1
|
Muna UM, Hafiz F, Biswas S, Azim R. GBDTSVM: Combined Support Vector Machine and Gradient Boosting Decision Tree Framework for efficient snoRNA-disease association prediction. Comput Biol Med 2025; 192:110219. [PMID: 40288295 DOI: 10.1016/j.compbiomed.2025.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Small nucleolar RNAs (snoRNAs) are increasingly recognized for their critical role in the pathogenesis and characterization of various human diseases. Consequently, the precise identification of snoRNA-disease associations (SDAs) is essential for the progression of diseases and the advancement of treatment strategies. However, conventional biological experimental approaches are costly, time-consuming, and resource-intensive; therefore, machine learning-based computational methods offer a promising solution to mitigate these limitations. This paper proposes a model called 'GBDTSVM', representing a novel and efficient machine learning approach for predicting snoRNA-disease associations by leveraging a Gradient Boosting Decision Tree (GBDT) and Support Vector Machine (SVM). 'GBDTSVM' effectively extracts integrated snoRNA-disease feature representations utilizing GBDT, and SVM is subsequently utilized to classify and identify potential associations. Furthermore, the method enhances the accuracy of these predictions by incorporating Gaussian integrated profile kernel similarity for both snoRNAs and diseases. Experimental evaluation of the GBDTSVM model demonstrates superior performance compared to state-of-the-art methods in the field, achieving an AUROC of 0.96 and an AUPRC of 0.95 on the 'MDRF' dataset. Moreover, our model shows superior performance on two more datasets named 'LSGT' and 'PsnoD'. Additionally, a case study conducted on the predicted snoRNA-disease associations verified the top-ranked snoRNAs across twelve prevalent diseases, further validating the efficacy of the GBDTSVM approach. These results underscore the model's potential as a robust tool for advancing snoRNA-related disease research. Source codes and datasets for our proposed framework can be obtained from: https://github.com/mariamuna04/gbdtsvm.
Collapse
Affiliation(s)
- Ummay Maria Muna
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Badda, Dhaka, 1212, Bangladesh; BSRM School of Engineering, BRAC University, Dhaka 1212, Bangladesh.
| | - Fahim Hafiz
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Badda, Dhaka, 1212, Bangladesh.
| | - Shanta Biswas
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Badda, Dhaka, 1212, Bangladesh.
| | - Riasat Azim
- Department of Computer Science and Engineering, United International University, United City, Madani Avenue, Badda, Dhaka, 1212, Bangladesh.
| |
Collapse
|
2
|
Pradhan UK, Behera P, Das R, Naha S, Gupta A, Parsad R, Pradhan SK, Meher PK. AScirRNA: A novel computational approach to discover abiotic stress-responsive circular RNAs in plant genome. Comput Biol Chem 2024; 113:108205. [PMID: 39265460 DOI: 10.1016/j.compbiolchem.2024.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/12/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
In the realm of plant biology, understanding the intricate regulatory mechanisms governing stress responses stands as a pivotal pursuit. Circular RNAs (circRNAs), emerging as critical players in gene regulation, have garnered attention in recent days for their potential roles in abiotic stress adaptation. A comprehensive grasp of circRNAs' functions in stress response offers avenues for breeders to manipulating plants to develop abiotic stress resistant crop cultivars to thrive in challenging climates. This study pioneers a machine learning-based model for predicting abiotic stress-responsive circRNAs. The K-tuple nucleotide composition (KNC) and Pseudo KNC (PKNC) features were utilized to numerically represent circRNAs. Three different feature selection strategies were employed to select relevant and non-redundant features. Eight shallow and four deep learning algorithms were evaluated to build the final predictive model. Following five-fold cross-validation process, XGBoost learning algorithm demonstrated superior performance with LightGBM-chosen 260 KNC features (Accuracy: 74.55 %, auROC: 81.23 %, auPRC: 76.52 %) and 160 PKNC features (Accuracy: 74.32 %, auROC: 81.04 %, auPRC: 76.43 %), over other combinations of learning algorithms and feature selection techniques. Further, the robustness of the developed models were evaluated using an independent test dataset, where the overall accuracy, auROC and auPRC were found to be 73.13 %, 72.34 % and 72.68 % for KNC feature set and 73.52 %, 79.53 % and 73.09 % for PKNC feature set, respectively. This computational approach was also integrated into an online prediction tool, AScirRNA (https://iasri-sg.icar.gov.in/ascirna/) for easy prediction by the users. Both the proposed model and the developed tool are poised to augment ongoing efforts in identifying stress-responsive circRNAs in plants.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Prasanjit Behera
- Department of Bioinformatics, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India.
| | - Ritwika Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha 751003, India.
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India.
| |
Collapse
|
3
|
Yuge CC, Hang ES, Mamtha MRN, Vishwakarma S, Wang S, Wang C, Le NQK. RNA-ModX: a multilabel prediction and interpretation framework for RNA modifications. Brief Bioinform 2024; 26:bbae688. [PMID: 39737566 DOI: 10.1093/bib/bbae688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Accurate prediction of RNA modifications holds profound implications for elucidating RNA function and mechanism, with potential applications in drug development. Here, the RNA-ModX presents a highly precise predictive model designed to forecast post-transcriptional RNA modifications, complemented by a user-friendly web application tailored for seamless utilization by future researchers. To achieve exceptional accuracy, the RNA-ModX systematically explored a range of machine learning models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit, and Transformer-based architectures. The model underwent rigorous testing using a dataset comprising RNA sequences containing the four fundamental nucleotides (A, C, G, U) and spanning 12 prevalent modification classes (m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, Am, Cm, Gm, and Um), with sequences of length 1001 nucleotides. Notably, the LSTM model, augmented with 3-mer encoding, demonstrated the highest level of model accuracy. Furthermore, Local Interpretable Model-Agnostic Explanations were employed to facilitate result interpretation, enhancing the transparency and interpretability of the model's predictions. In conjunction with the model development, a user-friendly web application was meticulously crafted, featuring an intuitive interface for researchers to effortlessly upload RNA sequences. Upon submission, the model executes in the backend, generating predictions which are seamlessly presented to the user in a coherent manner. This integration of cutting-edge predictive modeling with a user-centric interface signifies a significant step forward in facilitating the exploration and utilization of RNA modification prediction technologies by the broader research community.
Collapse
Affiliation(s)
- Chelsea Chen Yuge
- NUS-ISS, National University of Singapore, 25 Heng Mui Keng Terrace, 119615, Singapore, Singapore
| | - Ee Soon Hang
- NUS-ISS, National University of Singapore, 25 Heng Mui Keng Terrace, 119615, Singapore, Singapore
| | | | - Shashikant Vishwakarma
- NUS-ISS, National University of Singapore, 25 Heng Mui Keng Terrace, 119615, Singapore, Singapore
| | - Sijia Wang
- NUS-ISS, National University of Singapore, 25 Heng Mui Keng Terrace, 119615, Singapore, Singapore
| | - Cheng Wang
- Independent Researcher, Singapore, Singapore
| | - Nguyen Quoc Khanh Le
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, 110, Taipei, Taiwan
- AIBioMed Research Group, Taipei Medical University, 250 Wuxing Street, 110, Taipei, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, 252 Wuxing Street, 110, Taipei, Taiwan
| |
Collapse
|
4
|
Du C, Fan W, Zhou Y. Integrated Biochemical and Computational Methods for Deciphering RNA-Processing Codes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1875. [PMID: 39523464 DOI: 10.1002/wrna.1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
RNA processing involves steps such as capping, splicing, polyadenylation, modification, and nuclear export. These steps are essential for transforming genetic information in DNA into proteins and contribute to RNA diversity and complexity. Many biochemical methods have been developed to profile and quantify RNAs, as well as to identify the interactions between RNAs and RNA-binding proteins (RBPs), especially when coupled with high-throughput sequencing technologies. With the rapid accumulation of diverse data, it is crucial to develop computational methods to convert the big data into biological knowledge. In particular, machine learning and deep learning models are commonly utilized to learn the rules or codes governing the transformation from DNA sequences to intriguing RNAs based on manually designed or automatically extracted features. When precise enough, the RNA codes can be incredibly useful for predicting RNA products, decoding the molecular mechanisms, forecasting the impact of disease variants on RNA processing events, and identifying driver mutations. In this review, we systematically summarize the biochemical and computational methods for deciphering five important RNA codes related to alternative splicing, alternative polyadenylation, RNA localization, RNA modifications, and RBP binding. For each code, we review the main types of experimental methods used to generate training data, as well as the key features, strategic model structures, and advantages of representative tools. We also discuss the challenges encountered in developing predictive models using large language models and extensive domain knowledge. Additionally, we highlight useful resources and propose ways to improve computational tools for studying RNA codes.
Collapse
Affiliation(s)
- Chen Du
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Weiliang Fan
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Luo Z, Yu L, Xu Z, Liu K, Gu L. Comprehensive Review and Assessment of Computational Methods for Prediction of N6-Methyladenosine Sites. BIOLOGY 2024; 13:777. [PMID: 39452086 PMCID: PMC11504118 DOI: 10.3390/biology13100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
N6-methyladenosine (m6A) plays a crucial regulatory role in the control of cellular functions and gene expression. Recent advances in sequencing techniques for transcriptome-wide m6A mapping have accelerated the accumulation of m6A site information at a single-nucleotide level, providing more high-confidence training data to develop computational approaches for m6A site prediction. However, it is still a major challenge to precisely predict m6A sites using in silico approaches. To advance the computational support for m6A site identification, here, we curated 13 up-to-date benchmark datasets from nine different species (i.e., H. sapiens, M. musculus, Rat, S. cerevisiae, Zebrafish, A. thaliana, Pig, Rhesus, and Chimpanzee). This will assist the research community in conducting an unbiased evaluation of alternative approaches and support future research on m6A modification. We revisited 52 computational approaches published since 2015 for m6A site identification, including 30 traditional machine learning-based, 14 deep learning-based, and 8 ensemble learning-based methods. We comprehensively reviewed these computational approaches in terms of their training datasets, calculated features, computational methodologies, performance evaluation strategy, and webserver/software usability. Using these benchmark datasets, we benchmarked nine predictors with available online websites or stand-alone software and assessed their prediction performance. We found that deep learning and traditional machine learning approaches generally outperformed scoring function-based approaches. In summary, the curated benchmark dataset repository and the systematic assessment in this study serve to inform the design and implementation of state-of-the-art computational approaches for m6A identification and facilitate more rigorous comparisons of new methods in the future.
