provided evidence for retention of intrafibrillar minerals in dentin surfaces conditioned with polymeric chelators. Microtensile bond strengths to wet-bonded and dry-bonded dentin conditioned with these polymeric chelators showed that the use of sodium salts of polyacrylic acid for chelating dentin prior to bonding did not result in significant decline in resin-dentin bond strength. Taken together, the findings led to the conclusion that a chelate-and-rinse conditioning technique based on extrafibrillar collagen demineralization bridges the gap between wet and dry dentin bonding. STATEMENT OF SIGNIFICANCE The chelate-and-rinse dental adhesive bonding concept differentiates from previous research in that it is based on the size-exclusion characteristics of fibrillar collagen; molecules larger than 40kDa are prevented from accessing the intrafibrillar water compartments of the collagen fibrils. Using this chelate-and-rinse extrafibrillar calcium chelation concept, collagen fibrils with retained intrafibrillar minerals will not collapse upon air-drying. This enables adhesive infiltration into the mineral-depleted extrafibrillar spaces without relying on wet-bonding. By bridging the gap between wet and dry dentine bonding, the chelate-and-rinse concept introduces additional insight to the field by preventing exposure of endogenous proteases via preservation of the intrafibrillar minerals within a collagen matrix. If successfully validated, this should help prevent degradation of resin-dentine bonds by collagenolytic enzymes.
Collapse
|