1
|
Akapelwa ML, Kapalamula TF, Moonga LC, Bwalya P, Solo ES, Chizimu JY, Thapa J, Hayashida K, Hang'ombe BM, Munyeme M, Tamaru A, Wada T, Yoshida S, Kodera T, Kawase M, Gordon SV, Yamada K, Nakajima C, Suzuki Y. Development of a multiplex loop-mediated isothermal amplification (LAMP) method for differential detection of Mycobacterium bovis and Mycobacterium tuberculosis by dipstick DNA chromatography. Microbiol Spectr 2025:e0242124. [PMID: 40304466 DOI: 10.1128/spectrum.02421-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/26/2025] [Indexed: 05/02/2025] Open
Abstract
Although human tuberculosis (TB) caused by Mycobacterium bovis is clinically, pathologically, and radiologically indistinguishable from Mycobacterium tuberculosis-caused TB, M. bovis is innately resistant to pyrazinamide, a key first-line drug effective against M. tuberculosis. The rapid differentiation of these two biovars is therefore of high clinical and epidemiologic importance. Most current molecular tools in resource-limited settings identify mycobacteria only to the M. tuberculosis species (MTB) level. In this study, we report a multiplex loop-mediated isothermal amplification (LAMP) method coupled with dipstick chromatography for the rapid and easy differential detection of M. bovis and M. tuberculosis. The assay was optimized and validated using 143 isolates comprising six MTB reference strains, 50 M. bovis isolates, 58 M. tuberculosis isolates, 24 non-tuberculous mycobacterial (NTM) strains, and five other respiratory pathogens. The multiplex LAMP correctly detected MTB and distinguished between M. tuberculosis and M. bovis simultaneously with sensitivities of 500 fg and 1 pg DNA, respectively, within 60 min, and the results were visualized by dipstick chromatography within 10 min. The assay was specific in that no major respiratory pathogens tested, including NTM strains, were positive. The multiplex dipstick LAMP assay is therefore a useful and accurate low-cost method for the differential identification of M. bovis and M. tuberculosis, especially in endemic areas where bovine and human TB coexist. The distinction between M. bovis and M. tuberculosis can also aid in monitoring the spread of M. bovis to humans and allow for correct treatment, which will ultimately contribute to TB control in both humans and animals. IMPORTANCE Human tuberculosis caused by Mycobacterium tuberculosis and Mycobacterium bovis shows similar clinical symptoms; however, the treatment differs because M. bovis is inherently resistant to pyrazinamide, a key first-line drug effective against M. tuberculosis. Most available molecular tools cannot distinguish the two biovars. This study addresses this gap by introducing a multiplex loop-mediated isothermal amplification (LAMP) method coupled with dipstick chromatography that can simultaneously and differentially detect M. bovis and M. tuberculosis within 60 min. The LAMP method does not require sophisticated high-cost equipment and can be easily implemented in resource-limited settings. Our LAMP facilitates rapid and accurate tuberculosis diagnosis, enabling appropriate therapeutic agents to be selected in areas where bovine and human tuberculosis coexist. It can also screen for M. bovis infection in humans and livestock, providing prevalence data in areas where such information is lacking.