Collapse
Affiliation(s)
- Zhengtao Luo
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China;
- Anhui Provincial Key Laboratory of Smart Agriculture Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| | - Liyi Yu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
| | - Zhaochun Xu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Kening Liu
- Computer Department, Jingdezhen Ceramic University, Jingdezhen 333403, China; (L.Y.); (Z.X.)
| | - Lichuan Gu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei 230036, China;
- Anhui Provincial Key Laboratory of Smart Agriculture Technology and Equipment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Wang M, Ali H, Xu Y, Xie J, Xu S. BiPSTP: Sequence feature encoding method for identifying different RNA modifications with bidirectional position-specific trinucleotides propensities. J Biol Chem 2024; 300:107140. [PMID: 38447795 PMCID: PMC10997841 DOI: 10.1016/j.jbc.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024] Open
Abstract
RNA modification, a posttranscriptional regulatory mechanism, significantly influences RNA biogenesis and function. The accurate identification of modification sites is paramount for investigating their biological implications. Methods for encoding RNA sequence into numerical data play a crucial role in developing robust models for predicting modification sites. However, existing techniques suffer from limitations, including inadequate information representation, challenges in effectively integrating positional and sequential information, and the generation of irrelevant or redundant features when combining multiple approaches. These deficiencies hinder the effectiveness of machine learning models in addressing the performance challenges associated with predicting RNA modification sites. Here, we introduce a novel RNA sequence feature representation method, named BiPSTP, which utilizes bidirectional trinucleotide position-specific propensities. We employ the parameter ξ to denote the interval between the current nucleotide and its adjacent forward or backward dinucleotide, enabling the extraction of positional and sequential information from RNA sequences. Leveraging the BiPSTP method, we have developed the prediction model mRNAPred using support vector machine classifier to identify multiple types of RNA modification sites. We evaluate the performance of our BiPSTP method and mRNAPred model across 12 distinct RNA modification types. Our experimental results demonstrate the superiority of the mRNAPred model compared to state-of-art models in the domain of RNA modification sites identification. Importantly, our BiPSTP method enhances the robustness and generalization performance of prediction models. Notably, it can be applied to feature extraction from DNA sequences to predict other biological modification sites.
Collapse
Affiliation(s)
- Mingzhao Wang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Haider Ali
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yandi Xu
- School of Computer Science, Shaanxi Normal University, Xi'an, China; College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juanying Xie
- School of Computer Science, Shaanxi Normal University, Xi'an, China.
| | - Shengquan Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
7
|
Lei R, Jia J, Qin L, Wei X. iPro2L-DG: Hybrid network based on improved densenet and global attention mechanism for identifying promoter sequences. Heliyon 2024; 10:e27364. [PMID: 38510021 PMCID: PMC10950492 DOI: 10.1016/j.heliyon.2024.e27364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The promoter is a key DNA sequence whose primary function is to control the initiation time and the degree of expression of gene transcription. Accurate identification of promoters is essential for understanding gene expression studies. Traditional sequencing techniques for identifying promoters are costly and time-consuming. Therefore, the development of computational methods to identify promoters has become critical. Since deep learning methods show great potential in identifying promoters, this study proposes a new promoter prediction model, called iPro2L-DG. The iPro2L-DG predictor, based on an improved Densely Connected Convolutional Network (DenseNet) and a Global Attention Mechanism (GAM), is constructed to achieve the prediction of promoters. The promoter sequences are combined feature encoding using C2 encoding and nucleotide chemical property (NCP) encoding. An improved DenseNet extracts advanced feature information from the combined feature encoding. GAM evaluates the importance of advanced feature information in terms of channel and spatial dimensions, and finally uses a Full Connect Neural Network (FNN) to derive prediction probabilities. The experimental results showed that the accuracy of iPro2L-DG in the first layer (promoter identification) was 94.10% with Matthews correlation coefficient value of 0.8833. In the second layer (promoter strength prediction), the accuracy was 89.42% with Matthews correlation coefficient value of 0.7915. The iPro2L-DG predictor significantly outperforms other existing predictors in promoter identification and promoter strength prediction. Therefore, our proposed model iPro2L-DG is the most advanced promoter prediction tool. The source code of the iPro2L-DG model can be found in https://github.com/leirufeng/iPro2L-DG.
Collapse
Affiliation(s)
- Rufeng Lei
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Jianhua Jia
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Lulu Qin
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Xin Wei
- Business School, Jiangxi Institute of Fashion Technology, Nanchang, 330044, China
| |
Collapse
|
8
|
Tu G, Wang X, Xia R, Song B. m6A-TCPred: a web server to predict tissue-conserved human m 6A sites using machine learning approach. BMC Bioinformatics 2024; 25:127. [PMID: 38528499 PMCID: PMC10962094 DOI: 10.1186/s12859-024-05738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic cells that plays a crucial role in regulating various biological processes, and dysregulation of m6A status is involved in multiple human diseases including cancer contexts. A number of prediction frameworks have been proposed for high-accuracy identification of putative m6A sites, however, none have targeted for direct prediction of tissue-conserved m6A modified residues from non-conserved ones at base-resolution level. RESULTS We report here m6A-TCPred, a computational tool for predicting tissue-conserved m6A residues using m6A profiling data from 23 human tissues. By taking advantage of the traditional sequence-based characteristics and additional genome-derived information, m6A-TCPred successfully captured distinct patterns between potentially tissue-conserved m6A modifications and non-conserved ones, with an average AUROC of 0.871 and 0.879 tested on cross-validation and independent datasets, respectively. CONCLUSION Our results have been integrated into an online platform: a database holding 268,115 high confidence m6A sites with their conserved information across 23 human tissues; and a web server to predict the conserved status of user-provided m6A collections. The web interface of m6A-TCPred is freely accessible at: www.rnamd.org/m6ATCPred .
Collapse
Affiliation(s)
- Gang Tu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Xuan Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Rong Xia
- Department of Financial and Actuarial Mathematics, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Bowen Song
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
9
|
Chang L, Jin X, Rao Y, Zhang X. Predicting abiotic stress-responsive miRNA in plants based on multi-source features fusion and graph neural network. PLANT METHODS 2024; 20:33. [PMID: 38402152 PMCID: PMC10894500 DOI: 10.1186/s13007-024-01158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND More and more studies show that miRNA plays a crucial role in plants' response to different abiotic stresses. However, traditional experimental methods are often expensive and inefficient, so it is important to develop efficient and economical computational methods. Although researchers have developed machine learning-based method, the information of miRNAs and abiotic stresses has not been fully exploited. Therefore, we propose a novel approach based on graph neural networks for predicting potential miRNA-abiotic stress associations. RESULTS In this study, we fully considered the multi-source feature information from miRNAs and abiotic stresses, and calculated and integrated the similarity network of miRNA and abiotic stress from different feature perspectives using multiple similarity measures. Then, the above multi-source similarity network and association information between miRNAs and abiotic stresses are effectively fused through heterogeneous networks. Subsequently, the Restart Random Walk (RWR) algorithm is employed to extract global structural information from heterogeneous networks, providing feature vectors for miRNA and abiotic stress. After that, we utilized the graph autoencoder based on GIN (Graph Isomorphism Networks) to learn and reconstruct a miRNA-abiotic stress association matrix to obtain potential miRNA-abiotic stress associations. The experimental results show that our model is superior to all known methods in predicting potential miRNA-abiotic stress associations, and the AUPR and AUC metrics of our model achieve 98.24% and 97.43%, respectively, under five-fold cross-validation. CONCLUSIONS The robustness and effectiveness of our proposed model position it as a valuable approach for advancing the field of miRNA-abiotic stress association prediction.
Collapse
Affiliation(s)
- Liming Chang
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
| | - Xiu Jin
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei, 230036, China
| | - Yuan Rao
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaodan Zhang
- College of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
10
|
Shen Z, Liu W, Zhao S, Zhang Q, Wang S, Yuan L. Nucleotide-level prediction of CircRNA-protein binding based on fully convolutional neural network. Front Genet 2023; 14:1283404. [PMID: 37867600 PMCID: PMC10587422 DOI: 10.3389/fgene.2023.1283404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: CircRNA-protein binding plays a critical role in complex biological activity and disease. Various deep learning-based algorithms have been proposed to identify CircRNA-protein binding sites. These methods predict whether the CircRNA sequence includes protein binding sites from the sequence level, and primarily concentrate on analysing the sequence specificity of CircRNA-protein binding. For model performance, these methods are unsatisfactory in accurately predicting motif sites that have special functions in gene expression. Methods: In this study, based on the deep learning models that implement pixel-level binary classification prediction in computer vision, we viewed the CircRNA-protein binding sites prediction as a nucleotide-level binary classification task, and use a fully convolutional neural networks to identify CircRNA-protein binding motif sites (CPBFCN). Results: CPBFCN provides a new path to predict CircRNA motifs. Based on the MEME tool, the existing CircRNA-related and protein-related database, we analysed the motif functions discovered by CPBFCN. We also investigated the correlation between CircRNA sponge and motif distribution. Furthermore, by comparing the motif distribution with different input sequence lengths, we found that some motifs in the flanking sequences of CircRNA-protein binding region may contribute to CircRNA-protein binding. Conclusion: This study contributes to identify circRNA-protein binding and provides help in understanding the role of circRNA-protein binding in gene expression regulation.
Collapse
Affiliation(s)
- Zhen Shen
- School of Computer and Software, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Wei Liu
- School of Computer and Software, Nanyang Institute of Technology, Nanyang, Henan, China
| | - ShuJun Zhao
- School of Computer and Software, Nanyang Institute of Technology, Nanyang, Henan, China
| | - QinHu Zhang
- EIT Institute for Advanced Study, Ningbo, Zhejiang, China
| | - SiGuo Wang
- EIT Institute for Advanced Study, Ningbo, Zhejiang, China
| | - Lin Yuan
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China
| |
Collapse
|
11
|
Wang J, Horlacher M, Cheng L, Winther O. RNA trafficking and subcellular localization-a review of mechanisms, experimental and predictive methodologies. Brief Bioinform 2023; 24:bbad249. [PMID: 37466130 PMCID: PMC10516376 DOI: 10.1093/bib/bbad249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
RNA localization is essential for regulating spatial translation, where RNAs are trafficked to their target locations via various biological mechanisms. In this review, we discuss RNA localization in the context of molecular mechanisms, experimental techniques and machine learning-based prediction tools. Three main types of molecular mechanisms that control the localization of RNA to distinct cellular compartments are reviewed, including directed transport, protection from mRNA degradation, as well as diffusion and local entrapment. Advances in experimental methods, both image and sequence based, provide substantial data resources, which allow for the design of powerful machine learning models to predict RNA localizations. We review the publicly available predictive tools to serve as a guide for users and inspire developers to build more effective prediction models. Finally, we provide an overview of multimodal learning, which may provide a new avenue for the prediction of RNA localization.
