1
|
Rensner J, Kim H, Park K, Cahoon EB, Lee YJ. OzMALDI: A Gas-Phase, In-Source Ozonolysis Reaction for Efficient Double-Bond Assignment in Mass Spectrometry Imaging with Matrix-Assisted Laser Desorption/Ionization. Anal Chem 2025; 97:7447-7455. [PMID: 40162600 PMCID: PMC11983363 DOI: 10.1021/acs.analchem.5c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Lipids make up an important class of biomolecules with diverse structures and varied chemical functions. This diversity is a major challenge in chemical analysis and limits our understanding of biological functions and regulation. A major way lipid isomers differ is by double-bond (db) position, and analyzing db-isomers is especially challenging for mass spectrometry imaging (MSI). Ozonolysis can be used to determine the db-position and has been paired with MSI before. However, previous techniques require increased analysis time to allow for gas-phase reactions within an ion trap or ion mobility cell or additional sample preparation time to allow for offline ozonation. Here, we introduce a new ozonolysis method inside the matrix-assisted laser desorption-ionization (MALDI) source, termed OzMALDI, that simultaneously produces ozonides from all unsaturated lipids. This allows us to determine db-positions without adding additional reaction time while maintaining the high mass resolution provided by Orbitrap MS. This new technique is especially effective at determining multiple db-positions in lipids containing polyunsaturated fatty acids, which is a limitation of many previous techniques. OzMALDI-MSI was applied to the analysis of rat brain and genetically engineered Camelina and soybean seed samples, demonstrating the utility of this method and uncovering novel biological information.
Collapse
Affiliation(s)
- Josiah
J. Rensner
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Hyojin Kim
- Center
for Plant Science and Innovation, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Kiyoul Park
- Center
for Plant Science and Innovation, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Edgar B. Cahoon
- Center
for Plant Science and Innovation, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Young Jin Lee
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Randolph CE, Walker KA, Yu R, Beveridge C, Manchanda P, Chopra G. Glial Biologist's Guide to Mass Spectrometry-Based Lipidomics: A Tutorial From Sample Preparation to Data Analysis. Glia 2025; 73:474-494. [PMID: 39751169 PMCID: PMC11784846 DOI: 10.1002/glia.24665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Neurological diseases are associated with disruptions in the brain lipidome that are becoming central to disease pathogenesis. Traditionally perceived as static structural support in membranes, lipids are now known to be actively involved in cellular signaling, energy metabolism, and other cellular activities involving membrane curvature, fluidity, fusion or fission. Glia are critical in the development, health, and function of the brain, and glial regulation plays a major role in disease. The major pathways of glial dysregulation related to function are associated with downstream products of metabolism including lipids. Taking advantage of significant innovations and technical advancements in instrumentation, lipidomics has emerged as a popular omics discipline, serving as the prevailing approach to comprehensively define metabolic alterations associated with organismal development, damage or disease. A key technological platform for lipidomics studies is mass spectrometry (MS), as it affords large-scale profiling of complex biological samples. However, as MS-based techniques are often refined and advanced, the relative comfort level among biologists with this instrumentation has not followed suit. In this review, we aim to highlight the importance of the study of glial lipids and to provide a concise record of best practices and steps for MS-based lipidomics. Specifically, we outline procedures for glia lipidomics workflows ranging from sample collection and extraction to mass spectrometric analysis to data interpretation. To ensure these approaches are more accessible, this tutorial aims to familiarize glia biologists with sample handling and analysis techniques for MS-based lipidomics, and to guide non-experts toward generating high quality lipidomics data.
Collapse
Affiliation(s)
| | | | - Ruilin Yu
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Connor Beveridge
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Palak Manchanda
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Gaurav Chopra
- Department of ChemistryPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer Science (By Courtesy)Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Drug DiscoveryWest LafayetteIndianaUSA
- Purdue Institute for Integrative NeuroscienceWest LafayetteIndianaUSA
- Purdue Institute of InflammationImmunology and Infectious DiseaseWest LafayetteIndianaUSA
- Purdue Institute for Cancer ResearchWest LafayetteIndianaUSA
- Regenstrief Center for Healthcare EngineeringWest LafayetteIndianaUSA
| |
Collapse
|
3
|
Kelso C, Maccarone AT, de Kroon AIPM, Mitchell TW, Renne MF. Temperature adaptation of yeast phospholipid molecular species at the acyl chain positional level. FEBS Lett 2025; 599:530-544. [PMID: 39673166 PMCID: PMC11848023 DOI: 10.1002/1873-3468.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 12/16/2024]
Abstract
Yeast is a poikilothermic organism and adapts its lipid composition to the environmental temperature to maintain membrane physical properties. Studies addressing temperature-dependent adaptation of the lipidome have described changes in the phospholipid composition at the level of sum composition (e.g. PC 32:1) and molecular composition (e.g. PC 16:0_16:1). However, there is little information at the level of positional isomers (e.g. PC 16:0/16:1 versus PC 16:1/16:0). Here, we used collision- and ozone-induced dissociation (CID/OzID) mass spectrometry to investigate homeoviscous adaptation of PC, PE and PS to determine the phospholipid acyl chains at the sn-1 and sn-2 position. Our data establish the sn-molecular species composition of PC, PE and PS in the lipidome of yeast cultured at different temperatures.
Collapse
Affiliation(s)
- Celine Kelso
- School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
- Molecular Horizons InstituteUniversity of WollongongAustralia
| | - Alan T. Maccarone
- School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
- Molecular Horizons InstituteUniversity of WollongongAustralia
| | - Anton I. P. M. de Kroon
- Membrane Biochemistry & Biophysics, Department of ChemistryUtrecht UniversityThe Netherlands
| | - Todd W. Mitchell
- Molecular Horizons InstituteUniversity of WollongongAustralia
- School of Medical, Indigenous and Health SciencesUniversity of WollongongAustralia
| | - Mike F. Renne
- Membrane Biochemistry & Biophysics, Department of ChemistryUtrecht UniversityThe Netherlands
- Medical Biochemistry and Molecular Biology, Medical FacultySaarland UniversityHomburgGermany
- Preclinical Center for Molecular Signalling (PZMS), Medical FacultySaarland UniversityHomburgGermany
| |
Collapse
|
4
|
Ventura G, Bianco M, Calvano CD, Losito I, Cataldi TRI. Tandem Mass Spectrometry in Untargeted Lipidomics: A Case Study of Peripheral Blood Mononuclear Cells. Int J Mol Sci 2024; 25:12077. [PMID: 39596146 PMCID: PMC11593930 DOI: 10.3390/ijms252212077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Peripheral blood mononuclear cells (PBMCs), including lymphocytes, are important components of the human immune system. These cells contain a diverse array of lipids, primarily glycerophospholipids (GPs) and sphingolipids (SPs), which play essential roles in cellular structure, signaling, and programmed cell death. This study presents a detailed analysis of GP and SP profiles in human PBMC samples using tandem mass spectrometry (MS/MS). Hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization (ESI) coupled with linear ion-trap MS/MS were employed to investigate the diagnostic fragmentation patterns that aided in determining regiochemistry in complex lipid extracts. Specifically, the study explored the fragmentation patterns of various lipid species, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), their plasmalogen and lyso forms, phosphatidylserines (PSs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), sphingomyelins (SMs), and dihexosylceramides (Hex2Cer). Our comprehensive analysis led to the characterization of over 200 distinct lipid species, significantly expanding our understanding of PBMC lipidome complexity. A freely available spreadsheet tool for simulating MS/MS spectra of GPs is provided, enhancing the accessibility and reproducibility of this research. This study advances our knowledge of PBMC lipidomes and establishes a robust analytical framework for future investigations in lipidomics.