Collapse
Affiliation(s)
- Mwangala L Akapelwa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Thoko F Kapalamula
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Department of Pathobiology, Faculty of Veterinary Medicine, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Central Region, Malawi
| | - Lavel C Moonga
- School of Veterinary Medicine, University of Zambia, Lusaka, Lusaka Province, Zambia
| | - Precious Bwalya
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
| | - Eddie S Solo
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, Zambia
| | - Joseph Y Chizimu
- Zambia National Public Health Institute, Ministry of Health, Lusaka, Lusaka Province, Zambia
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Kyoko Hayashida
- Division of collaboration and education, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Bernard M Hang'ombe
- School of Veterinary Medicine, University of Zambia, Lusaka, Lusaka Province, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Lusaka Province, Zambia
- Hokkaido University, Institute for Vaccine Research and Development, Sapporo, Hokkaido Prefecture, Japan
| | - Musso Munyeme
- School of Veterinary Medicine, University of Zambia, Lusaka, Lusaka Province, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Lusaka Province, Zambia
| | - Aki Tamaru
- Department of Microbiology, Osaka Institute of Public Health, Osaka, Osaka Prefecture, Japan
| | - Takayuki Wada
- Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Osaka Prefecture, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Sakai, Osaka Prefecture, Japan
| | | | | | - Stephen V Gordon
- Hokkaido University, Institute for Vaccine Research and Development, Sapporo, Hokkaido Prefecture, Japan
- School of Veterinary Medicine and UCD Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Leinster, Ireland
| | - Keiko Yamada
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Hokkaido University, Institute for Vaccine Research and Development, Sapporo, Hokkaido Prefecture, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Hokkaido University, Institute for Vaccine Research and Development, Sapporo, Hokkaido Prefecture, Japan
| |
Collapse
|
2
|
Mikita K, Tajima M, Haque A, Kato Y, Iwata S, Suzuki K, Hasegawa N, Yano H, Matsumoto T. Development of a Simple Method to Detect the Carbapenemase-Producing Genes blaNDM, blaOXA-48-like, blaIMP, blaKPC, and blaVIM Using a LAMP Method with Lateral Flow DNA Chromatography. Diagnostics (Basel) 2024; 14:1027. [PMID: 38786325 PMCID: PMC11119924 DOI: 10.3390/diagnostics14101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Infections by carbapenemase-producing Enterobacterales constitute a global public health threat. The rapid and efficient diagnosis of Enterobacterales infection is critical for prompt treatment and infection control, especially in hospital settings. We developed a novel loop-mediated isothermal amplification (LAMP) method combined with DNA chromatography to identify five major groups of carbapenemase-producing genes (blaNDM, blaOXA-48-like, blaIMP, blaKPC, and blaVIM). This method uses DNA-DNA hybridization-based detection in which LAMP products can be easily visualized as colored lines. No specific technical expertise, expensive equipment, or special facilities are required for this method, allowing its broad application. Here, 73 bacteria collections including strains with carbapenemase-producing genes were tested. Compared to sequencing results, LAMP DNA chromatography for five carbapenemase-producing genes had a sensitivity and specificity of 100% and >97%, respectively. This newly developed method can be a valuable rapid diagnostic test to guide appropriate treatments and infection control measures, especially in resource-limited settings.
Collapse
Affiliation(s)
- Kei Mikita
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo 160-8582, Japan; (M.T.); (N.H.)
| | - Moe Tajima
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo 160-8582, Japan; (M.T.); (N.H.)
| | - Anwarul Haque
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-8520, Japan; (A.H.); (Y.K.); (T.M.)
| | - Yasuyuki Kato
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-8520, Japan; (A.H.); (Y.K.); (T.M.)
| | - Satoshi Iwata
- Department of Microbiology, Tokyo Medical University, Tokyo 160-8402, Japan;
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8606, Japan;
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo 160-8582, Japan; (M.T.); (N.H.)
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Nara 634-8522, Japan;
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-8520, Japan; (A.H.); (Y.K.); (T.M.)
| |
Collapse
|
3
|
Design and Evaluation of Multiplex One-Step Reverse Transcription PCR-Dipstick Chromatography Method for the Analysis of Seven Respiratory Pathogens. Curr Microbiol 2021; 78:3656-3666. [PMID: 34338833 PMCID: PMC8326646 DOI: 10.1007/s00284-021-02621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Influenza A, influenza B, severe acute respiratory syndrome coronavirus 2, adenovirus, respiratory syncytial virus, Mycoplasma pneumoniae, and Chlamydophila pneumoniae are common pathogens that can cause severe pneumonia and other symptoms, resulting in acute lower respiratory tract infections. The objective of this study was to design and evaluate a sensitive and specific multiplex one-step reverse transcription PCR (RT-PCR)–dipstick chromatography method for simultaneous rapid detection of these seven pathogens. Streptavidin-coated blue latex particles were used to read out a positive signal. Based on the DNA–DNA hybridization of oligonucleotide sequences (Tag) for forward primer with the complementary oligonucleotide sequence (cTag) on the dipstick and biotin–streptavidin interactions, PCR products were able to be illuminated visually on the dipstick. The specificity and the limit of detection (LOD) were also evaluated. Moreover, the clinical performance of this method was compared with Sanger sequencing for 896 samples. No cross reaction with other pathogens was found, confirming the high specificity of this method. The LOD was 10 copies/µL for each of the tested pathogens, and the whole procedure took less than 40 min. Using 896 samples, the sensitivity and specificity were shown to be no lower than 94.5%. The positive predictive value was higher than 82.1%, and the negative predictive value was higher than 99.5%. The kappa value between the PCR–dipstick chromatography method and Sanger sequencing ranged from 0.869 to 0.940. In summary, our one-step RT-PCR–dipstick chromatography method is a sensitive and specific tool for rapidly detecting multiplex respiratory pathogens.