Collapse
Affiliation(s)
- Jun Wang
- Bioinformatics Centre, Department of Biology, University of Copenhagen, København Ø 2100, Denmark
| | - Marc Horlacher
- Computational Health Center, Helmholtz Center, Munich, Germany
| | - Lixin Cheng
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Ole Winther
- Bioinformatics Centre, Department of Biology, University of Copenhagen, København Ø 2100, Denmark
- Center for Genomic Medicine, Rigshospitalet (Copenhagen University Hospital), Copenhagen 2100, Denmark
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
12
|
Liu N, Zhang Z, Wu Y, Wang Y, Liang Y. CRBSP:Prediction of CircRNA-RBP Binding Sites Based on Multimodal Intermediate Fusion. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2898-2906. [PMID: 37130249 DOI: 10.1109/tcbb.2023.3272400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Circular RNA (CircRNA) is widely expressed and has physiological and pathological significance, regulating post-transcriptional processes via its protein-binding activity. However, whereas much work has been done on linear RNA and RNA binding protein (RBP), little is known about the binding sites of CircRNA. The current report is on the development of a medium-term multimodal data fusion strategy, CRBSP, to predict CircRNA-RBP binding sites. CRBSP represents the CircRNA trinucleotide semantic, location, composition and frequency information as the corresponding coding methods of Word to vector (Word2vec), Position-specific trinucleotide propensity (PSTNP), Pseudo trinucleotide composition (PseTNC) and Trinucleotide nucleotide composition (TNC), respectively. CNN (Convolution Neural Networks) was used to extract global information and BiLSTM (bidirectional Long- and Short-Term Memory network) encoder and LSTM (Long- and Short-Term Memory network) decoder for local sequence information. Enhancement of the contributions of key features by the self-attention mechanism was followed by mid-term fusion of the four enhanced features. Logistic Regression (LR) classifier showed that CRBSP gives a mean AUC value of 0.9362 through 5-fold Cross Validation of all 37 datasets, a performance which is superior to five current state-of-the-art models. Similar evaluation of linear RNA-RBP binding sites gave an AUC value of 0.7615 which is also higher than other prediction methods, demonstrating the robustness of CRBSP.
Collapse
|
13
|
Zhang W, Liu B. iSnoDi-MDRF: Identifying snoRNA-Disease Associations Based on Multiple Biological Data by Ranking Framework. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3013-3019. [PMID: 37030816 DOI: 10.1109/tcbb.2023.3258448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Accumulating evidence indicates that the dysregulation of small nucleolar RNAs (snoRNAs) is relevant with diseases. Identifying snoRNA-disease associations by computational methods is desired for biologists, which can save considerable costs and time compared biological experiments. However, it still faces some challenges as followings: (i) Many snoRNAs are detected in recent years, but only a few snoRNAs have been proved to be associated with diseases; (ii) Computational predictors trained with only a few known snoRNA-disease associations fail to accurately identify the snoRNA-disease associations. In this study, we propose a ranking framework, called iSnoDi-MDRF, to identify potential snoRNA-disease associations based on multiple biological data, which has the following highlights: (i) iSnoDi-MDRF integrates ranking framework, which is not only able to identify potential associations between known snoRNAs and diseases, but also can identify diseases associated with new snoRNAs. (ii) Known gene-disease associations are employed to help train a mature model for predicting snoRNA-disease association. Experimental results illustrate that iSnoDi-MDRF is very suitable for identifying potential snoRNA-disease associations. The web server of iSnoDi-MDRF predictor is freely available at http://bliulab.net/iSnoDi-MDRF/.
Collapse
|
14
|
Acera Mateos P, Zhou Y, Zarnack K, Eyras E. Concepts and methods for transcriptome-wide prediction of chemical messenger RNA modifications with machine learning. Brief Bioinform 2023; 24:7150742. [PMID: 37139545 DOI: 10.1093/bib/bbad163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/03/2023] [Indexed: 05/05/2023] Open
Abstract
The expanding field of epitranscriptomics might rival the epigenome in the diversity of biological processes impacted. In recent years, the development of new high-throughput experimental and computational techniques has been a key driving force in discovering the properties of RNA modifications. Machine learning applications, such as for classification, clustering or de novo identification, have been critical in these advances. Nonetheless, various challenges remain before the full potential of machine learning for epitranscriptomics can be leveraged. In this review, we provide a comprehensive survey of machine learning methods to detect RNA modifications using diverse input data sources. We describe strategies to train and test machine learning methods and to encode and interpret features that are relevant for epitranscriptomics. Finally, we identify some of the current challenges and open questions about RNA modification analysis, including the ambiguity in predicting RNA modifications in transcript isoforms or in single nucleotides, or the lack of complete ground truth sets to test RNA modifications. We believe this review will inspire and benefit the rapidly developing field of epitranscriptomics in addressing the current limitations through the effective use of machine learning.
Collapse
Affiliation(s)
- Pablo Acera Mateos
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - You Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt a.M., Germany
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt a.M., Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt a.M., Germany
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt a.M., Germany
| | - Eduardo Eyras
- EMBL Australia Partner Laboratory Network at the Australian National University, Canberra, Australia
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, Australian National University, Canberra, Australia
- The Centre for Computational Biomedical Sciences, The John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
15
|
Liu Z, Lan P, Liu T, Liu X, Liu T. m6Aminer: Predicting the m6Am Sites on mRNA by Fusing Multiple Sequence-Derived Features into a CatBoost-Based Classifier. Int J Mol Sci 2023; 24:ijms24097878. [PMID: 37175594 PMCID: PMC10177809 DOI: 10.3390/ijms24097878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
As one of the most important post-transcriptional modifications, m6Am plays a fairly important role in conferring mRNA stability and in the progression of cancers. The accurate identification of the m6Am sites is critical for explaining its biological significance and developing its application in the medical field. However, conventional experimental approaches are time-consuming and expensive, making them unsuitable for the large-scale identification of the m6Am sites. To address this challenge, we exploit a CatBoost-based method, m6Aminer, to identify the m6Am sites on mRNA. For feature extraction, nine different feature-encoding schemes (pseudo electron-ion interaction potential, hash decimal conversion method, dinucleotide binary encoding, nucleotide chemical properties, pseudo k-tuple composition, dinucleotide numerical mapping, K monomeric units, series correlation pseudo trinucleotide composition, and K-spaced nucleotide pair frequency) were utilized to form the initial feature space. To obtain the optimized feature subset, the ExtraTreesClassifier algorithm was adopted to perform feature importance ranking, and the top 300 features were selected as the optimal feature subset. With different performance assessment methods, 10-fold cross-validation and independent test, m6Aminer achieved average AUC of 0.913 and 0.754, demonstrating a competitive performance with the state-of-the-art models m6AmPred (0.905 and 0.735) and DLm6Am (0.897 and 0.730). The prediction model developed in this study can be used to identify the m6Am sites in the whole transcriptome, laying a foundation for the functional research of m6Am.
Collapse
Affiliation(s)
- Ze Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China
| | - Pengfei Lan
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China
| | - Ting Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xudong Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tao Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
16
|
Pradhan UK, Meher PK, Naha S, Rao AR, Kumar U, Pal S, Gupta A. ASmiR: a machine learning framework for prediction of abiotic stress-specific miRNAs in plants. Funct Integr Genomics 2023; 23:92. [PMID: 36939943 DOI: 10.1007/s10142-023-01014-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
Abiotic stresses have become a major challenge in recent years due to their pervasive nature and shocking impacts on plant growth, development, and quality. MicroRNAs (miRNAs) play a significant role in plant response to different abiotic stresses. Thus, identification of specific abiotic stress-responsive miRNAs holds immense importance in crop breeding programmes to develop cultivars resistant to abiotic stresses. In this study, we developed a machine learning-based computational model for prediction of miRNAs associated with four specific abiotic stresses such as cold, drought, heat and salt. The pseudo K-tuple nucleotide compositional features of Kmer size 1 to 5 were used to represent miRNAs in numeric form. Feature selection strategy was employed to select important features. With the selected feature sets, support vector machine (SVM) achieved the highest cross-validation accuracy in all four abiotic stress conditions. The highest cross-validated prediction accuracies in terms of area under precision-recall curve were found to be 90.15, 90.09, 87.71, and 89.25% for cold, drought, heat and salt respectively. Overall prediction accuracies for the independent dataset were respectively observed 84.57, 80.62, 80.38 and 82.78%, for the abiotic stresses. The SVM was also seen to outperform different deep learning models for prediction of abiotic stress-responsive miRNAs. To implement our method with ease, an online prediction server "ASmiR" has been established at https://iasri-sg.icar.gov.in/asmir/ . The proposed computational model and the developed prediction tool are believed to supplement the existing effort for identification of specific abiotic stress-responsive miRNAs in plants.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India.
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | | | - Upendra Kumar
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Soumen Pal
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| |
Collapse
|
17
|
DeepmRNALoc: A Novel Predictor of Eukaryotic mRNA Subcellular Localization Based on Deep Learning. Molecules 2023; 28:molecules28052284. [PMID: 36903531 PMCID: PMC10005629 DOI: 10.3390/molecules28052284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
The subcellular localization of messenger RNA (mRNA) precisely controls where protein products are synthesized and where they function. However, obtaining an mRNA's subcellular localization through wet-lab experiments is time-consuming and expensive, and many existing mRNA subcellular localization prediction algorithms need to be improved. In this study, a deep neural network-based eukaryotic mRNA subcellular location prediction method, DeepmRNALoc, was proposed, utilizing a two-stage feature extraction strategy that featured bimodal information splitting and fusing for the first stage and a VGGNet-like CNN module for the second stage. The five-fold cross-validation accuracies of DeepmRNALoc in the cytoplasm, endoplasmic reticulum, extracellular region, mitochondria, and nucleus were 0.895, 0.594, 0.308, 0.944, and 0.865, respectively, demonstrating that it outperforms existing models and techniques.