Collapse
Affiliation(s)
- Giovanni Ventura
- Department of Chemistry, and Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (C.D.C.); (I.L.); (T.R.I.C.)
| | - Mariachiara Bianco
- Department of Chemistry, and Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (C.D.C.); (I.L.); (T.R.I.C.)
| | | | | | | |
Collapse
|
5
|
Brejchova J, Brejchova K, Kuda O. Metabolic Pathways of Acylcarnitine Synthesis. Physiol Res 2024; 73:S153-S163. [PMID: 38752770 PMCID: PMC11412349 DOI: 10.33549/physiolres.935261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Acylcarnitines are important markers in metabolic studies of many diseases, including metabolic, cardiovascular, and neurological disorders. We reviewed analytical methods for analyzing acylcarnitines with respect to the available molecular structural information, the technical limitations of legacy methods, and the potential of new mass spectrometry-based techniques to provide new information on metabolite structure. We summarized the nomenclature of acylcarnitines based on historical common names and common abbreviations, and we propose the use of systematic abbreviations derived from the shorthand notation for lipid structures. The transition to systematic nomenclature will facilitate acylcarnitine annotation, reporting, and standardization in metabolomics. We have reviewed the metabolic origins of acylcarnitines important for the biological interpretation of human metabolomic profiles. We identified neglected isomers of acylcarnitines and summarized the metabolic pathways involved in the synthesis and degradation of acylcarnitines, including branched-chain lipids and amino acids. We reviewed the primary literature, mapped the metabolic transformations of acyl-CoAs to acylcarnitines, and created a freely available WikiPathway WP5423 to help researchers navigate the acylcarnitine field. The WikiPathway was curated, metabolites and metabolic reactions were annotated, and references were included. We also provide a table for conversion between common names and abbreviations and systematic abbreviations linked to the LIPID MAPS or Human Metabolome Database.
Collapse
Affiliation(s)
- J Brejchova
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
6
|
Singh U, Emwas AH, Jaremko M. Enhancement of weak signals by applying a suppression method to high-intense methyl and methylene signals of lipids in NMR spectroscopy. RSC Adv 2024; 14:26873-26883. [PMID: 39193283 PMCID: PMC11347981 DOI: 10.1039/d4ra03019b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Lipids play crucial roles in human biology, serving as energy stores, cell membranes, hormone production, and signaling molecules. Accordingly, their study under lipidomics has advanced the study of living organisms. 1-Dimensional (D) and 2D NMR methods, particularly 1D 1H and 2D 1H-1H Total Correlation Spectroscopy (TOCSY), are commonly used in lipidomics for quantification and structural identification. However, these NMR methods suffer from low sensitivity, especially in cases of low concentrated molecules such as protons attached to hydroxy, esters, aliphatic, or aromatic unsaturated carbons. Such molecules are common in complex mixtures such as dairy products and plant oils. On the other hand, lipids have highly populated fractions of methyl and methylene groups that result in intense peaks that overwhelm lower peaks and cause inhomogeneities in 2D TOCSY spectra. In this study, we applied a method of suppression to suppress these intense peaks of methyl and methylene groups to detect weaker peaks. The suppression method was investigated on samples of cheese, butter, a mixture of lipids, coconut oil, and olive oil. A significant improvement in peak sensitivity and visibility of cross-peaks was observed, leading to enhanced comparative quantification and structural identification of a greater number of lipids. Additionally, the enhanced sensitivity reduced the time required for the qualitative and comparative quantification of other lipid compounds and components. This, in turn, enables faster and more reliable structural identification and comparative quantification of a greater number of lipids. Additionally, it reduces the time required for the qualitative, and comparative quantification due to the enhancement of sensitivity.
Collapse
Affiliation(s)
- Upendra Singh
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal Makkah 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST) Thuwal Makkah 23955-6900 Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI), Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal Makkah 23955-6900 Saudi Arabia
| |
Collapse
|
7
|
Liang Z, Guo Y, Diao X, Prentice BM. Enhancing Spatial Resolution in Tandem Mass Spectrometry Ion/Ion Reaction Imaging Experiments through Image Fusion. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1797-1805. [PMID: 38954826 PMCID: PMC11649022 DOI: 10.1021/jasms.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We have recently developed a charge inversion ion/ion reaction to selectively derivatize phosphatidylserine lipids via gas-phase Schiff base formation. This tandem mass spectrometry (MS/MS) workflow enables the separation and detection of isobaric lipids in imaging mass spectrometry, but the images acquired using this workflow are limited to relatively poor spatial resolutions due to the current time and limit of detection requirements for these ion/ion reaction imaging mass spectrometry experiments. This trade-off between chemical specificity and spatial resolution can be overcome by using computational image fusion, which combines complementary information from multiple images. Herein, we demonstrate a proof-of-concept workflow that fuses a low spatial resolution (i.e., 125 μm) ion/ion reaction product ion image with higher spatial resolution (i.e., 25 μm) ion images from a full scan experiment performed using the same tissue section, which results in a predicted ion/ion reaction product ion image with a 5-fold improvement in spatial resolution. Linear regression, random forest regression, and two-dimensional convolutional neural network (2-D CNN) predictive models were tested for this workflow. Linear regression and 2D CNN models proved optimal for predicted ion/ion images of PS 40:6 and SHexCer d38:1, respectively.
Collapse
Affiliation(s)
- Zhongling Liang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Yingchan Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Xizheng Diao
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
8
|
Li Y, Wang Y, Guo K, Tseng KF, Zhang X, Sun W. Aza-Prilezhaev Aziridination-Enabled Multidimensional Analysis of Isomeric Lipids via High-Resolution U-Shaped Mobility Analyzer-Mass Spectrometry. Anal Chem 2024; 96:7111-7119. [PMID: 38648270 DOI: 10.1021/acs.analchem.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Unsaturated lipids constitute a significant portion of the lipidome, serving as players of multifaceted functions involving cellular signaling, membrane structure, and bioenergetics. While derivatization-assisted liquid chromatography tandem mass spectrometry (LC-MS/MS) remains the gold standard technique in lipidome, it mainly faces challenges in efficiently labeling the carbon-carbon double bond (C═C) and differentiating isomeric lipids in full dimension. This presents a need for new orthogonal methodologies. Herein, a metal- and additive-free aza-Prilezhaev aziridination (APA)-enabled ion mobility mass spectrometric method is developed for probing multiple levels of unsaturated lipid isomerization with high sensitivity. Both unsaturated polar and nonpolar lipids can be efficiently labeled in the form of N-H aziridine without significant side reactions. The signal intensity can be increased by up to 3 orders of magnitude, achieving the nM detection limit. Abundant site-specific fragmentation ions indicate C═C location and sn-position in MS/MS spectra. Better yet, a stable monoaziridination product is dominant, simplifying the spectrum for lipids with multiple double bonds. Coupled with a U-shaped mobility analyzer, identification of geometric isomers and separation of different lipid classes can be achieved. Additionally, a unique pseudo MS3 mode with UMA-QTOF MS boosts the sensitivity for generating diagnostic fragments. Overall, the current method provides a comprehensive solution for deep-profiling lipidomics, which is valuable for lipid marker discovery in disease monitoring and diagnosis.