Collapse
|
4
|
Development of a Multiplex Loop-Mediated Isothermal Amplification (LAMP) Method for Simultaneous Detection of Spotted Fever Group Rickettsiae and Malaria Parasites by Dipstick DNA Chromatography. Diagnostics (Basel) 2020; 10:diagnostics10110897. [PMID: 33147773 PMCID: PMC7694008 DOI: 10.3390/diagnostics10110897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Spotted fever group (SFG) rickettsiae causes febrile illness in humans worldwide. Since SFG rickettsiosis’s clinical presentation is nonspecific, it is frequently misdiagnosed as other febrile diseases, especially malaria, and complicates proper treatment. Aiming at rapid, simple, and simultaneous detection of SFG Rickettsia spp. and Plasmodium spp., we developed a novel multiple pathogen detection system by combining a loop-mediated isothermal amplification (LAMP) method and dipstick DNA chromatography technology. Two primer sets detecting SFG Rickettsia spp. and Plasmodium spp. were mixed, and amplified products were visualized by hybridizing to dipstick DNA chromatography. The multiplex LAMP with dipstick DNA chromatography distinguished amplified Rickettsia and Plasmodium targeted genes simultaneously. The determined sensitivity using synthetic nucleotides was 1000 copies per reaction for mixed Rickettsia and Plasmodium genes. When genomic DNA from in vitro cultured organisms was used, the sensitivity was 100 and 10 genome equivalents per reaction for Rickettsia monacensis and Plasmodium falciparum, respectively. Although further improvement will be required for more sensitive detection, our developed simultaneous diagnosis technique will contribute to the differential diagnosis of undifferentiated febrile illness caused by either SFG Rickettsia spp. or Plasmodium spp. in resource-limited endemic areas. Importantly, this scheme is potentially versatile for the simultaneous detection of diverse infectious diseases.
Collapse
|
5
|
Goncalves A, Peeling RW, Chu MC, Gubler DJ, de Silva AM, Harris E, Murtagh M, Chua A, Rodriguez W, Kelly C, Wilder-Smith A. Innovative and New Approaches to Laboratory Diagnosis of Zika and Dengue: A Meeting Report. J Infect Dis 2019; 217:1060-1068. [PMID: 29294035 DOI: 10.1093/infdis/jix678] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/22/2017] [Indexed: 12/30/2022] Open
Abstract
Epidemics of dengue, Zika, and other arboviral diseases are increasing in frequency and severity. Current efforts to rapidly identify and manage these epidemics are limited by the short diagnostic window in acute infection, the extensive serologic cross-reactivity among flaviviruses, and the lack of point-of-care diagnostic tools to detect these viral species in primary care settings. The Partnership for Dengue Control organized a workshop to review the current landscape of Flavivirus diagnostic tools, identified current gaps, and developed strategies to accelerate the adoption of promising novel technologies into national programs. The rate-limiting step to bringing new diagnostic tools to the market is access to reference materials and well-characterized clinical samples to facilitate performance evaluation. We suggest the creation of an international laboratory-response consortium for flaviviruses with a decentralized biobank of well-characterized samples to facilitate assay validation. Access to proficiency panels are needed to ensure quality control, in additional to in-country capacity building.