Collapse
|
18
|
Wang C, Zou Q, Ju Y, Shi H. Enhancer-FRL: Improved and Robust Identification of Enhancers and Their Activities Using Feature Representation Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:967-975. [PMID: 36063523 DOI: 10.1109/tcbb.2022.3204365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Enhancers are crucial for precise regulation of gene expression, while enhancer identification and strength prediction are challenging because of their free distribution and tremendous number of similar fractions in the genome. Although several bioinformatics tools have been developed, shortfalls in these models remain, and their performances need further improvement. In the present study, a two-layer predictor called Enhancer-FRL was proposed for identifying enhancers (enhancers or nonenhancers) and their activities (strong and weak). More specifically, to build an efficient model, the feature representation learning scheme was applied to generate a 50D probabilistic vector based on 10 feature encodings and five machine learning algorithms. Subsequently, the multiview probabilistic features were integrated to construct the final prediction model. Compared with the single feature-based model, Enhancer-FRL showed significant performance improvement and model robustness. Performance assessment on the independent test dataset indicated that the proposed model outperformed state-of-the-art available toolkits. The webserver Enhancer-FRL is freely accessible at http://lab.malab.cn/∼wangchao/softwares/Enhancer-FRL/, The code and datasets can be downloaded at the webserver page or at the Github https://github.com/wangchao-malab/Enhancer-FRL/.
Collapse
|
19
|
Iyer MS, Pal A, Venkatesh KV. A Systems Biology Approach To Disentangle the Direct and Indirect Effects of Global Transcription Factors on Gene Expression in Escherichia coli. Microbiol Spectr 2023; 11:e0210122. [PMID: 36749045 PMCID: PMC10100776 DOI: 10.1128/spectrum.02101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Delineating the pleiotropic effects of global transcriptional factors (TFs) is critical for understanding the system-wide regulatory response in a particular environment. Currently, with the availability of genome-wide TF binding and gene expression data for Escherichia coli, several gene targets can be assigned to the global TFs, albeit inconsistently. Here, using a systematic integrated approach with emphasis on metabolism, we characterized and quantified the direct effects as well as the growth rate-mediated indirect effects of global TFs using deletion mutants of FNR, ArcA, and IHF regulators (focal TFs) under glucose fermentative conditions. This categorization enabled us to disentangle the dense connections seen within the transcriptional regulatory network (TRN) and determine the exact nature of focal TF-driven epistatic interactions with other global and pathway-specific local regulators (iTFs). We extended our analysis to combinatorial deletions of these focal TFs to determine their cross talk effects as well as conserved patterns of regulatory interactions. Moreover, we predicted with high confidence several novel metabolite-iTF interactions using inferred iTF activity changes arising from the allosteric effects of the intracellular metabolites perturbed as a result of the absence of focal TFs. Further, using compendium level computational analyses, we revealed not only the coexpressed genes regulated by these focal TFs but also the coordination of the direct and indirect target expression in the context of the economy of intracellular metabolites. Overall, this study leverages the fundamentals of TF-driven regulation, which could serve as a better template for deciphering mechanisms underlying complex phenotypes. IMPORTANCE Understanding the pleiotropic effects of global TFs on gene expression and their relevance underlying a specific response in a particular environment has been challenging. Here, we distinguish the TF-driven direct effects and growth rate-mediated indirect effects on gene expression using single- and double-deletion mutants of FNR, ArcA, and IHF regulators under anaerobic glucose fermentation. Such dissection assists us in unraveling the precise nature of interactions existing between the focal TF(s) and several other TFs, including those altered by allosteric effects of intracellular metabolites. We were able to recapitulate the previously known metabolite-TF interactions and predict novel interactions with high confidence. Furthermore, we determined that the direct and indirect gene expression have a strong connection with each other when analyzed using the coexpressed- or coregulated-gene approach. Deciphering such regulatory patterns explicitly from the metabolism point of view would be valuable in understanding other unpredicted complex regulation existing in nature.
Collapse
Affiliation(s)
- Mahesh S. Iyer
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ankita Pal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - K. V. Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
20
|
Tang X, Zheng P, Liu Y, Yao Y, Huang G. LangMoDHS: A deep learning language model for predicting DNase I hypersensitive sites in mouse genome. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:1037-1057. [PMID: 36650801 DOI: 10.3934/mbe.2023048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
DNase I hypersensitive sites (DHSs) are a specific genomic region, which is critical to detect or understand cis-regulatory elements. Although there are many methods developed to detect DHSs, there is a big gap in practice. We presented a deep learning-based language model for predicting DHSs, named LangMoDHS. The LangMoDHS mainly comprised the convolutional neural network (CNN), the bi-directional long short-term memory (Bi-LSTM) and the feed-forward attention. The CNN and the Bi-LSTM were stacked in a parallel manner, which was helpful to accumulate multiple-view representations from primary DNA sequences. We conducted 5-fold cross-validations and independent tests over 14 tissues and 4 developmental stages. The empirical experiments showed that the LangMoDHS is competitive with or slightly better than the iDHS-Deep, which is the latest method for predicting DHSs. The empirical experiments also implied substantial contribution of the CNN, Bi-LSTM, and attention to DHSs prediction. We implemented the LangMoDHS as a user-friendly web server which is accessible at http:/www.biolscience.cn/LangMoDHS/. We used indices related to information entropy to explore the sequence motif of DHSs. The analysis provided a certain insight into the DHSs.
Collapse
Affiliation(s)
- Xingyu Tang
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Peijie Zheng
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Yuewu Liu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China
| | - Guohua Huang
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China
| |
Collapse
|
21
|
Li J, Wu Z, Lin W, Luo J, Zhang J, Chen Q, Chen J. iEnhancer-ELM: improve enhancer identification by extracting position-related multiscale contextual information based on enhancer language models. BIOINFORMATICS ADVANCES 2023; 3:vbad043. [PMID: 37113248 PMCID: PMC10125906 DOI: 10.1093/bioadv/vbad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/04/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023]
Abstract
Motivation Enhancers are important cis-regulatory elements that regulate a wide range of biological functions and enhance the transcription of target genes. Although many feature extraction methods have been proposed to improve the performance of enhancer identification, they cannot learn position-related multiscale contextual information from raw DNA sequences. Results In this article, we propose a novel enhancer identification method (iEnhancer-ELM) based on BERT-like enhancer language models. iEnhancer-ELM tokenizes DNA sequences with multi-scale k-mers and extracts contextual information of different scale k-mers related with their positions via an multi-head attention mechanism. We first evaluate the performance of different scale k-mers, then ensemble them to improve the performance of enhancer identification. The experimental results on two popular benchmark datasets show that our model outperforms state-of-the-art methods. We further illustrate the interpretability of iEnhancer-ELM. For a case study, we discover 30 enhancer motifs via a 3-mer-based model, where 12 of motifs are verified by STREME and JASPAR, demonstrating our model has a potential ability to unveil the biological mechanism of enhancer. Availability and implementation The models and associated code are available at https://github.com/chen-bioinfo/iEnhancer-ELM. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | | | - Wenhao Lin
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Jiawei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Jun Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Qingcai Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | | |
Collapse
|
22
|
Wang X, Liu Y, Li J, Wang G. StackCirRNAPred: computational classification of long circRNA from other lncRNA based on stacking strategy. BMC Bioinformatics 2022; 23:563. [PMID: 36575368 PMCID: PMC9793644 DOI: 10.1186/s12859-022-05118-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND CircRNAs are essential for the regulation of post-transcriptional gene expression, including as miRNA sponges, and play an important role in disease development. Some computational tools have been proposed recently to predict circRNA, since only one classifier is used, there is still much that can be done to improve the performance. RESULTS StackCirRNAPred was proposed, the computational classification of long circRNA from other lncRNA based on stacking strategy. In order to cope with the potential problem that a single feature might not be able to distinguish circRNA well from other lncRNA, we first extracted features from different sources, including nucleic acid composition, sequence spatial features and physicochemical properties, Alu and tandem repeats. We innovatively apply the stacking strategy to integrate the more advantageous classifiers of RF, LightGBM, XGBoost. This allows the model to incorporate these features more flexibly. StackCirRNAPred was found to be significantly better than other tools, with precision, accuracy, F1, recall and MCC of 0.843, 0.833, 0.831, 0.819 and 0.666 respectively. We tested it directly on the mouse dataset. StackCirRNAPred was still significantly better than other methods, with precision, accuracy, F1, recall and MCC of 0.837, 0.839, 0.839, 0.841, 0.677. CONCLUSIONS We proposed StackCirRNAPred based on stacking strategy to distinguish long circRNAs from other lncRNAs. With the test results demonstrating the validity and robustness of StackCirRNAPred, we hope StackCirRNAPred will complement existing circRNA prediction methods and is helpful in down-stream research.
Collapse
Affiliation(s)
- Xin Wang
- grid.19373.3f0000 0001 0193 3564School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yadong Liu
- grid.19373.3f0000 0001 0193 3564School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jie Li
- grid.19373.3f0000 0001 0193 3564School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Guohua Wang
- grid.19373.3f0000 0001 0193 3564School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
23
|
Bernardino M, Beiko R. Genome-scale prediction of bacterial promoters. Biosystems 2022; 221:104771. [PMID: 36099980 DOI: 10.1016/j.biosystems.2022.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/02/2022]
Abstract
A key step in the transcription of RNA is the binding of the RNA polymerase protein complex to a short promoter sequence that is typically upstream of the gene to be expressed. Automated identification of promoters would serve as a valuable complement to experimental validation in determining which genes are likely to be expressed and when; however, promoter sequences are short and highly variable, which makes them very difficult to accurately classify. The many tools developed to identify promoters in DNA have generally been tested on small and balanced subsets of genomic sequence, and the results may not reflect their expected performance on genomes with millions of DNA base pairs where promoters are likely to comprise less than ∼1% of the sequence. Here we introduce Expositor, a neural-network-based method that uses different types of DNA encodings and tunable sensitivity and specificity parameters. Expositor showed higher sensitivity and precision on the E. coli K-12 MG1655 chromosome than other tested approaches. Expositor predictions were more consistent in the homologous subset of sequence from a strain of Salmonella than they were with another strain of E. coli. We also examined the accuracy of Expositor in distinguishing different classes of promoters and found that misclassification between classes was consistent with the biological similarity between promoters.