Collapse
Affiliation(s)
- Yuling Li
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Yiming Wang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Kang Guo
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Kuo-Feng Tseng
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Xiaoqiang Zhang
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| | - Wenjian Sun
- Shimadzu Research Laboratory (Shanghai) Co., Ltd., Shanghai 201206, China
| |
Collapse
|
9
|
Aytar EC, Kömpe YÖ. Cultivation of Serapias orientalis Plant Using Symbiotic Methods and Investigation of Bioactive Compounds. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2024; 4:424-431. [DOI: 10.1021/acsagscitech.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Affiliation(s)
- Erdi Can Aytar
- Faculty of Science, Department of Biology, Ondokuz Mayıs University, 55139 Samsun, Turkey
- Faculty of Agriculture, Department of Horticulture, Usak University, 64200 Usak, Turkey
| | - Yasemin Özdener Kömpe
- Faculty of Science, Department of Biology, Ondokuz Mayıs University, 55139 Samsun, Turkey
| |
Collapse
|
10
|
Harris RA, May JC, Harvey SR, Wysocki VH, McLean JA. Evaluation of Surface-Induced Dissociation Ion Mobility-Mass Spectrometry for Lipid Structural Characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:214-223. [PMID: 38215279 PMCID: PMC11798589 DOI: 10.1021/jasms.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The complexity of the lipidome has necessitated the development of novel analytical approaches for the identification and structural analysis of morphologically diverse classes of lipids. At this time, a variety of dissociation techniques have been utilized to probe lipid decomposition pathways in search of structurally diagnostic fragment ions. Here, we investigate the application of surface-induced dissociation (SID), a fragmentation technique that imparts energy to the target molecule via collision with a coated surface, for the fragmentation of seven lipids across four major lipid subclasses. We have developed a tuning methodology for guiding the efficient operation of a previously developed custom SID device for molecules as small as ca. 300 Da with ion mobility analysis of the fragmentation products. SID fragmentation of the various lipids analyzed was found to generate fragment ions similar to those observed in CID spectra, but fragment ion lab frame onset energies were lower in SID due to the higher energy deposition via a more massive target. For the largest lipid evaluated (cardiolipin 18:1), SID produced chain fragment ions, which yielded analytically useful information regarding the composition of the acyl tails. Ion mobility provided an orthogonal dimension of separation and aided in assigning product ions to their precursors. Overall, the combination of SID and IM-MS is another potential methodology in the analytical toolkit for lipid structural analysis.
Collapse
Affiliation(s)
- Rachel A. Harris
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville TN, 37235, United States
| | - Jody C. May
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville TN, 37235, United States
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, 43210, United States
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH, 43210, United States
| | - John A. McLean
- Department of Chemistry, Center for Innovative Technology, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville TN, 37235, United States
| |
Collapse
|
11
|
Randolph CE, Manchanda P, Arora H, Iyer S, Saklani P, Beveridge C, Chopra G. Mass Spectrometry-based Single-Cell Lipidomics: Advancements, Challenges, and the Path Forward. Trends Analyt Chem 2023; 169:117350. [PMID: 40255629 PMCID: PMC12007889 DOI: 10.1016/j.trac.2023.117350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
In the past decade, lipidomics, now recognized as standalone subdiscipline of metabolomics, has gained considerable attention. Due to its sensitivity and unparalleled versatility, mass spectrometry (MS) has emerged as the tool of choice for lipid identification and detection. Traditional MS-based lipidomics are performed on bulk cell samples. While informative, these bulk-scale cellular lipidome measurements mask cellular heterogeneity across seemingly homogeneous populations of cells. Unfortunately, single cell lipidomics methodology and analyses are considerably behind genomics, transcriptomics, and proteomics. Therefore, the cell-to-cell heterogeneity and related function remains largely unexplored for lipidomics. Herein, we review recent advances in MS-based single cell lipidomics. We also explore the root causes for the slow development of single-cell lipidomics techniques. We aim to provide insights on the pivotal knowledge gaps that have been neglected, prohibiting the propulsion of the single-cell lipidomics field forward, while also providing our perspective towards future methodologies that can pave a path forward.
Collapse
Affiliation(s)
| | - Palak Manchanda
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Harshit Arora
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjay Iyer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Pooja Saklani
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Connor Beveridge
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, West Lafayette, IN 47907, USA
- Purdue University Integrative Data Science Initiative, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Poad BLJ, Jekimovs LJ, Young RSE, Wongsomboon P, Marshall DL, Hansen FKM, Fulloon T, Pfrunder MC, Dodgen T, Ritchie M, Wong SCC, Blanksby SJ. Revolutions in Lipid Isomer Resolution: Application of Ultrahigh-Resolution Ion Mobility to Reveal Lipid Diversity. Anal Chem 2023; 95:15917-15923. [PMID: 37847864 DOI: 10.1021/acs.analchem.3c02658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Many families of lipid isomers remain unresolved by contemporary liquid chromatography-mass spectrometry approaches, leading to a significant underestimation of the structural diversity within the lipidome. While ion mobility coupled to mass spectrometry has provided an additional dimension of lipid isomer resolution, some isomers require a resolving power beyond the capabilities of conventional platforms. Here, we present the application of high-resolution traveling-wave ion mobility for the separation of lipid isomers that differ in (i) the location of a single carbon-carbon double bond, (ii) the stereochemistry of the double bond (cis or trans), or, for glycerolipids, (iii) the relative substitution of acyl chains on the glycerol backbone (sn-position). Collisional activation following mobility separation allowed identification of the carbon-carbon double-bond position and sn-position, enabling confident interpretation of variations in mobility peak abundance. To demonstrate the applicability of this method, double-bond and sn-position isomers of an abundant phosphatidylcholine composition were resolved in extracts from a prostate cancer cell line and identified by comparison to pure isomer reference standards, revealing the presence of up to six isomers. These findings suggest that ultrahigh-resolution ion mobility has broad potential for isomer-resolved lipidomics and is attractive to consider for future integration with other modes of ion activation, thereby bringing together advanced orthogonal separations and structure elucidation to provide a more complete picture of the lipidome.
Collapse
Affiliation(s)
- Berwyck L J Poad
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Lachlan J Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Reuben S E Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Puttandon Wongsomboon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Felicia K M Hansen
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Therese Fulloon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | - Michael C Pfrunder
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| | | | | | | | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
13
|
Yan T, Liang Z, Prentice BM. Imaging and Structural Characterization of Phosphatidylcholine Isomers from Rat Brain Tissue Using Sequential Collision-Induced Dissociation/Electron-Induced Dissociation. Anal Chem 2023; 95:15707-15715. [PMID: 37818979 PMCID: PMC10639000 DOI: 10.1021/acs.analchem.3c03077] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The chemical complexity of biological tissues creates challenges in the analysis of lipids via imaging mass spectrometry. The presence of isobaric and isomeric compounds introduces chemical noise that makes it difficult to unambiguously identify and accurately map the spatial distributions of these compounds. Electron-induced dissociation (EID) has previously been shown to profile phosphatidylcholine (PCs) sn-isomers directly from rat brain tissue in matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry. However, the acquisition of true pixel-by-pixel images, as opposed to regional profiling measurements, using EID is difficult due to low fragmentation efficiency and precursor ion signal dilution into multiple fragment ion channels, resulting in low sensitivity. In this work, we have developed a sequential collision-induced dissociation (CID)/EID method to visualize the distribution of sn-isomers in MALDI imaging mass spectrometry experiments. Briefly, CID is performed on sodium-adducted PCs, which results in facile loss of the phosphocholine headgroup. This ion is then subjected to an EID analysis. Since the lipid headgroup is removed prior to EID, a major fragmentation pathway common to EID ion activation is eliminated, resulting in a more sensitive analysis. This sequential CID/EID workflow generates sn-specific fragment ions allowing for the assignment of the sn-positions. Carbon-carbon double-bond (C═C) positions are also localized along the fatty acyl tails by the presence of a 2 Da shift pattern in the fragment ions arising from carbon-carbon bond cleavages. Moreover, the integration of the CID/EID method into MALDI imaging mass spectrometry enables the mapping of the absolute and relative distribution of sn-isomers at every pixel. The localized relative abundances of sn-isomers vary throughout brain substructures and likely reflect different biological functions and metabolism.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Zhongling Liang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M. Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
14
|
Vondrackova M, Kopczynski D, Hoffmann N, Kuda O. LORA, Lipid Over-Representation Analysis Based on Structural Information. Anal Chem 2023; 95:12600-12604. [PMID: 37584663 PMCID: PMC10469370 DOI: 10.1021/acs.analchem.3c02039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
With the increasing number of lipidomic studies, there is a need for an efficient and automated analysis of lipidomic data. One of the challenges faced by most existing approaches to lipidomic data analysis is lipid nomenclature. The systematic nomenclature of lipids contains all available information about the molecule, including its hierarchical representation, which can be used for statistical evaluation. The Lipid Over-Representation Analysis (LORA) web application (https://lora.metabolomics.fgu.cas.cz) analyzes this information using the Java-based Goslin framework, which translates lipid names into a standardized nomenclature. Goslin provides the level of lipid hierarchy, including information on headgroups, acyl chains, and their modifications, up to the "complete structure" level. LORA allows the user to upload the experimental query and reference data sets, select a grammar for lipid name normalization, and then process the data. The user can then interactively explore the results and perform lipid over-representation analysis based on selected criteria. The results are graphically visualized according to the lipidome hierarchy. The lipids present in the most over-represented terms (lipids with the highest number of enriched shared structural features) are defined as Very Important Lipids (VILs). For example, the main result of a demo data set is the information that the query is significantly enriched with "glycerophospholipids" containing "acyl 20:4" at the "sn-2 position". These terms define a set of VILs (e.g., PC 18:2/20:4;O and PE 16:0/20:4(5,8,10,14);OH). All results, graphs, and visualizations are summarized in a report. LORA is a tool focused on the smart mining of epilipidomics data sets to facilitate their interpretation at the molecular level.
