1
|
Ramachandran L, Abul Rub F, Hajja A, Alodhaibi I, Arai M, Alfuwais M, Makhzoum T, Yaqinuddin A, Al-Kattan K, Assiri AM, Broering DC, Chinnappan R, Mir TA, Mani NK. Biosensing of Alpha-Fetoprotein: A Key Direction toward the Early Detection and Management of Hepatocellular Carcinoma. BIOSENSORS 2024; 14:235. [PMID: 38785709 PMCID: PMC11117836 DOI: 10.3390/bios14050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Hepatocellular carcinoma (HCC) is currently one of the most prevalent cancers worldwide. Associated risk factors include, but are not limited to, cirrhosis and underlying liver diseases, including chronic hepatitis B or C infections, excessive alcohol consumption, nonalcoholic fatty liver disease (NAFLD), and exposure to chemical carcinogens. It is crucial to detect this disease early on before it metastasizes to adjoining parts of the body, worsening the prognosis. Serum biomarkers have proven to be a more accurate diagnostic tool compared to imaging. Among various markers such as nucleic acids, circulating genetic material, proteins, enzymes, and other metabolites, alpha-fetoprotein (AFP) is a protein marker primarily used to diagnose HCC. However, current methods need a large sample and carry a high cost, among other challenges, which can be improved using biosensing technology. Early and accurate detection of AFP can prevent severe progression of the disease and ensure better management of HCC patients. This review sheds light on HCC development in the human body. Afterward, we outline various types of biosensors (optical, electrochemical, and mass-based), as well as the most relevant studies of biosensing modalities for non-invasive monitoring of AFP. The review also explains these sensing platforms, detection substrates, surface modification agents, and fluorescent probes used to develop such biosensors. Finally, the challenges and future trends in routine clinical analysis are discussed to motivate further developments.
Collapse
Affiliation(s)
- Lohit Ramachandran
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Farah Abul Rub
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Amro Hajja
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Ibrahim Alodhaibi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Momo Arai
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Mohammed Alfuwais
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Lung Health Center Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Abdullah M. Assiri
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| |
Collapse
|
2
|
Bocková M, Slabý J, Špringer T, Homola J. Advances in Surface Plasmon Resonance Imaging and Microscopy and Their Biological Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:151-176. [PMID: 30822102 DOI: 10.1146/annurev-anchem-061318-115106] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Surface plasmon resonance microscopy and imaging are optical methods that enable observation and quantification of interactions of nano- and microscale objects near a metal surface in a temporally and spatially resolved manner. This review describes the principles of surface plasmon resonance microscopy and imaging and discusses recent advances in these methods, in particular, in optical platforms and functional coatings. In addition, the biological applications of these methods are reviewed. These include the detection of a broad variety of analytes (nucleic acids, proteins, bacteria), the investigation of biological systems (bacteria and cells), and biomolecular interactions (drug-receptor, protein-protein, protein-DNA, protein-cell).
Collapse
Affiliation(s)
- Markéta Bocková
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Jiří Slabý
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Tomáš Špringer
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, 18251 Prague, Czech Republic;
| |
Collapse
|
3
|
Roointan A, Ahmad Mir T, Ibrahim Wani S, Mati-Ur-Rehman, Hussain KK, Ahmed B, Abrahim S, Savardashtaki A, Gandomani G, Gandomani M, Chinnappan R, Akhtar MH. Early detection of lung cancer biomarkers through biosensor technology: A review. J Pharm Biomed Anal 2018; 164:93-103. [PMID: 30366148 DOI: 10.1016/j.jpba.2018.10.017] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023]
Abstract
Lung cancer is undoubtedly one of the most serious health issues of the 21 st century. It is the second leading cause of cancer-related deaths in both men and women worldwide, accounting for about 1.5 million deaths annually. Despite advances in the treatment of lung cancer with new pharmaceutical products and technological improvements, morbidity and mortality rates remains a significant challenge for the cancer biologists and oncologists. The vast majority of lung cancer patients present with advanced-stage of pathological process that ultimately leads to poor prognosis and a five-year survival rate less than 20%. Early and accurate screening and analysis using cost-effective means are urgently needed to effectively diagnose the disease, improve the survival rate or to reduce mortality and morbidity associated with lung cancer patients. Thus, the only hope for early recognition of risk factors and timely diagnosis and treatment of lung cancer is biosensors technology. Novel biosensing based diagnostics approaches for predicting metastatic risks are likely to have significant therapeutic and clinical impact in the near future. This article systematically provides a brief overview of various biosensing platforms for identification of lung cancer disease biomarkers, with a specific focus on recent advancements in electrochemical and optical biosensors, analytical performances of different biosensors, challenges and further research opportunities for routine clinical analysis.