Collapse
Affiliation(s)
- Miria Bernardino
- Faculty of Computer Science, Dalhousie University, Halifax, Canada.
| | - Robert Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Canada.
| |
Collapse
|
24
|
Nguyen-Vo TH, Trinh QH, Nguyen L, Nguyen-Hoang PU, Rahardja S, Nguyen BP. iPromoter-Seqvec: identifying promoters using bidirectional long short-term memory and sequence-embedded features. BMC Genomics 2022; 23:681. [PMID: 36192696 PMCID: PMC9531353 DOI: 10.1186/s12864-022-08829-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Promoters, non-coding DNA sequences located at upstream regions of the transcription start site of genes/gene clusters, are essential regulatory elements for the initiation and regulation of transcriptional processes. Furthermore, identifying promoters in DNA sequences and genomes significantly contributes to discovering entire structures of genes of interest. Therefore, exploration of promoter regions is one of the most imperative topics in molecular genetics and biology. Besides experimental techniques, computational methods have been developed to predict promoters. In this study, we propose iPromoter-Seqvec - an efficient computational model to predict TATA and non-TATA promoters in human and mouse genomes using bidirectional long short-term memory neural networks in combination with sequence-embedded features extracted from input sequences. The promoter and non-promoter sequences were retrieved from the Eukaryotic Promoter database and then were refined to create four benchmark datasets. RESULTS The area under the receiver operating characteristic curve (AUCROC) and the area under the precision-recall curve (AUCPR) were used as two key metrics to evaluate model performance. Results on independent test sets showed that iPromoter-Seqvec outperformed other state-of-the-art methods with AUCROC values ranging from 0.85 to 0.99 and AUCPR values ranging from 0.86 to 0.99. Models predicting TATA promoters in both species had slightly higher predictive power compared to those predicting non-TATA promoters. With a novel idea of constructing artificial non-promoter sequences based on promoter sequences, our models were able to learn highly specific characteristics discriminating promoters from non-promoters to improve predictive efficiency. CONCLUSIONS iPromoter-Seqvec is a stable and robust model for predicting both TATA and non-TATA promoters in human and mouse genomes. Our proposed method was also deployed as an online web server with a user-friendly interface to support research communities. Links to our source codes and web server are available at https://github.com/mldlproject/2022-iPromoter-Seqvec .
Collapse
Affiliation(s)
- Thanh-Hoang Nguyen-Vo
- School of Mathematics and Statistics, Victoria University of Wellington, Gate 7, Kelburn Parade, 6140 Wellington, New Zealand
| | - Quang H. Trinh
- School of Information and Communication Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, 100000 Hanoi, Vietnam
| | - Loc Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Gate 7, Kelburn Parade, 6140 Wellington, New Zealand
| | - Phuong-Uyen Nguyen-Hoang
- Computational Biology Center, International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, 700000 Ho Chi Minh City, Vietnam
| | - Susanto Rahardja
- School of Marine Science and Technology, Northwestern Polytechnical University, 127 West Youyi Road, 710072 Xi’an, China
- Infocomm Technology Cluster, Singapore Institute of Technology, 10 Dover Drive, 138683 Singapore, Singapore
| | - Binh P. Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Gate 7, Kelburn Parade, 6140 Wellington, New Zealand
| |
Collapse
|
25
|
DLm6Am: A Deep-Learning-Based Tool for Identifying N6,2′-O-Dimethyladenosine Sites in RNA Sequences. Int J Mol Sci 2022; 23:ijms231911026. [PMID: 36232325 PMCID: PMC9570463 DOI: 10.3390/ijms231911026] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
N6,2′-O-dimethyladenosine (m6Am) is a post-transcriptional modification that may be associated with regulatory roles in the control of cellular functions. Therefore, it is crucial to accurately identify transcriptome-wide m6Am sites to understand underlying m6Am-dependent mRNA regulation mechanisms and biological functions. Here, we used three sequence-based feature-encoding schemes, including one-hot, nucleotide chemical property (NCP), and nucleotide density (ND), to represent RNA sequence samples. Additionally, we proposed an ensemble deep learning framework, named DLm6Am, to identify m6Am sites. DLm6Am consists of three similar base classifiers, each of which contains a multi-head attention module, an embedding module with two parallel deep learning sub-modules, a convolutional neural network (CNN) and a Bi-directional long short-term memory (BiLSTM), and a prediction module. To demonstrate the superior performance of our model’s architecture, we compared multiple model frameworks with our method by analyzing the training data and independent testing data. Additionally, we compared our model with the existing state-of-the-art computational methods, m6AmPred and MultiRM. The accuracy (ACC) for the DLm6Am model was improved by 6.45% and 8.42% compared to that of m6AmPred and MultiRM on independent testing data, respectively, while the area under receiver operating characteristic curve (AUROC) for the DLm6Am model was increased by 4.28% and 5.75%, respectively. All the results indicate that DLm6Am achieved the best prediction performance in terms of ACC, Matthews correlation coefficient (MCC), AUROC, and the area under precision and recall curves (AUPR). To further assess the generalization performance of our proposed model, we implemented chromosome-level leave-out cross-validation, and found that the obtained AUROC values were greater than 0.83, indicating that our proposed method is robust and can accurately predict m6Am sites.
Collapse
|
26
|
Butt AH, Alkhalifah T, Alturise F, Khan YD. A machine learning technique for identifying DNA enhancer regions utilizing CIS-regulatory element patterns. Sci Rep 2022; 12:15183. [PMID: 36071071 PMCID: PMC9452539 DOI: 10.1038/s41598-022-19099-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Enhancers regulate gene expression, by playing a crucial role in the synthesis of RNAs and proteins. They do not directly encode proteins or RNA molecules. In order to control gene expression, it is important to predict enhancers and their potency. Given their distance from the target gene, lack of common motifs, and tissue/cell specificity, enhancer regions are thought to be difficult to predict in DNA sequences. Recently, a number of bioinformatics tools were created to distinguish enhancers from other regulatory components and to pinpoint their advantages. However, because the quality of its prediction method needs to be improved, its practical application value must also be improved. Based on nucleotide composition and statistical moment-based features, the current study suggests a novel method for identifying enhancers and non-enhancers and evaluating their strength. The proposed study outperformed state-of-the-art techniques using fivefold and tenfold cross-validation in terms of accuracy. The accuracy from the current study results in 86.5% and 72.3% in enhancer site and its strength prediction respectively. The results of the suggested methodology point to the potential for more efficient and successful outcomes when statistical moment-based features are used. The current study's source code is available to the research community at https://github.com/csbioinfopk/enpred.
Collapse
Affiliation(s)
- Ahmad Hassan Butt
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Saudi Arabia.
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Saudi Arabia
| | - Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
27
|
Wang M, Li F, Wu H, Liu Q, Li S. PredPromoter-MF(2L): A Novel Approach of Promoter Prediction Based on Multi-source Feature Fusion and Deep Forest. Interdiscip Sci 2022; 14:697-711. [PMID: 35488998 DOI: 10.1007/s12539-022-00520-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Abstract
Promoters short DNA sequences play vital roles in initiating gene transcription. However, it remains a challenge to identify promoters using conventional experiment techniques in a high-throughput manner. To this end, several computational predictors based on machine learning models have been developed, while their performance is unsatisfactory. In this study, we proposed a novel two-layer predictor, called PredPromoter-MF(2L), based on multi-source feature fusion and ensemble learning. PredPromoter-MF(2L) was developed based on various deep features learned by a pre-trained deep learning network model and sequence-derived features. Feature selection based on XGBoost was applied to reduce fused features dimensions, and a cascade deep forest model was trained on the selected feature subset for promoter prediction. The results both fivefold cross-validation and independent test demonstrated that PredPromoter-MF(2L) outperformed state-of-the-art methods.
Collapse
Affiliation(s)
- Miao Wang
- College of Information Engineering, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Fuyi Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
| | - Hao Wu
- School of Software, Shandong University, Jinan, 250100, Shandong, China
| | - Quanzhong Liu
- College of Information Engineering, Northwest A&F University, Yangling, 712100, Shanxi, China.
| | - Shuqin Li
- College of Information Engineering, Northwest A&F University, Yangling, 712100, Shanxi, China.
| |
Collapse
|
28
|
Shi H, Zhang S, Li X. R5hmCFDV: computational identification of RNA 5-hydroxymethylcytosine based on deep feature fusion and deep voting. Brief Bioinform 2022; 23:6658858. [PMID: 35945157 DOI: 10.1093/bib/bbac341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
RNA 5-hydroxymethylcytosine (5hmC) is a kind of RNA modification, which is related to the life activities of many organisms. Studying its distribution is very important to reveal its biological function. Previously, high-throughput sequencing was used to identify 5hmC, but it is expensive and inefficient. Therefore, machine learning is used to identify 5hmC sites. Here, we design a model called R5hmCFDV, which is mainly divided into feature representation, feature fusion and classification. (i) Pseudo dinucleotide composition, dinucleotide binary profile and frequency, natural vector and physicochemical property are used to extract features from four aspects: nucleotide composition, coding, natural language and physical and chemical properties. (ii) To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the attention mechanism is employed to process four single features, stitch them together and feed them to the convolution layer. After that, the output data are processed by BiGRU and BiLSTM, respectively. Finally, the features of these two parts are fused by the multiply function. (iii) We design the deep voting algorithm for classification by imitating the soft voting mechanism in the Python package. The base classifiers contain deep neural network (DNN), convolutional neural network (CNN) and improved gated recurrent unit (GRU). And then using the principle of soft voting, the corresponding weights are assigned to the predicted probabilities of the three classifiers. The predicted probability values are multiplied by the corresponding weights and then summed to obtain the final prediction results. We use 10-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 95.41% and 93.50%, respectively. It demonstrates the stronger competitiveness and generalization performance of our model. In addition, all datasets and source codes can be found at https://github.com/HongyanShi026/R5hmCFDV.