Collapse
Affiliation(s)
- Michaela Vondrackova
- Institute
of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czechia
| | - Dominik Kopczynski
- Institute
of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Nils Hoffmann
- Forschungszentrum
Jülich, Institute of Bio- and Geosciences
(IBG-5), 52428 Jülich, Germany
| | - Ondrej Kuda
- Institute
of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czechia
| |
Collapse
|
15
|
Shenault DM, McLuckey SA, Franklin ET. Localization of cyclopropyl groups and alkenes within glycerophospholipids using gas-phase ion/ion chemistry. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4913. [PMID: 36916143 PMCID: PMC10014902 DOI: 10.1002/jms.4913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Shotgun lipid analysis using electrospray ionization tandem mass spectrometry (ESI-MS/MS) is a common approach for the identification and characterization of glycerophohspholipids GPs. ESI-MS/MS, with the aid of collision-induced dissociation (CID), enables the characterization of GP species at the headgroup and fatty acyl sum compositional levels. However, important structural features that are often present, such as carbon-carbon double bond(s) and cyclopropane ring(s), can be difficult to determine. Here, we report the use of gas-phase charge inversion reactions that, in combination with CID, allow for more detailed structural elucidation of GPs. CID of a singly deprotonated GP, [GP - H]- , generates FA anions, [FA - H]- . The fatty acid anions can then react with doubly charged cationic magnesium tris-phenanthroline complex, [Mg(Phen)3 ]2+ , to form charge inverted complex cations of the form [FA - H + MgPhen2 ]+ . CID of the complex generates product ion spectral patterns that allow for the identification of carbon-carbon double bond position(s) as well as the sites of cyclopropyl position(s) in unsaturated lipids. This approach to determining both double bond and cyclopropane positions is demonstrated with GPs for the first time using standards and is applied to lipids extracted from Escherichia coli.
Collapse
Affiliation(s)
- De’Shovon M. Shenault
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| | - Elissia T. Franklin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| |
Collapse
|
16
|
Farhan N, Rageh Al-Maleki A, Ataei S, Muhamad Sarih N, Yahya R. Synthesis, DFT study, theoretical and experimental spectroscopy of fatty amides based on extra-virgin olive oil and their antibacterial activity. Bioorg Chem 2023; 135:106511. [PMID: 37027951 DOI: 10.1016/j.bioorg.2023.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Medication products from natural materials are preferred due to their minimal side effects. Extra-virgin olive oil (EVOO) is a highly acclaimed Mediterranean diet and a common source of lipids that lowers morbidity and disease severity. This study synthesised two fatty amides from EVOO: hydroxamic fatty acids (FHA) and fatty hydrazide hydrate (FHH). The Density Functional Theory (DFT) was applied to quantum mechanics computation. Nuclear magnetic resonance (NMR), Fourier transforms infrared (FTIR), and element analysis were used to characterise fatty amides. Likewise, the minimum inhibitory concentration (MIC) and timing kill assay were determined. The results revealed that 82 % for FHA and 80 % for FHH conversion were achieved. The amidation reagent/EVOO ratio (mmol: mmol) was 7:1, using the reaction time of 12 h and hexane as an organic solvent. The results further revealed that fatty amides have high antibacterial activity with low concentration at 0.04 μg/mL during eight h of FHA and 0.3 μg/mL during ten h of FHH. This research inferred that FHA and FHH could provide an alternative and effective therapeutic strategy for bacterial diseases. Current findings could provide the basis for the modernisation/introduction of novel and more effective antibacterial drugs derived from natural products.
Collapse
|
17
|
Camunas-Alberca SM, Moran-Garrido M, Sáiz J, Gil-de-la-Fuente A, Barbas C, Gradillas A. Integrating the potential of ion mobility spectrometry-mass spectrometry in the separation and structural characterisation of lipid isomers. Front Mol Biosci 2023; 10:1112521. [PMID: 37006618 PMCID: PMC10060977 DOI: 10.3389/fmolb.2023.1112521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
It is increasingly evident that a more detailed molecular structure analysis of isomeric lipids is critical to better understand their roles in biological processes. The occurrence of isomeric interference complicates conventional tandem mass spectrometry (MS/MS)-based determination, necessitating the development of more specialised methodologies to separate lipid isomers. The present review examines and discusses recent lipidomic studies based on ion mobility spectrometry combined with mass spectrometry (IMS-MS). Selected examples of the separation and elucidation of structural and stereoisomers of lipids are described based on their ion mobility behaviour. These include fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids. Recent approaches for specific applications to improve isomeric lipid structural information using direct infusion, coupling imaging, or liquid chromatographic separation workflows prior to IMS-MS are also discussed, including: 1) strategies to improve ion mobility shifts; 2) advanced tandem MS methods based on activation of lipid ions with electrons or photons, or gas-phase ion-molecule reactions; and 3) the use of chemical derivatisation techniques for lipid characterisation.
Collapse
Affiliation(s)
- Sandra M. Camunas-Alberca
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Maria Moran-Garrido
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Alberto Gil-de-la-Fuente
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- Departamento de Tecnologías de la Información, Escuela Politécnica Superior, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Ana Gradillas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
- *Correspondence: Ana Gradillas,
| |
Collapse
|
18
|
Baba T, Campbell JL, Le Blanc JCY, Baker PRS. Structural Identification of Eicosanoids with Ring Structures Using Differential Mobility Spectrometry-Electron Impact Excitation of Ions from Organics Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:75-81. [PMID: 36507839 DOI: 10.1021/jasms.2c00256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We developed a structural identification method for eicosanoids with various ring structures using mass spectrometry. We discovered that an electron beam with a kinetic energy of 10 eV, which is in the Electron Impact Excitation of Ions from Organics (EIEIO) regime, cleaved the fatty acids enough to distinguish constitutional and cis/trans isomers. In addition to EIEIO, a comparison to authentic standards using differential mobility spectrometry (DMS) can identify diastereomers, which was difficult by EIEIO. The combination of EIEIO and DMS can provide a high-throughput method to identify complete structures of eicosanoids in mixed samples, which is not allowed with conventional analytical methods though eicosanoids are important signaling molecules in biosystems.