Collapse
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tanveer Ahmad Mir
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan; Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea; Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia; Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan.
| | - Shadil Ibrahim Wani
- Department of Immunology and Molecular Medicine,Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Mati-Ur-Rehman
- Department of Radiological Sciences, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | - Khalil Khadim Hussain
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea; Department of pharmacy, University of central Punjab 1-Khayaban-e-Jinnah, Johar Town, Lahore, Pakistan
| | - Bilal Ahmed
- Department of Intellectual Information Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Shugufta Abrahim
- Department of Intellectual Information Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
| | - Amir Savardashtaki
- Department of Environmental Sciences, Cyprus International University, Nicosia, Cyprus
| | - Ghazaal Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus International University, Nicosia, Cyprus
| | - Molood Gandomani
- Department of pharmacy, University of central Punjab 1-Khayaban-e-Jinnah, Johar Town, Lahore, Pakistan
| | - Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia
| | - Mahmood H Akhtar
- Department of Chemistry and Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, 46241, South Korea
| |
Collapse
|
4
|
Kennedy AE, Laamanen CA, Ross MS, Vohra R, Boreham DR, Scott JA, Ross GM. Nerve growth factor inhibitor with novel-binding domain demonstrates nanomolar efficacy in both cell-based and cell-free assay systems. Pharmacol Res Perspect 2018; 5. [PMID: 28971611 PMCID: PMC5625151 DOI: 10.1002/prp2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Nerve growth factor (NGF), a member of the neurotrophin family, is known to regulate the development and survival of a select population of neurons through the binding and activation of the TrkA receptor. Elevated levels of NGF have been associated with painful pathologies such as diabetic neuropathy and fibromyalgia. However, completely inhibiting the NGF signal could hold significant side effects, such as those observed in a genetic condition called congenital insensitivity to pain and anhidrosis (CIPA). Previous methods of screening for NGF‐inhibitors used labeling techniques which have the potential to alter molecular interactions. SPR spectroscopy and NGF‐dependent cellular assays were utilized to identify a novel NGF‐inhibitor, BVNP‐0197 (IC50 = 90 nmol/L), the first NGF‐inhibitor described with a high nanomolar NGF inhibition efficiency. The present study utilizes molecular modeling flexible docking to identify a novel binding domain in the loop II/IV cleft of NGF.
Collapse
Affiliation(s)
- Allison E Kennedy
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada.,Laurentian University, Biomolecular Sciences Program, Sudbury, Ontario, Canada
| | - Corey A Laamanen
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada.,Laurentian University, Bharti School of Engineering, Sudbury, Ontario, Canada
| | - Mitchell S Ross
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Rahul Vohra
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada.,Sussex Research Laboratories Inc., Ottawa, Ontario, Canada
| | | | - John A Scott
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada.,Laurentian University, Bharti School of Engineering, Sudbury, Ontario, Canada
| | - Gregory M Ross
- Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| |
Collapse
|
5
|
Mir TA, Shinohara H. Two-Dimensional Surface Plasmon Resonance Imaging System for Cellular Analysis. Methods Mol Biol 2017; 1571:31-46. [PMID: 28281248 DOI: 10.1007/978-1-4939-6848-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Optical biosensors based on surface plasmon resonance (SPR) phenomenon have received a great deal of attention in cellular analysis applications. Sensitive and high-resolution SPR imaging (SPRi) platforms are very useful for real-time monitoring and measurement of individual cell responses to various exogenous substances. In cellular analysis, mainstream SPR-based sensors have potential for investigations of cell responses under ambient conditions. Evaluations that account only for the average response of cell monolayers mask the understanding of precise cell-molecular interactions or intracellular reactions at the level of individual cells. SPR/SPRi technology has attracted a great deal of attention for detecting the response of cell monolayers to various substances cultivated on the gold sensor chip. To unleash the full strength of SPRi technology in complex cell bio-systems, the applied SPR imaging system needs to be sufficiently effective to allow evaluation of a compound's potency, specificity, selectivity, toxicity, and effectiveness at the level of the individual cell. In our studies, we explore the utility of high-resolution 2D-SPR imaging for real-time monitoring of intracellular translocation of protein kinase C (PKC), and detection of neuronal differentiation in live cells at the level of individual cells. The PC12 cell line, which is one of the most commonly used neuronal precursor cell lines for research on neuronal differentiation, was chosen as a nerve cell model. Two dimensional SPR (2D-SPR) signals/images are successfully generated. We have found that cells treated with the differentiation factor nerve growth factor (NGF) showed a remarkable enhancement of SPR response to stimulation by muscarine, a nonselective agonist of the muscarinic acetylcholine receptor.