Collapse
Affiliation(s)
- Hongyan Shi
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, P. R. China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, P. R. China
| | - Xinjie Li
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, P. R. China
| |
Collapse
|
29
|
Ma L, He LN, Kang S, Gu B, Gao S, Zuo Z. Advances in detecting N6-methyladenosine modification in circRNAs. Methods 2022; 205:234-246. [PMID: 35878749 DOI: 10.1016/j.ymeth.2022.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with covalently single-stranded closed loop structures derived from back-splicing event of linear precursor mRNAs (pre-mRNAs). N6-methyladenosine (m6A), the most abundant epigenetic modification in eukaryotic RNAs, has been shown to play a crucial role in regulating the fate and biological function of circRNAs, and thus affecting various physiological and pathological processes. Accurate identification of m6A modification in circRNAs is an essential step to fully elucidate the crosstalk between m6A and circRNAs. In recent years, the rapid development of high-throughput sequencing technology and bioinformatic methodology has propelled the establishment of a multitude of approaches to detect circRNAs and m6A modification, including in vitro-based and in silico methods. Based on this, the research community has started on a new journey to develop methods for identification of m6A modification in circRNAs. In this review, we provide a comprehensive review and evaluation of the existing methods responsible for detecting circRNAs, m6A modification, and especially, m6A modification in circRNAs, which mainly focused on those developed based on high-throughput technologies and methodology of bioinformatics. This handy reference can help researchers figure out towards which direction this field will go.
Collapse
Affiliation(s)
- Lixia Ma
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medical) of Henan University of Science and Technology, Luoyang, China
| | - Li-Na He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shiyang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Bianli Gu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medical) of Henan University of Science and Technology, Luoyang, China
| | - Shegan Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital (College of Clinical Medical) of Henan University of Science and Technology, Luoyang, China.
| | - Zhixiang Zuo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
30
|
Fan Y, Peng B. StackEPI: identification of cell line-specific enhancer-promoter interactions based on stacking ensemble learning. BMC Bioinformatics 2022; 23:272. [PMID: 35820811 PMCID: PMC9277947 DOI: 10.1186/s12859-022-04821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the regulatory role of enhancer–promoter interactions (EPIs) on specific gene expression in cells contributes to the understanding of gene regulation, cell differentiation, etc., and its identification has been a challenging task. On the one hand, using traditional wet experimental methods to identify EPIs often means a lot of human labor and time costs. On the other hand, although the currently proposed computational methods have good recognition effects, they generally require a long training time. Results In this study, we studied the EPIs of six human cell lines and designed a cell line-specific EPIs prediction method based on a stacking ensemble learning strategy, which has better prediction performance and faster training speed, called StackEPI. Specifically, by combining different encoding schemes and machine learning methods, our prediction method can extract the cell line-specific effective information of enhancer and promoter gene sequences comprehensively and in many directions, and make accurate recognition of cell line-specific EPIs. Ultimately, the source code to implement StackEPI and experimental data involved in the experiment are available at https://github.com/20032303092/StackEPI.git. Conclusions The comparison results show that our model can deliver better performance on the problem of identifying cell line-specific EPIs and outperform other state-of-the-art models. In addition, our model also has a more efficient computation speed. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04821-9.
Collapse
Affiliation(s)
- Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China.
| | - Binchao Peng
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, 541004, China
| |
Collapse
|
31
|
Jeon YJ, Hasan MM, Park HW, Lee KW, Manavalan B. TACOS: a novel approach for accurate prediction of cell-specific long noncoding RNAs subcellular localization. Brief Bioinform 2022; 23:6618237. [PMID: 35753698 PMCID: PMC9294414 DOI: 10.1093/bib/bbac243] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are primarily regulated by their cellular localization, which is responsible for their molecular functions, including cell cycle regulation and genome rearrangements. Accurately identifying the subcellular location of lncRNAs from sequence information is crucial for a better understanding of their biological functions and mechanisms. In contrast to traditional experimental methods, bioinformatics or computational methods can be applied for the annotation of lncRNA subcellular locations in humans more effectively. In the past, several machine learning-based methods have been developed to identify lncRNA subcellular localization, but relevant work for identifying cell-specific localization of human lncRNA remains limited. In this study, we present the first application of the tree-based stacking approach, TACOS, which allows users to identify the subcellular localization of human lncRNA in 10 different cell types. Specifically, we conducted comprehensive evaluations of six tree-based classifiers with 10 different feature descriptors, using a newly constructed balanced training dataset for each cell type. Subsequently, the strengths of the AdaBoost baseline models were integrated via a stacking approach, with an appropriate tree-based classifier for the final prediction. TACOS displayed consistent performance in both the cross-validation and independent assessments compared with the other two approaches employed in this study. The user-friendly online TACOS web server can be accessed at https://balalab-skku.org/TACOS.
Collapse
Affiliation(s)
- Young-Jun Jeon
- Department of Integrative Biotechnology, College of Bioengineering and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Md Mehedi Hasan
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hyun Woo Park
- Department of Integrative Biotechnology, College of Bioengineering and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki Wook Lee
- Department of Integrative Biotechnology, College of Bioengineering and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics laboratory, Department of Integrative Biotechnology, College of Bioengineering and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
32
|
Wang Y, Zhu X, Yang L, Hu X, He K, Yu C, Jiao S, Chen J, Guo R, Yang S. IDDLncLoc: Subcellular Localization of LncRNAs Based on a Framework for Imbalanced Data Distributions. Interdiscip Sci 2022; 14:409-420. [PMID: 35192174 DOI: 10.1007/s12539-021-00497-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs play a crucial role in many life processes of cell, such as genetic markers, RNA splicing, signaling, and protein regulation. Considering that identifying lncRNA's localization in the cell through experimental methods is complicated, hard to reproduce, and expensive, we propose a novel method named IDDLncLoc in this paper, which adopts an ensemble model to solve the problem of the subcellular localization. In the proposal model, dinucleotide-based auto-cross covariance features, k-mer nucleotide composition features, and composition, transition, and distribution features are introduced to encode a raw RNA sequence to vector. To screen out reliable features, feature selection through binomial distribution, and recursive feature elimination is employed. Furthermore, strategies of oversampling in mini-batch, random sampling, and stacking ensemble strategies are customized to overcome the problem of data imbalance on the benchmark dataset. Finally, compared with the latest methods, IDDLncLoc achieves an accuracy of 94.96% on the benchmark dataset, which is 2.59% higher than the best method, and the results further demonstrate IDDLncLoc is excellent on the subcellular localization of lncRNA. Besides, a user-friendly web server is available at http://lncloc.club .
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Xiaopeng Zhu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Lili Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Xuemei Hu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Kai He
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Cuinan Yu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Shaoqing Jiao
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Jiali Chen
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Rui Guo
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Sen Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China.
| |
Collapse
|
33
|
CNNLSTMac4CPred: A Hybrid Model for N4-Acetylcytidine Prediction. Interdiscip Sci 2022; 14:439-451. [PMID: 35106702 DOI: 10.1007/s12539-021-00500-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022]
Abstract
N4-Acetylcytidine (ac4C) is a highly conserved post-transcriptional and an extensively existing RNA modification, playing versatile roles in the cellular processes. Due to the limitation of techniques and knowledge, large-scale identification of ac4C is still a challenging task. RNA sequences are like sentences containing semantics in the natural language. Inspired by the semantics of language, we proposed a hybrid model for ac4C prediction. The model used long short-term memory and convolution neural network to extract the semantic features hidden in the sequences. The semantic and the two traditional features (k-nucleotide frequencies and pseudo tri-tuple nucleotide composition) were combined to represent ac4C or non-ac4C sequences. The eXtreme Gradient Boosting was used as the learning algorithm. Five-fold cross-validation over the training set consisting of 1160 ac4C and 10,855 non-ac4C sequences obtained the area under the receiver operating characteristic curve (AUROC) of 0.9004, and the independent test over 469 ac4C and 4343 non-ac4C sequences reached an AUROC of 0.8825. The model obtained a sensitivity of 0.6474 in the five-fold cross-validation and 0.6290 in the independent test, outperforming two state-of-the-art methods. The performance of semantic features alone was better than those of k-nucleotide frequencies and pseudo tri-tuple nucleotide composition, implying that ac4C sequences are of semantics. The proposed hybrid model was implemented into a user-friendly web-server which is freely available to scientific communities: http://47.113.117.61/ac4c/ . The presented model and tool are beneficial to identify ac4C on large scale.
Collapse
|
34
|
Liu P, Chang H, Xu Q, Wang D, Tang Y, Hu X, Lin M, Liu Z. Peptide Aptamer PA3 Attenuates the Viability of Aeromonas veronii by Hindering of Small Protein B-Outer Membrane Protein A Signal Pathway. Front Microbiol 2022; 13:900234. [PMID: 35663889 PMCID: PMC9159911 DOI: 10.3389/fmicb.2022.900234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022] Open
Abstract
The small protein B (SmpB), previously acting as a ribosome rescue factor for translation quality control, is required for cell viability in bacteria. Here, our study reveals that SmpB possesses new function which regulates the expression of outer membrane protein A (ompA) gene as a transcription factor in Aeromonas veronii. The deletion of SmpB caused the lower transcription expression of ompA by Quantitative Real-Time PCR (qPCR). Electrophoretic mobility shift assay (EMSA) and DNase I Footprinting verified that the SmpB bound at the regions of −46 to −28 bp, −18 to +4 bp, +21 to +31 bp, and +48 to +59 bp of the predicted ompA promoter (PompA). The key sites C52AT was further identified to interact with SmpB when PompA was fused with enhanced green fluorescent protein (EGFP) and co-transformed with SmpB expression vector for the fluorescence detection, and the result was further confirmed in microscale thermophoresis (MST) assays. Besides, the amino acid sites G11S, F26I, and K152 in SmpB were the key sites for binding to PompA. In order to further develop peptide antimicrobial agents, the peptide aptamer PA3 was screened from the peptide aptamer (PA) library by bacterial two-hybrid method. The drug sensitivity test showed that PA3 effectively inhibited the growth of A. veronii. In summary, these results demonstrated that OmpA was a good drug target for A. veronii, which was regulated by the SmpB protein and the selected peptide aptamer PA3 interacted with OmpA protein to disable SmpB-OmpA signal pathway and inhibited A. veronii, suggesting that it could be used as an antimicrobial agent for the prevention and treatment of pathogens.