Collapse
Affiliation(s)
- Takashi Baba
- Sciex, 71 Four Valley Dr., Concord, Ontario L4K 4V8, Canada
| | | | | | - Paul R S Baker
- Sciex, 1201 Radio Road, Redwood Shores, California 64065, United States
| |
Collapse
|
19
|
Young RSE, Flakelar CL, Narreddula VR, Jekimovs LJ, Menzel JP, Poad BLJ, Blanksby SJ. Identification of Carbon-Carbon Double Bond Stereochemistry in Unsaturated Fatty Acids by Charge-Remote Fragmentation of Fixed-Charge Derivatives. Anal Chem 2022; 94:16180-16188. [DOI: 10.1021/acs.analchem.2c03625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Reuben S. E. Young
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Clare L. Flakelar
- School of Behavioural and Health Sciences, Australian Catholic University, Brisbane 4014, Queensland, Australia
| | - Venkateswara R. Narreddula
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Lachlan J. Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Jan P. Menzel
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Berwyck L. J. Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - Stephen J. Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| |
Collapse
|
20
|
Chen X, Tang S, Freitas D, Hirtzel E, Cheng H, Yan X. Characterization of glycerophospholipids at multiple isomer levels via Mn(II)-catalyzed epoxidation. Analyst 2022; 147:4838-4844. [PMID: 36128870 PMCID: PMC9704799 DOI: 10.1039/d2an01174c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Characterization of glycerophospholipid isomers is of significant importance as they play different roles in physiological and pathological processes. In this work, we present a novel and bifunctional derivatization method utilizing Mn(II)-catalyzed epoxidation to simultaneously identify carbon-carbon double bond (CC bond)- and stereonumbering (sn)-positional isomers of phosphatidylcholine. Mn(II) coordinates with picolinic acid and catalyzes epoxidation of unsaturated lipids by peracetic acid. Collision-induced dissociation (CID) of the epoxides generates diagnostic ions that can be used to locate CC bond positions. Meanwhile, CID of Mn(II) ion-lipid complexes produces characteristic ions for determination of sn positions. This bifunctional derivatization takes place in seconds, and the diagnostic ions produced in CID are clear and easy to interpret. Moreover, relative quantification of CC bond-and sn-positional isomers was achieved. The capability of this method in identifying lipids at multiple isomer levels was shown using lipid standards and lipid extracts from complex biological samples.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Shuli Tang
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Dallas Freitas
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Erin Hirtzel
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| | - Xin Yan
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, TX 77843, USA.
| |
Collapse
|
21
|
Řezanka T, Lukavský J, Rozmoš M, Nedbalová L, Jansa J. Separation of triacylglycerols containing positional isomers of hexadecenoic acids by enantiomeric liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123401. [PMID: 35921696 DOI: 10.1016/j.jchromb.2022.123401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022]
Abstract
Triacylglycerols (TAGs) containing positional isomers of hypogeic (Hy), palmitoleic (Po), and palmitvaccenic (Pv) acids from three microorganisms (top-fermenting brewer's yeast Saccharomyces cerevisiae, green alga Coccomyxa elongata, and arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis) were analyzed. Dozens of regioisomers and enantiomers of TAGs containing one, two or three hexadecenoic acids have been identified by means of reversed phase chromatography/mass spectrometry (RP-HPLC/MS). The regioisomers of TAGs containing two palmitic acids and any hexadecenoic acid were separated. Analysis of regioisomers of TAGs having one Pv residue showed that asymmetric molecular species such as PvPP or PPPv were dominant in Rhizophagus. TAGs were also analyzed on a chiral phase column and nine molecular species of TAGs containing two palmitic and any of three hexadecenoic acids were separated and identified. In the case of TAGs containing one palmitic and two hexadecenoic acids, the separation was successful only if the hexadecenoic acids were identical. Separation of TAGs containing three hexadecenoic acids was successful only if all three hexadecenoic acids were identical. Regardless of the type of TAG, it was found that TAGs in the AM fungus and containing palmitvaccenic acid bound at the sn-1 position of the glycerol backbone were dominant, suggesting similarity in the biosynthesis of the different TAGs. The covalent adduct chemical ionization method was used for identification of TAGs as adduct with (1-methyleneimino)-1-ethenyl ion, which reacted with double bond of the unsaturated fatty acid. Tandem MS thus makes it possible to identify TAGs containing various hexadecenoic acids.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Jaromír Lukavský
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Martin Rozmoš
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
22
|
Kirkwood KI, Pratt BS, Shulman N, Tamura K, MacCoss MJ, MacLean BX, Baker ES. Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions. Nat Protoc 2022; 17:2415-2430. [PMID: 35831612 DOI: 10.1038/s41596-022-00714-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2022] [Indexed: 12/26/2022]
Abstract
Lipidomics studies suffer from analytical and annotation challenges because of the great structural similarity of many of the lipid species. To improve lipid characterization and annotation capabilities beyond those afforded by traditional mass spectrometry (MS)-based methods, multidimensional separation methods such as those integrating liquid chromatography, ion mobility spectrometry, collision-induced dissociation and MS (LC-IMS-CID-MS) may be used. Although LC-IMS-CID-MS and other multidimensional methods offer valuable hydrophobicity, structural and mass information, the files are also complex and difficult to assess. Thus, the development of software tools to rapidly process and facilitate confident lipid annotations is essential. In this Protocol Extension, we use the freely available, vendor-neutral and open-source software Skyline to process and annotate multidimensional lipidomic data. Although Skyline ( https://skyline.ms/skyline.url ) was established for targeted processing of LC-MS-based proteomics data, it has since been extended such that it can be used to analyze small-molecule data as well as data containing the IMS dimension. This protocol uses Skyline's recently expanded capabilities, including small-molecule spectral libraries, indexed retention time and ion mobility filtering, and provides a step-by-step description for importing data, predicting retention times, validating lipid annotations, exporting results and editing our manually validated 500+ lipid library. Although the time required to complete the steps outlined here varies on the basis of multiple factors such as dataset size and familiarity with Skyline, this protocol takes ~5.5 h to complete when annotations are rigorously verified for maximum confidence.
Collapse
Affiliation(s)
- Kaylie I Kirkwood
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Brian S Pratt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nicholas Shulman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kaipo Tamura
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA. .,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
23
|
Rose B, May JC, Reardon AR, McLean JA. Collision Cross-Section Calibration Strategy for Lipid Measurements in SLIM-Based High-Resolution Ion Mobility. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1229-1237. [PMID: 35653638 PMCID: PMC9516683 DOI: 10.1021/jasms.2c00067] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Structures for lossless ion manipulation-based high-resolution ion mobility (HRIM) interfaced with mass spectrometry has emerged as a powerful tool for the separation and analysis of many isomeric systems. IM-derived collision cross section (CCS) is increasingly used as a molecular descriptor for structural analysis and feature annotation, but there are few studies on the calibration of CCS from HRIM measurements. Here, we examine the accuracy, reproducibility, and practical applicability of CCS calibration strategies for a broad range of lipid subclasses and develop a straightforward and generalizable framework for obtaining high-resolution CCS values. We explore the utility of using structurally similar custom calibrant sets as well as lipid subclass-specific empirically derived correction factors. While the lipid calibrant sets lowered overall bias of reference CCS values from ∼2-3% to ∼0.5%, application of the subclass-specific correction to values calibrated with a broadly available general calibrant set resulted in biases <0.4%. Using this method, we generated a high-resolution CCS database containing over 90 lipid values with HRIM. To test the applicability of this method to a broader class range typical of lipidomics experiments, a standard lipid mix was analyzed. The results highlight the importance of both class and arrival time range when correcting or scaling CCS values and provide guidance for implementation of the method for more general applications.