Collapse
Affiliation(s)
- Tanveer Ahmad Mir
- Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama-shi, Toyama, 930-8555, Japan. .,Graduate School of Innovative Life Sciences for Education, University of Toyama, Toyama, Japan. .,Institutes for Analytical Chemistry, Chemo- and Biosensor, University of Regensburg, Regensburg, Germany. .,Institute of BioPhysio Sensor Technology (IBST), Pusan National University, Busan, South Korea.
| | - Hiroaki Shinohara
- Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama-shi, Toyama, 930-8555, Japan. .,Graduate School of Innovative Life Sciences for Education, University of Toyama, Toyama, Japan.
| |
Collapse
|
6
|
Seidel D, Obendorf J, Englich B, Jahnke HG, Semkova V, Haupt S, Girard M, Peschanski M, Brüstle O, Robitzki AA. Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays. Biosens Bioelectron 2016; 86:277-286. [PMID: 27387257 DOI: 10.1016/j.bios.2016.06.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 12/31/2022]
Abstract
In today's neurodevelopment and -disease research, human neural stem/progenitor cell-derived networks represent the sole accessible in vitro model possessing a primary phenotype. However, cultivation and moreover, differentiation as well as maturation of human neural stem/progenitor cells are very complex and time-consuming processes. Therefore, techniques for the sensitive non-invasive, real-time monitoring of neuronal differentiation and maturation are highly demanded. Using impedance spectroscopy, the differentiation of several human neural stem/progenitor cell lines was analyzed in detail. After development of an optimum microelectrode array for reliable and sensitive long-term monitoring, distinct cell-dependent impedimetric parameters that could specifically be associated with the progress and quality of neuronal differentiation were identified. Cellular impedance changes correlated well with the temporal regulation of biomolecular progenitor versus mature neural marker expression as well as cellular structure changes accompanying neuronal differentiation. More strikingly, the capability of the impedimetric differentiation monitoring system for the use as a screening tool was demonstrated by applying compounds that are known to promote neuronal differentiation such as the γ-secretase inhibitor DAPT. The non-invasive impedance spectroscopy-based measurement system can be used for sensitive and quantitative monitoring of neuronal differentiation processes. Therefore, this technique could be a very useful tool for quality control of neuronal differentiation and moreover, for neurogenic compound identification and industrial high-content screening demands in the field of safety assessment as well as drug development.
Collapse
Affiliation(s)
- Diana Seidel
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Janine Obendorf
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Beate Englich
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Vesselina Semkova
- Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Simone Haupt
- LIFE&BRAIN GmbH, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany; Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Mathilde Girard
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Genopole Campus 1, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Marc Peschanski
- INSERM U861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Genopole Campus 1, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | - Oliver Brüstle
- LIFE&BRAIN GmbH, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany; Institute of Reconstructive Neurobiology, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Andrea A Robitzki
- Centre for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Division of Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany.