Collapse
Affiliation(s)
- Peng Liu
- School of Life Sciences, Hainan University, Haikou, China
- Center for Medical Innovation, School of Basic Medical Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Huimin Chang
- School of Life Sciences, Hainan University, Haikou, China
| | - Qi Xu
- School of Life Sciences, Hainan University, Haikou, China
| | - Dan Wang
- School of Life Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Xinwen Hu
- School of Life Sciences, Hainan University, Haikou, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
- *Correspondence: Zhu Liu,
| |
Collapse
|
35
|
Yu B, Zhang Y, Wang X, Gao H, Sun J, Gao X. Identification of DNA modification sites based on elastic net and bidirectional gated recurrent unit with convolutional neural network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Liu Y, Shen Y, Wang H, Zhang Y, Zhu X. m5Cpred-XS: A New Method for Predicting RNA m5C Sites Based on XGBoost and SHAP. Front Genet 2022; 13:853258. [PMID: 35432446 PMCID: PMC9005994 DOI: 10.3389/fgene.2022.853258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
As one of the most important post-transcriptional modifications of RNA, 5-cytosine-methylation (m5C) is reported to closely relate to many chemical reactions and biological functions in cells. Recently, several computational methods have been proposed for identifying m5C sites. However, the accuracy and efficiency are still not satisfactory. In this study, we proposed a new method, m5Cpred-XS, for predicting m5C sites of H. sapiens, M. musculus, and A. thaliana. First, the powerful SHAP method was used to select the optimal feature subset from seven different kinds of sequence-based features. Second, different machine learning algorithms were used to train the models. The results of five-fold cross-validation indicate that the model based on XGBoost achieved the highest prediction accuracy. Finally, our model was compared with other state-of-the-art models, which indicates that m5Cpred-XS is superior to other methods. Moreover, we deployed the model on a web server that can be accessed through http://m5cpred-xs.zhulab.org.cn/, and m5Cpred-XS is expected to be a useful tool for studying m5C sites.
Collapse
Affiliation(s)
| | | | | | - Yong Zhang
- *Correspondence: Xiaolei Zhu, ; Yong Zhang,
| | | |
Collapse
|
37
|
Yu B, Wang X, Zhang Y, Gao H, Wang Y, Liu Y, Gao X. RPI-MDLStack: Predicting RNA-protein interactions through deep learning with stacking strategy and LASSO. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.108676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Nguyen TTD, Ho QT, Le NQK, Phan VD, Ou YY. Use Chou's 5-Steps Rule With Different Word Embedding Types to Boost Performance of Electron Transport Protein Prediction Model. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1235-1244. [PMID: 32750894 DOI: 10.1109/tcbb.2020.3010975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Living organisms receive necessary energy substances directly from cellular respiration. The completion of electron storage and transportation requires the process of cellular respiration with the aid of electron transport chains. Therefore, the work of deciphering electron transport proteins is inevitably needed. The identification of these proteins with high performance has a prompt dependence on the choice of methods for feature extraction and machine learning algorithm. In this study, protein sequences served as natural language sentences comprising words. The nominated word embedding-based feature sets, hinged on the word embedding modulation and protein motif frequencies, were useful for feature choosing. Five word embedding types and a variety of conjoint features were examined for such feature selection. The support vector machine algorithm consequentially was employed to perform classification. The performance statistics within the 5-fold cross-validation including average accuracy, specificity, sensitivity, as well as MCC rates surpass 0.95. Such metrics in the independent test are 96.82, 97.16, 95.76 percent, and 0.9, respectively. Compared to state-of-the-art predictors, the proposed method can generate more preferable performance above all metrics indicating the effectiveness of the proposed method in determining electron transport proteins. Furthermore, this study reveals insights about the applicability of various word embeddings for understanding surveyed sequences.
Collapse
|
39
|
Wang H, Wang S, Zhang Y, Bi S, Zhu X. A brief review of machine learning methods for RNA methylation sites prediction. Methods 2022; 203:399-421. [DOI: 10.1016/j.ymeth.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
|
40
|
Ma Y. DeepMNE: Deep Multi-network Embedding for lncRNA-Disease Association prediction. IEEE J Biomed Health Inform 2022; 26:3539-3549. [PMID: 35180094 DOI: 10.1109/jbhi.2022.3152619] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Long non-coding RNA (lncRNA) participates in various biological processes, hence its mutations and disorders play an important role in the pathogenesis of multiple human diseases. Identifying disease-related lncRNAs is crucial for the diagnosis, prevention, and treatment of diseases. Although a large number of computational approaches have been developed, effectively integrating multi-omics data and accurately predicting potential lncRNA-disease associations remains a challenge, especially regarding new lncRNAs and new diseases. In this work, we propose a new method with deep multi-network embedding, called DeepMNE, to discover potential lncRNA disease associations, especially for novel diseases and lncRNAs. DeepMNE extracts multi-omics data to describe diseases and lncRNAs, and proposes a network fusion method based on deep learning to integrate multi-source information. Moreover, DeepMNE complements the sparse association network and uses kernel neighborhood similarity to construct disease similarity and lncRNA similarity networks. Furthermore, A graph embedding method is adopted to predict potential associations. Experimental results demonstrate that compared to other state-of-the-art methods, DeepMNE has a higher predictive performance on new associations, new lncRNAs and new diseases. Besides, DeepMNE also elicits a considerable predictive performance on perturbed datasets. Additionally, the results of two different types of case studies indicate that DeepMNE can be used as an effective tool for disease-related lncRNA prediction. The code of DeepMNE is freely available at https://github.com/Mayingjun20179/ DeepMNE.
Collapse
|
41
|
Zhang Z, Wang L. Using Chou's 5-steps rule to identify N 6-methyladenine sites by ensemble learning combined with multiple feature extraction methods. J Biomol Struct Dyn 2022; 40:796-806. [PMID: 32948102 DOI: 10.1080/07391102.2020.1821778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
N6-methyladenine (m6A), a type of modification mostly affecting the downstream biological functions and determining the levels of gene expression, is mediated by the methylation of adenine in nucleic acids. It is also a key factor for influencing biological processes and has attracted attention as a target for treating diseases. Here, an ensemble predictor named as TL-Methy, was developed to identify m6A sites across the genome. TL-Methy is a 2-level machine learning method developed by combining the support vector machine model and multiple features extraction methods, including nucleic acid composition, di-nucleotide composition, tri-nucleotide composition, position-specific trinucleotide propensity, Bi-profile Bayes, binary encoding, and accumulated nucleotide frequency. For Homo sapiens, TL-Methy method reached the accuracy of 91.68% on jackknife test and of 92.23% on 10-fold cross validation test; For Mus musculus, TL-Methy method achieved the accuracy of 93.66% on jackknife test and of 97.07% on 10-fold cross validation test; For Saccharomyces cerevisiae, TL-Methy method obtained the accuracy of 81.57% on jackknife test and of 82.54% on 10-fold cross validation test; For rice genome, TL-Methy method achieved the accuracy of 91.87% on jackknife test and of 93.04% on 10-fold cross validation test. The results via these two test approaches demonstrated the robustness and practicality of our TL-Methy model. The TL-Methy model may be as a potential method for m6A site identification.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhongwang Zhang
- College of Science, Dalian Maritime University, Dalian, P.R. China
| | - Lidong Wang
- College of Science, Dalian Maritime University, Dalian, P.R. China
| |
Collapse
|
42
|
ASRmiRNA: Abiotic Stress-Responsive miRNA Prediction in Plants by Using Machine Learning Algorithms with Pseudo K-Tuple Nucleotide Compositional Features. Int J Mol Sci 2022; 23:ijms23031612. [PMID: 35163534 PMCID: PMC8835813 DOI: 10.3390/ijms23031612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) play a significant role in plant response to different abiotic stresses. Thus, identification of abiotic stress-responsive miRNAs holds immense importance in crop breeding programmes to develop cultivars resistant to abiotic stresses. In this study, we developed a machine learning-based computational method for prediction of miRNAs associated with abiotic stresses. Three types of datasets were used for prediction, i.e., miRNA, Pre-miRNA, and Pre-miRNA + miRNA. The pseudo K-tuple nucleotide compositional features were generated for each sequence to transform the sequence data into numeric feature vectors. Support vector machine (SVM) was employed for prediction. The area under receiver operating characteristics curve (auROC) of 70.21, 69.71, 77.94 and area under precision-recall curve (auPRC) of 69.96, 65.64, 77.32 percentages were obtained for miRNA, Pre-miRNA, and Pre-miRNA + miRNA datasets, respectively. Overall prediction accuracies for the independent test set were 62.33, 64.85, 69.21 percentages, respectively, for the three datasets. The SVM also achieved higher accuracy than other learning methods such as random forest, extreme gradient boosting, and adaptive boosting. To implement our method with ease, an online prediction server “ASRmiRNA” has been developed. The proposed approach is believed to supplement the existing effort for identification of abiotic stress-responsive miRNAs and Pre-miRNAs.
Collapse
|
43
|
Bonidia RP, Domingues DS, Sanches DS, de Carvalho ACPLF. MathFeature: feature extraction package for DNA, RNA and protein sequences based on mathematical descriptors. Brief Bioinform 2022; 23:bbab434. [PMID: 34750626 PMCID: PMC8769707 DOI: 10.1093/bib/bbab434] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
One of the main challenges in applying machine learning algorithms to biological sequence data is how to numerically represent a sequence in a numeric input vector. Feature extraction techniques capable of extracting numerical information from biological sequences have been reported in the literature. However, many of these techniques are not available in existing packages, such as mathematical descriptors. This paper presents a new package, MathFeature, which implements mathematical descriptors able to extract relevant numerical information from biological sequences, i.e. DNA, RNA and proteins (prediction of structural features along the primary sequence of amino acids). MathFeature makes available 20 numerical feature extraction descriptors based on approaches found in the literature, e.g. multiple numeric mappings, genomic signal processing, chaos game theory, entropy and complex networks. MathFeature also allows the extraction of alternative features, complementing the existing packages. To ensure that our descriptors are robust and to assess their relevance, experimental results are presented in nine case studies. According to these results, the features extracted by MathFeature showed high performance (0.6350-0.9897, accuracy), both applying only mathematical descriptors, but also hybridization with well-known descriptors in the literature. Finally, through MathFeature, we overcame several studies in eight benchmark datasets, exemplifying the robustness and viability of the proposed package. MathFeature has advanced in the area by bringing descriptors not available in other packages, as well as allowing non-experts to use feature extraction techniques.