Collapse
Affiliation(s)
| | | | - May C Chu
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Anschutz Medical Center, Aurora
| | - Duane J Gubler
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| | - Aravinda M de Silva
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | | | | | | | | | - Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Singapore.,Institute of Public Health, University of Heidelberg, Germany.,Department of Global Health and Epidemiology, University of Umea, Sweden
| |
Collapse
|
6
|
Sano S, Miyamoto S, Kawamoto S. Rapid multiplex nucleic acid amplification test developed using paper chromatography chip and azobenzene-modified oligonucleotides. J Biosci Bioeng 2018; 126:397-403. [PMID: 29673986 DOI: 10.1016/j.jbiosc.2018.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/09/2018] [Accepted: 03/23/2018] [Indexed: 11/17/2022]
Abstract
Although nucleic acid amplification test (NAT) is widely used for pathogen detection, rapid NAT systems that do not require special and expensive instruments must be developed in order to enable point of care (POC)-NATs, which contribute to early initiation of treatment. As a POC-NAT system, Kaneka DNA chromatography chip (KDCC), developed using DNA tag-bound primer through modified substance, was shown to be suitable for POC testing, due to the rapid detection time, simple procedures, and low manufacturing costs. However, owing to some modifications in primer, the detection performance and amplification speed were shown to be reduced when using KDCC, counteracting the increased speed of detection. To solve these issues and improve the speed of this NAT system, we investigated a better modification substance for KDCC. Here, azobenzene-modified primers were shown to have the highest amplification speed and detection performance in KDCC, of all modifications tested in this study, showing 10-100-fold lower detection limit but maintaining the same reaction time. Additionally, rapid herpes simplex virus detection system with azobenzene modified primers was developed. We believed that this breakthrough will contribute toward enabling greater utilization of POC-NATs for medical care, especially in developing countries and clinics.
Collapse
Affiliation(s)
- Sotaro Sano
- Medical Devices Solutions Vehicle, Kaneka Corporation, 1-8 Miyamaemachi, Takasago-cho, Takasago, Hyogo 676-8688, Japan; Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan.
| | - Shigehiko Miyamoto
- Medical Devices Solutions Vehicle, Kaneka Corporation, 1-8 Miyamaemachi, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Seiji Kawamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
7
|
Rapid and sensitive PCR-dipstick DNA chromatography for multiplex analysis of the oral microbiota. BIOMED RESEARCH INTERNATIONAL 2014; 2014:180323. [PMID: 25485279 PMCID: PMC4251647 DOI: 10.1155/2014/180323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 02/05/2023]
Abstract
A complex of species has been associated with dental caries under the ecological hypothesis. This study aimed to develop a rapid, sensitive PCR-dipstick DNA chromatography assay that could be read by eye for multiplex and semiquantitative analysis of plaque bacteria. Parallel oligonucleotides were immobilized on a dipstick strip for multiplex analysis of target DNA sequences of the caries-associated bacteria, Streptococcus mutans, Streptococcus sobrinus, Scardovia wiggsiae, Actinomyces species, and Veillonella parvula. Streptavidin-coated blue-colored latex microspheres were to generate signal. Target DNA amplicons with an oligonucleotide-tagged terminus and a biotinylated terminus were coupled with latex beads through a streptavidin-biotin interaction and then hybridized with complementary oligonucleotides on the strip. The accumulation of captured latex beads on the test and control lines produced blue bands, enabling visual detection with the naked eye. The PCR-dipstick DNA chromatography detected quantities as low as 100 pg of DNA amplicons and demonstrated 10- to 1000-fold higher sensitivity than PCR-agarose gel electrophoresis, depending on the target bacterial species. Semiquantification of bacteria was performed by obtaining a series of chromatograms using serial 10-fold dilution of PCR-amplified DNA extracted from dental plaque samples. The assay time was less than 3 h. The semiquantification procedure revealed the relative amounts of each test species in dental plaque samples, indicating that this disposable device has great potential in analysis of microbial composition in the oral cavity and intestinal tract, as well as in point-of-care diagnosis of microbiota-associated diseases.
Collapse
|