| |
Collapse
|
7
|
Nonobe Y, Yokoyama T, Kamikubo Y, Yoshida S, Hisajima N, Shinohara H, Shiraishi Y, Sakurai T, Tabata T. Application of surface plasmon resonance imaging to monitoring G protein-coupled receptor signaling and its modulation in a heterologous expression system. BMC Biotechnol 2016; 16:36. [PMID: 27068216 PMCID: PMC4828886 DOI: 10.1186/s12896-016-0266-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/07/2016] [Indexed: 01/30/2023] Open
Abstract
Background G protein-coupled receptors (GPCRs) are ubiquitous surface proteins mediating various biological responses and thus, important targets for therapeutic drugs. GPCRs individually produce their own signaling as well as modulate the signaling of other GPCRs. Real-time observation of GPCR signaling and modulation in living cells is key to molecular study of biological responses and pharmaceutical development. However, fluorescence imaging, the technique widely used for this purpose, requires a fluorescent dye which may inhibit biological responses or a fluorescent-tagged target protein created through time-consuming genetic manipulation. In this study, we applied two-dimensional surface plasmon resonance (SPR) imaging to monitoring the translocation of protein kinase C (PKC), a major GPCR-coupled signaling molecule in the widely used HEK293 cell lines and examined whether the signaling of, and, modulation between heterologously expressed GPCRs can be measured without fluorescent labeling. Results We cultured HEK293 cells on the gold-plated slide glass and evoked SPR at the interface between the cell’s plasma membrane and the gold surface with incident light. The translocation of activated native PKC to the plasma membrane is expected to alter the incident angle-SPR extent relation, and this could be detected as a change in the intensity of light reflection from the specimen illuminated at a fixed incident angle. Direct activation of PKC with 12-O-tetradecanoylphorbol-13-acetate increased the reflection intensity. This increase indeed reported PKC translocation because it was reduced by a pre-treatment with bisindolylmaleimide-1, a PKC inhibitor. We further applied this technique to a stable HEK293 cell line heterologously expressing the GPCRs type-1 metabotropic glutamate receptor (mGluR1) and adenosine A1 receptor (A1R). (RS)-3,5-dihydroxyphenylglycine, a mGluR1 agonist, increased the reflection intensity, and the PKC inhibitor reduced this increase. A pre-treatment with (R)-N6-phenylisopropyladenosine, an A1R-selective agonist suppressed mGluR1-mediated reflection increase. These results suggest that our technique can detect PKC translocation initiated by ligand binding to mGluR1 and its modulation by A1R. Conclusions SPR imaging turned out to be utilizable for monitoring GPCR-mediated PKC translocation and its modulation by a different GPCR in a heterologous expression system. This technique provides a powerful yet easy-to-use tool for molecular study of biological responses and pharmaceutical development.
Collapse
Affiliation(s)
- Yuki Nonobe
- Laboratory for Medical Information Sensing, Graduate School of Science and Engineering, University of Toyama, 3190 Gokufu, Toyama, Toyama, 930-8555, Japan
| | - Tomoki Yokoyama
- Laboratory for Medical Information Sensing, Graduate School of Science and Engineering, University of Toyama, 3190 Gokufu, Toyama, Toyama, 930-8555, Japan
| | - Yuji Kamikubo
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Sho Yoshida
- Laboratory for Medical Information Sensing, Graduate School of Science and Engineering, University of Toyama, 3190 Gokufu, Toyama, Toyama, 930-8555, Japan
| | - Nozomi Hisajima
- Laboratory for Medical Information Sensing, Graduate School of Science and Engineering, University of Toyama, 3190 Gokufu, Toyama, Toyama, 930-8555, Japan
| | - Hiroaki Shinohara
- Laboratory for Bioelectronics, Graduate School of Innovative Life Science, University of Toyama, 3190 Gokufu, Toyama, Toyama, 930-8555, Japan
| | - Yuki Shiraishi
- Laboratory for Bioelectronics, Graduate School of Innovative Life Science, University of Toyama, 3190 Gokufu, Toyama, Toyama, 930-8555, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshihide Tabata
- Laboratory for Medical Information Sensing, Graduate School of Science and Engineering, University of Toyama, 3190 Gokufu, Toyama, Toyama, 930-8555, Japan.
| |
Collapse
|
8
|
Hu W, Chen H, Shi Z, Yu L. Dual signal amplification of surface plasmon resonance imaging for sensitive immunoassay of tumor marker. Anal Biochem 2014; 453:16-21. [DOI: 10.1016/j.ab.2014.02.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/20/2014] [Accepted: 02/22/2014] [Indexed: 12/11/2022]
|