Collapse
|
24
|
Liang M, Liu D, Nie Y, Liu Y, Qiao X. Exploiting styrene-maleic acid copolymer grafting chromatographic stationary phase materials for separation of membrane lipids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
A novel on-tissue cycloaddition reagent for mass spectrometry imaging of lipid C=C position isomers in biological tissues. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Kontogianni VG, Gerothanassis IP. Analytical and Structural Tools of Lipid Hydroperoxides: Present State and Future Perspectives. Molecules 2022; 27:2139. [PMID: 35408537 PMCID: PMC9000705 DOI: 10.3390/molecules27072139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Mono- and polyunsaturated lipids are particularly susceptible to peroxidation, which results in the formation of lipid hydroperoxides (LOOHs) as primary nonradical-reaction products. LOOHs may undergo degradation to various products that have been implicated in vital biological reactions, and thus in the pathogenesis of various diseases. The structure elucidation and qualitative and quantitative analysis of lipid hydroperoxides are therefore of great importance. The objectives of the present review are to provide a critical analysis of various methods that have been widely applied, and more specifically on volumetric methods, applications of UV-visible, infrared, Raman/surface-enhanced Raman, fluorescence and chemiluminescence spectroscopies, chromatographic methods, hyphenated MS techniques, NMR and chromatographic methods, NMR spectroscopy in mixture analysis, structural investigations based on quantum chemical calculations of NMR parameters, applications in living cells, and metabolomics. Emphasis will be given to analytical and structural methods that can contribute significantly to the molecular basis of the chemical process involved in the formation of lipid hydroperoxides without the need for the isolation of the individual components. Furthermore, future developments in the field will be discussed.
Collapse
Affiliation(s)
- Vassiliki G. Kontogianni
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
| | - Ioannis P. Gerothanassis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
27
|
Regio- and Stereospecific Analysis of Triacylglycerols—A Brief Overview of the Challenges and the Achievements. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The efforts to reveal, in detail, the molecular and intramolecular structures of one of the main lipid classes, namely, triacyl-sn-glycerols, which are now known to affect their specific and important role in all living organisms, are briefly overviewed. Some milestones of significance in the gradual but continuous development and improvement of the analytical methodology to identify the triacylglycerol regio- and stereoisomers in complex lipid samples are traced throughout the years: the use of chromatography based on different separation principles; the improvements in the chromatographic technique; the development and use of different detection techniques; the attempts to simplify and automatize the analysis without losing the accuracy of identification. The spectacular recent achievements of two- and multidimensional methods used as tools in lipidomics are presented.
Collapse
|
28
|
Liu D, Wang H, Liang M, Nie Y, Liu Y, Yin M, Qiao X. Polymerized phosphonium ionic liquid functionalized silica microspheres as mixed-mode stationary phase for liquid chromatographic separation of phospholipids. J Chromatogr A 2021; 1660:462676. [PMID: 34814089 DOI: 10.1016/j.chroma.2021.462676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022]
Abstract
There is a large and growing demand for the vigorous development of new high performance liquid chromatography stationary phases in order to solve complex phospholipids separation. Herein, phosphonium-based ionic liquid trioctyl(allyl)phosphonium bromide ([P888Allyl]Br) was first synthesized with trioctylphosphine and allyl bromide. With [P888Allyl]Br as the polymerizable monomer, polymerized phosphonium ionic liquid functionalized silica microsphere (PIL@SiO2) was further synthetized via click chemistry reaction. Significantly, based on the inherent amphiphilic nature of the introduced [P888Allyl]Br, the packed PIL@SiO2 column displayed hydrophilic/hydrophobic mixed-mode retention mechanisms. The PIL@SiO2 column can achieve separation of nucleic acid bases and nucleosides, sulfonamides, amides and anilines with excellent selectivity in a shorter separation time. The column efficiency reached 109,700 N/m for 2-iodoacetamide. One of the important characteristics of the PIL@SiO2 column is that both phospholipid classes and species can be efficiently separated via the same column, outperforming that of the commercial amino column. Furthermore, the application potential of the PIL@SiO2 column was further verified via separation of phospholipids extracted from soy lecithin. The proposed PIL@SiO2 column provides a promising candidate for separation of complex phospholipid samples.
Collapse
Affiliation(s)
- Delu Liu
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Haiyan Wang
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Mengying Liang
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Yangyang Nie
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Mingyuan Yin
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
29
|
Han Y, Chen P, Li Z, Wang X, Sun C. Multi-wavelength visible-light induced [2+2] cycloaddition for identification of lipid isomers in biological samples. J Chromatogr A 2021; 1662:462742. [PMID: 34923306 DOI: 10.1016/j.chroma.2021.462742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
Ultraviolet (UV) light-catalyzed Paternò-Büchi (PB) reaction has been developed as an efficient lipid C=C double bond (DB) derivatization strategy, which can accurately assign the position of C=C bond in unsaturated lipids when coupled with tandem mass spectrometry (MS/MS). Inspired by this, here we proposed a novel visible-light induced [2+2] cycloaddition reaction combined with ESI-MS/MS and MALDI-MS/MS to identify lipid C=C position isomers. Benz[g]isoquinoline-5,10-dione (BIQD) and 6,9-difluorobenzo[g]isoquinoline-5,10-dione (DF-BIQD) were developed as a new type of [2+2] cycloaddition reagent, which can not only react with C=C bond under 254 nm UV light irradiation, but also quickly combine with lipid C=C bond under the irradiation of 405 nm visible-light and > 400 nm compact fluorescent lamp visible-light. High cycloaddition reaction conversion efficiency can be achieved by irradiating under compact fluorescent lamp light for 2 min. Moreover, we discovered that 437 nm, 489 nm, 545 nm, 581 nm, and 613 nm monochromatic light appearing in compact fluorescent lamp can individually induce the [2 + 2] cycloaddition reaction between DF-BIQD and unsaturated lipids. Using this method, we found that the expressions of lipid DB-positional isomers in rat heart, brain, lung, spleen, thymus, kidney, liver and plasma vary greatly. The relative content of FA-18:1 (Δ9) in rat heart is only 1.49 times that of FA-18:1 (Δ11), while the relative content of FA-18:1 (Δ9) in rat plasma is 5.20 times that of FA-18:1 (Δ11). The above results offer new insight into the development of photocatalytic reagent for visible-light induced [2+2] cycloaddition and structural lipidomic studies.
Collapse
Affiliation(s)
- Yuhao Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Panpan Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhichao Li
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
30
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
31
|
Saparbaev E, Yamaletdinov R, Boyarkin OV. Identification of Isomeric Lipids by UV Spectroscopy of Noncovalent Complexes with Aromatic Molecules. Anal Chem 2021; 93:12822-12826. [PMID: 34516082 DOI: 10.1021/acs.analchem.1c02866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tremendous structural and isomeric diversity of lipids enables a wide range of their functions in nature but makes the identification of these biomolecules challenging. We distinguish and quantify isomeric lipids using cold ion UV fragmentation spectroscopy of their noncovalent complexes with aromatic amino acids and dipeptides. On the basis of structural simulations, specific isomer-sensitive aromatic "sensors" have been preselected for lipids of each studied class. Tyrosine appeared to be a good "sensor" to distinguish steroids and prostaglandins, which are rich in functional groups, while diphenylalanine is a better choice for sensing largely hydrophobic phospholipids. With this sensor, the relative concentrations of two isomeric glycerophospholipids mixed in solution have been determined with 3.3% accuracy, which should degrade only to 3.7% for a 14 s express measurement.