Collapse
Affiliation(s)
- Robson P Bonidia
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos 13566-590, Brazil
| | - Douglas S Domingues
- Group of Genomics and Transcriptomes in Plants, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, Brazil
| | - Danilo S Sanches
- Department of Computer Science, Federal University of Technology - Paraná, UTFPR, Cornélio Procópio 86300-000, Brazil
| | - André C P L F de Carvalho
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos 13566-590, Brazil
| |
Collapse
|
44
|
Wang C, Ju Y, Zou Q, Lin C. DeepAc4C: a convolutional neural network model with hybrid features composed of physicochemical patterns and distributed representation information for identification of N4-acetylcytidine in mRNA. Bioinformatics 2021; 38:52-57. [PMID: 34427581 DOI: 10.1093/bioinformatics/btab611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION N4-acetylcytidine (ac4C) is the only acetylation modification that has been characterized in eukaryotic RNA, and is correlated with various human diseases. Laboratory identification of ac4C is complicated by factors, such as sample hydrolysis and high cost. Unfortunately, existing computational methods to identify ac4C do not achieve satisfactory performance. RESULTS We developed a novel tool, DeepAc4C, which identifies ac4C using convolutional neural networks (CNNs) using hybrid features composed of physicochemical patterns and a distributed representation of nucleic acids. Our results show that the proposed model achieved better and more balanced performance than existing predictors. Furthermore, we evaluated the effect that specific features had on the model predictions and their interaction effects. Several interesting sequence motifs specific to ac4C were identified. AVAILABILITY AND IMPLEMENTATION The webserver is freely accessible at https://ac4c.webmalab.cn/, the source code and datasets are accessible at Zenodo with URL https://doi.org/10.5281/zenodo.5138047 and Github with URL https://github.com/wangchao-malab/DeepAc4C. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen 361005, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Chen Lin
- School of Informatics, Xiamen University, Xiamen 361005, China
| |
Collapse
|
45
|
Soffer A, Eisdorfer SA, Ifrach M, Ilic S, Afek A, Schussheim H, Vilenchik D, Akabayov B. Inferring primase-DNA specific recognition using a data driven approach. Nucleic Acids Res 2021; 49:11447-11458. [PMID: 34718733 PMCID: PMC8599759 DOI: 10.1093/nar/gkab956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
DNA–protein interactions play essential roles in all living cells. Understanding of how features embedded in the DNA sequence affect specific interactions with proteins is both challenging and important, since it may contribute to finding the means to regulate metabolic pathways involving DNA–protein interactions. Using a massive experimental benchmark dataset of binding scores for DNA sequences and a machine learning workflow, we describe the binding to DNA of T7 primase, as a model system for specific DNA–protein interactions. Effective binding of T7 primase to its specific DNA recognition sequences triggers the formation of RNA primers that serve as Okazaki fragment start sites during DNA replication.
Collapse
Affiliation(s)
- Adam Soffer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,School of Computer and Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sarah A Eisdorfer
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Morya Ifrach
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stefan Ilic
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Afek
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hallel Schussheim
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Vilenchik
- Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,School of Computer and Electrical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Data Science Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
46
|
Shahraki S, Samareh Delarami H, Poorsargol M, Sori Nezami Z. Structural and functional changes of catalase through interaction with Erlotinib hydrochloride. Use of Chou's 5-steps rule to study mechanisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119940. [PMID: 34038867 DOI: 10.1016/j.saa.2021.119940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Erlotinib hydrochloride (Erlo) is used in the treatment of non-small cell lung cancer, pancreatic cancer and other types of cancer. Interaction of small molecules with bio-macromolecules can lead to changes in the structure and function of them which is one of the possible side effects of the drugs. In this study, the interaction of Erlo with bovine liver catalase (BLC) using spectroscopic and computational methods is presented in detail. The enzymatic function of BLC decreased to 58.7% when the concentration of the Erlo was 0.5 × 10-7 M. Fluorescence results revealed that the combination of BLC with Erlo undergoes static quenching mechanism (Kb = 1.15 × 104 M-1 at 300 K). The interaction process was spontaneous, exothermic and enthalpy-driven and Van der Waals and hydrogen bonds forces played major roles in the this process. UV-Vis, CD, 3D, and synchronous fluorescence measurements indicated the changes in the microenvironment residues and α-helix contents of BLC in the presence of Erlo. Docking and molecular dynamics presented a stable binding configuration and their results were perfectly consistent with the spectroscopic results. Theoretical calculations and experimental analysis help to fully understand of drug interaction with important biological molecules such as enzymes.
Collapse
|
47
|
Lyu Y, Zhang Z, Li J, He W, Ding Y, Guo F. iEnhancer-KL: A Novel Two-Layer Predictor for Identifying Enhancers by Position Specific of Nucleotide Composition. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2809-2815. [PMID: 33481715 DOI: 10.1109/tcbb.2021.3053608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An enhancer is a short region of DNA with the ability to recruit transcription factors and their complexes, increasing the likelihood of the transcription of a particular gene. Considering the importance of enhancers, enhancer identification is a prevailing problem in computational biology. In this paper, we propose a novel two-layer enhancer predictor called iEnhancer-KL, using computational biology algorithms to identify enhancers and then classify these enhancers into strong or weak types. Kullback-Leibler (KL) divergence is creatively taken into consideration to improve the feature extraction method PSTNPss. Then, LASSO is used to reduce the dimension of features and finally helps to get better prediction performance. Furthermore, the selected features are tested on several machine learning models, and the SVM algorithm achieves the best performance. The rigorous cross-validation indicates that our predictor is remarkably superior to the existing state-of-the-art methods with an Acc of 84.23 percent and the MCC of 0.6849 for identifying enhancers. Our code and results can be freely downloaded from https://github.com/Not-so-middle/iEnhancer-KL.git.
Collapse
|
48
|
Zheng Y, Wang H, Ding Y, Guo F. CEPZ: A Novel Predictor for Identification of DNase I Hypersensitive Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2768-2774. [PMID: 33481716 DOI: 10.1109/tcbb.2021.3053661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNase I hypersensitive sites (DHSs) have proven to be tightly associated with cis-regulatory elements, commonly indicating specific function on the chromatin structure. Thus, identifying DHSs plays a fundamental role in decoding gene regulatory behavior. While traditional experimental methods turn to be time-consuming and expensive, computational techniques promise to be practical to discovering and analyzing regulatory factors. In this study, we applied an efficient model that considered composition information and physicochemical properties and effectively selected features with a boosting algorithm. CEPZ, our predictor, greatly improved a Matthews correlation coefficient and accuracy of 0.7740 and 0.9113 respectively, more competitive than any predictor before. This result suggests that it may become a useful tool for DHSs research in the human and other complex genomes. Our research was anchored on the properties of dinucleotides and we identified several dinucleotides with significant differences in the distribution of DHS and non-DHS samples, which are likely to have a special meaning in the chromatin structure. The datasets, feature sets and the relevant algorithm are available at https://github.com/YanZheng-16/CEPZ_DHS/.
Collapse
|
49
|
Wang X, Chen J, Ni H, Mustafa G, Yang Y, Wang Q, Fu H, Zhang L, Yang B. Use Chou's 5-steps rule to identify protein post-translational modification and its linkage to secondary metabolism during the floral development of Lonicera japonica Thunb. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1035-1048. [PMID: 34600181 DOI: 10.1016/j.plaphy.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Lonicera japonica Thunb. is widely used in traditional medicine systems of East Asian and attracts a large amount of studies on the biosynthesis of its active components. Currently, there is little understanding regarding the regulatory mechanisms behind the accumulation of secondary metabolites during its developmental stages. In this study, published transcriptomic and proteomic data were mined to evaluate potential linkage between protein modification and secondary metabolism during the floral development. Stronger correlations were observed between differentially expressed genes (DEGs) and their corresponding differentially abundant proteins (DAPs) in the comparison of juvenile bud stage (JBS)/third green stage (TGS) vs. silver flowering stage (SFS). Seventy-five and 76 cor-rDEGs and cor-rDAPs (CDDs) showed opposite trends at both transcriptional and translational levels when comparing their levels at JBS and TGS relative to those at SFS. CDDs were mainly involved in elements belonging to the protein metabolism and the TCA cycle. Protein-protein interaction analysis indicated that the interacting proteins in the major cluster were primarily involved in TCA cycle and protein metabolism. In the simple phenylpropanoids biosynthetic pathway of SFS, both phospho-2-dehydro-3-deoxyheptonate aldolase (PDA) and glutamate/aspartate-prephenate aminotransferase (AAT) were decreased at the protein level, but increased at the gene level. A confirmatory experiment indicated that protein ubiquitination and succinylation were more prominent during the early floral developmental stages, in correlation with simple phenylpropanoids accumulation. Taken together, those data indicates that phenylpropanoids metabolism and floral development are putatively regulated through the ubiquitination and succinylation modifications of PDA, AAT, and TCA cycle proteins in L. japonica.
Collapse
Affiliation(s)
- Xueqin Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiaqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haofu Ni
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yuling Yang
- Wenshan Academy of Agricultural Sciences, Wenshan, 663000, China
| | - Qi Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
50
|
Li HL, Pang YH, Liu B. BioSeq-BLM: a platform for analyzing DNA, RNA and protein sequences based on biological language models. Nucleic Acids Res 2021; 49:e129. [PMID: 34581805 PMCID: PMC8682797 DOI: 10.1093/nar/gkab829] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 01/08/2023] Open
Abstract
In order to uncover the meanings of ‘book of life’, 155 different biological language models (BLMs) for DNA, RNA and protein sequence analysis are discussed in this study, which are able to extract the linguistic properties of ‘book of life’. We also extend the BLMs into a system called BioSeq-BLM for automatically representing and analyzing the sequence data. Experimental results show that the predictors generated by BioSeq-BLM achieve comparable or even obviously better performance than the exiting state-of-the-art predictors published in literatures, indicating that BioSeq-BLM will provide new approaches for biological sequence analysis based on natural language processing technologies, and contribute to the development of this very important field. In order to help the readers to use BioSeq-BLM for their own experiments, the corresponding web server and stand-alone package are established and released, which can be freely accessed at http://bliulab.net/BioSeq-BLM/.
Collapse
Affiliation(s)
- Hong-Liang Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Yi-He Pang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|