Collapse
Affiliation(s)
- Erik Saparbaev
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Ruslan Yamaletdinov
- Nikolaev Institute of Inorganic Chemistry, Novosibirsk 630090, Russian Federation
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Bill MK, Brinkmann S, Oberpaul M, Patras MA, Leis B, Marner M, Maitre MP, Hammann PE, Vilcinskas A, Schuler SMM, Schäberle TF. Novel Glycerophospholipid, Lipo- and N-acyl Amino Acids from Bacteroidetes: Isolation, Structure Elucidation and Bioactivity. Molecules 2021; 26:5195. [PMID: 34500631 PMCID: PMC8433624 DOI: 10.3390/molecules26175195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022] Open
Abstract
The 'core' metabolome of the Bacteroidetes genus Chitinophaga was recently discovered to consist of only seven metabolites. A structural relationship in terms of shared lipid moieties among four of them was postulated. Here, structure elucidation and characterization via ultra-high resolution mass spectrometry (UHR-MS) and nuclear magnetic resonance (NMR) spectroscopy of those four lipids (two lipoamino acids (LAAs), two lysophosphatidylethanolamines (LPEs)), as well as several other undescribed LAAs and N-acyl amino acids (NAAAs), identified during isolation were carried out. The LAAs represent closely related analogs of the literature-known LAAs, such as the glycine-serine dipeptide lipids 430 (2) and 654. Most of the here characterized LAAs (1, 5-11) are members of a so far undescribed glycine-serine-ornithine tripeptide lipid family. Moreover, this study reports three novel NAAAs (N-(5-methyl)hexanoyl tyrosine (14) and N-(7-methyl)octanoyl tyrosine (15) or phenylalanine (16)) from Olivibacter sp. FHG000416, another Bacteroidetes strain initially selected as best in-house producer for isolation of lipid 430. Antimicrobial profiling revealed most isolated LAAs (1-3) and the two LPE 'core' metabolites (12, 13) active against the Gram-negative pathogen M. catarrhalis ATCC 25238 and the Gram-positive bacterium M. luteus DSM 20030. For LAA 1, additional growth inhibition activity against B. subtilis DSM 10 was observed.
Collapse
Affiliation(s)
- Mona-Katharina Bill
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany; (M.-K.B.); (S.B.); (M.O.); (M.A.P.); (B.L.); (M.M.); (A.V.)
| | - Stephan Brinkmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany; (M.-K.B.); (S.B.); (M.O.); (M.A.P.); (B.L.); (M.M.); (A.V.)
| | - Markus Oberpaul
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany; (M.-K.B.); (S.B.); (M.O.); (M.A.P.); (B.L.); (M.M.); (A.V.)
| | - Maria A. Patras
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany; (M.-K.B.); (S.B.); (M.O.); (M.A.P.); (B.L.); (M.M.); (A.V.)
| | - Benedikt Leis
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany; (M.-K.B.); (S.B.); (M.O.); (M.A.P.); (B.L.); (M.M.); (A.V.)
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany; (M.-K.B.); (S.B.); (M.O.); (M.A.P.); (B.L.); (M.M.); (A.V.)
| | | | - Peter E. Hammann
- Sanofi-Aventis Deutschland GmbH, R&D, 65926 Frankfurt am Main, Germany;
- Evotec International GmbH, 37079 Göttingen, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany; (M.-K.B.); (S.B.); (M.O.); (M.A.P.); (B.L.); (M.M.); (A.V.)
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | | | - Till F. Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany; (M.-K.B.); (S.B.); (M.O.); (M.A.P.); (B.L.); (M.M.); (A.V.)
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
33
|
Bouza M, Li Y, Wang AC, Wang ZL, Fernández FM. Triboelectric Nanogenerator Ion Mobility-Mass Spectrometry for In-Depth Lipid Annotation. Anal Chem 2021; 93:5468-5475. [PMID: 33720699 PMCID: PMC8292975 DOI: 10.1021/acs.analchem.0c05145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids play a critical role in cell membrane integrity, signaling, and energy storage. However, in-depth structural characterization of lipids is still challenging and not routinely possible in lipidomics experiments. Techniques such as collision-induced dissociation (CID) tandem mass spectrometry (MS/MS), ion mobility (IM) spectrometry, and ultrahigh-performance liquid chromatography are not yet capable of fully characterizing double-bond and sn-chain position of lipids in a high-throughput manner. Herein, we report on the ability to structurally characterize lipids using large-area triboelectric nanogenerators (TENG) coupled with time-aligned parallel (TAP) fragmentation IM-MS analysis. Gas-phase lipid epoxidation during TENG ionization, coupled to mobility-resolved MS3 via TAP IM-MS, enabled the acquisition of detailed information on the presence and position of lipid C═C double bonds, the fatty acyl sn-chain position and composition, and the cis/trans geometrical C═C isomerism. The proposed methodology proved useful for the shotgun lipidomics analysis of lipid extracts from biological samples, enabling the detailed annotation of numerous lipid isobars.
Collapse
Affiliation(s)
- Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Yafeng Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Aurelia C Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
34
|
Randolph CE, Shenault DM, Blanksby SJ, McLuckey SA. Localization of Carbon-Carbon Double Bond and Cyclopropane Sites in Cardiolipins via Gas-Phase Charge Inversion Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:455-464. [PMID: 33370110 PMCID: PMC8557092 DOI: 10.1021/jasms.0c00348] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cardiolipins (CLs) are comprised of two phosphatic acid moieties bound to a central glycerol backbone and are substituted with four acyl chains. Consequently, a vast number of distinct CL structures are possible in different biological contexts, representing a significant analytical challenge. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) has become a widely used approach for the detection, characterization, and quantitation of complex lipids, including CLs. Central to this approach is fragmentation of the [CLs - H]- or [CL - 2H]2- anions by collision-induced dissociation (CID). Product ions in the resulting tandem mass spectra confirm the CL subclass assignment and reveal the numbers of carbons and degrees of unsaturation in each of the acyl chains. Conventional CID, however, affords limited structural elucidation of the fatty acyl chains, failing to discriminate isomers arising from different site(s) of unsaturation or cyclopropanation and potentially obscuring their metabolic origins. Here, we report the application of charge inversion ion/ion chemistry in the gas phase to enhance the structural elucidation of CLs. Briefly, CID of [CL - H]2- anions generated via negative ion ESI allowed for the assignment of individual fatty acyl substituents and phosphatidic acid moieties. Next, gas-phase derivatization of the resulting CL product ions, including fatty acyl carboxylate anions, was effected with gas-phase ion/ion charge inversion reactions with tris-phenanthroline magnesium reagent dications. Subsequent isolation and activation of the charge-inverted fatty acyl complex cations permitted the localization of both carbon-carbon double bond and cyclopropane motifs within each of the four acyl chains of CLs. This approach was applied to the de novo elucidation of unknown CLs in a biological extract revealing distinct isomeric populations and regiochemical relationships between double bonds and carbocyles.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | | | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
35
|
Rose BS, Leaptrot KL, Harris RA, Sherrod SD, May JC, McLean JA. High Confidence Shotgun Lipidomics Using Structurally Selective Ion Mobility-Mass Spectrometry. Methods Mol Biol 2021; 2306:11-37. [PMID: 33954937 PMCID: PMC10127451 DOI: 10.1007/978-1-0716-1410-5_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion mobility (IM) is a gas phase separation strategy that can either supplement or serve as a high-throughput alternative to liquid chromatography (LC) in shotgun lipidomics. Incorporating the IM dimension in untargeted lipidomics workflows can help resolve isomeric lipids, and the collision cross section (CCS) values obtained from the IM measurements can provide an additional molecular descriptor to increase lipid identification confidence. This chapter provides a broad overview of an untargeted ion mobility-mass spectrometry (IM-MS) workflow using a commercial drift tube ion mobility-quadrupole-time-of-flight mass spectrometer (IM-QTOF) for high confidence lipidomics.
Collapse
Affiliation(s)
- Bailey S Rose
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Katrina L Leaptrot
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Rachel A Harris
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Stacy D Sherrod
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jody C May
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - John A McLean
- Center for Innovative Technology, Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
36
|
Franklin ET, Xia Y. Structural elucidation of triacylglycerol using online acetone Paternò-Büchi reaction coupled with reversed-phase liquid chromatography mass spectrometry. Analyst 2020; 145:6532-6540. [PMID: 32761025 PMCID: PMC7554225 DOI: 10.1039/d0an01353f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triacylglycerol (TG) is a class of lipids that is responsible for energy storage and cell metabolism in biological systems; it is found in relatively high abundances in biological fluids such as human plasma. Due to structural complexity, analyzing TGs using shotgun lipidomic approaches is challenging because of the presence of multiple fatty acyl compositional isomers. In this work, reversed-phase liquid chromatography (RPLC) was used for separation of TG species due to the capability of separating lipids based on fatty acyl chain lengths and degrees of unsaturation. RPLC alone does not provide structurally informative information for the location of carbon-carbon double-bonds (C[double bond, length as m-dash]Cs) without using synthesized standards that correspond to each species analyzed. The Paternò-Büchi (PB) reaction was employed online to confidently characterize the location of C[double bond, length as m-dash]Cs within lipid species via photo-initiated modification of the alkene group with acetone, which was later subjected to electrospray ionization (ESI) and tandem mass spectrometry (MS/MS) to form signature fragmentation peaks. This online RPLC-PB-MS/MS system was able to distinguish fatty acyl level and C[double bond, length as m-dash]C level isomeric species. The systems allowed for the identification of 46 TG molecular species in human plasma with confident C[double bond, length as m-dash]C location assignment in fatty acyls at a limit of identification of 50 nM.
Collapse
Affiliation(s)
- Elissia T Franklin
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|
37
|
Randolph CE, Blanksby SJ, McLuckey SA. Enhancing detection and characterization of lipids using charge manipulation in electrospray ionization-tandem mass spectrometry. Chem Phys Lipids 2020; 232:104970. [PMID: 32890498 PMCID: PMC7606777 DOI: 10.1016/j.chemphyslip.2020.104970] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Heightened awareness regarding the implication of disturbances in lipid metabolism with respect to prevalent human-related pathologies demands analytical techniques that provide unambiguous structural characterization and accurate quantitation of lipids in complex biological samples. The diversity in molecular structures of lipids along with their wide range of concentrations in biological matrices present formidable analytical challenges. Modern mass spectrometry (MS) offers an unprecedented level of analytical power in lipid analysis, as many advancements in the field of lipidomics have been facilitated through novel applications of and developments in electrospray ionization tandem mass spectrometry (ESI-MS/MS). ESI allows for the formation of intact lipid ions with little to no fragmentation and has become widely used in contemporary lipidomics experiments due to its sensitivity, reproducibility, and compatibility with condensed-phase modes of separation, such as liquid chromatography (LC). Owing to variations in lipid functional groups, ESI enables partial chemical separation of the lipidome, yet the preferred ion-type is not always formed, impacting lipid detection, characterization, and quantitation. Moreover, conventional ESI-MS/MS approaches often fail to expose diverse subtle structural features like the sites of unsaturation in fatty acyl constituents or acyl chain regiochemistry along the glycerol backbone, representing a significant challenge for ESI-MS/MS. To overcome these shortcomings, various charge manipulation strategies, including charge-switching, have been developed to transform ion-type and charge state, with aims of increasing sensitivity and selectivity of ESI-MS/MS approaches. Importantly, charge manipulation approaches afford enhanced ionization efficiency, improved mixture analysis performance, and access to informative fragmentation channels. Herein, we present a critical review of the current suite of solution-based and gas-phase strategies for the manipulation of lipid ion charge and type relevant to ESI-MS/MS.
Collapse
Affiliation(s)
- Caitlin E Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA.
| |
Collapse
|
38
|
Stahl E, Brillatz T, Ferreira Queiroz E, Marcourt L, Schmiesing A, Hilfiker O, Riezman I, Riezman H, Wolfender JL, Reymond P. Phosphatidylcholines from Pieris brassicae eggs activate an immune response in Arabidopsis. eLife 2020; 9:60293. [PMID: 32985977 PMCID: PMC7521926 DOI: 10.7554/elife.60293] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023] Open
Abstract
Recognition of conserved microbial molecules activates immune responses in plants, a process termed pattern-triggered immunity (PTI). Similarly, insect eggs trigger defenses that impede egg development or attract predators, but information on the nature of egg-associated elicitors is scarce. We performed an unbiased bioactivity-guided fractionation of eggs of the butterfly Pieris brassicae. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry of active fractions led to the identification of phosphatidylcholines (PCs). PCs are released from insect eggs, and they induce salicylic acid and H2O2 accumulation, defense gene expression and cell death in Arabidopsis, all of which constitute a hallmark of PTI. Active PCs contain primarily C16 to C18-fatty acyl chains with various levels of desaturation, suggesting a relatively broad ligand specificity of cell-surface receptor(s). The finding of PCs as egg-associated molecular patterns (EAMPs) illustrates the acute ability of plants to detect conserved immunogenic patterns from their enemies, even from seemingly passive structures such as eggs.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Théo Brillatz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland
| | - André Schmiesing
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Olivier Hilfiker
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Isabelle Riezman
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Howard Riezman
- NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Gong M, Wei W, Hu Y, Jin Q, Wang X. Structure determination of conjugated linoleic and linolenic acids. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153:122292. [PMID: 32755819 DOI: 10.1016/j.jchromb.2020.122292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Conjugated linoleic and linolenic acids (CLA and CLnA) can be found in dairy, ruminant meat and oilseeds, these types of unsaturated fatty acids consist of various positional and geometrical isomers, and have demonstrated health-promoting potential for human beings. Extensive reviews have reported the physiological effects of CLA, CLnA, while little is known regarding their isomer-specific effects. However, the isomers are difficult to identify, owing to (i) the similar retention time in common chromatographic methods; and (ii) the isomers are highly sensitive to high temperature, pH changes, and oxidation. The uncertainties in molecular structure have hindered investigations on the physiological effects of CLA and CLnA. Therefore, this review presents a summary of the currently available technologies for the structural determination of CLA and CLnA, including the presence confirmation, double bond position determination, and the potential stereo-isomer determination. Special focus has been projected to the novel techniques for structure determination of CLA and CLnA. Some possible future directions are also proposed.
Collapse
Affiliation(s)
- Mengyue Gong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Xingguo Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
40
|
Randolph CE, Marshall DL, Blanksby SJ, McLuckey SA. Charge-switch derivatization of fatty acid esters of hydroxy fatty acids via gas-phase ion/ion reactions. Anal Chim Acta 2020; 1129:31-39. [PMID: 32891388 DOI: 10.1016/j.aca.2020.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 01/30/2023]
Abstract
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of endogenous bioactive lipids with anti-diabetic and anti-inflammatory effects. Identification of FAHFAs is challenging due to both the relatively low abundance of these metabolites in most biological samples and the significant structural diversity arising from the co-occurrence of numerous regioisomers. Ultimately, development of sensitive analytical techniques that enable rapid and unambiguous identification of FAHFAs is integral to understanding their diverse physiological functions in health and disease. While a battery of mass spectrometry (MS) based methods for complex lipid analysis has been developed, FAHFA identification presents specific challenges to conventional approaches. Notably, while the MS2 product ion spectra of [FAHFA - H]¯ anions afford the assignment of fatty acid (FA) and hydroxy fatty acid (HFA) constituents, FAHFA regioisomers are usually indistinguishable by this approach. Here, we report the development of a novel MS-based technique employing charge inversion ion/ion reactions with tris-phenanthroline magnesium complex dications, Mg(Phen)32+, to selectively and efficiently derivatize [FAHFA - H]¯ anions in the gas phase, yielding fixed-charge cations. Subsequent activation of [FAHFA - H + MgPhen2]+ cations yield product ions that facilitate the assignment of FA and HFA constituents, pinpoints unsaturation sites within the FA moiety, and elucidates ester linkage regiochemistry. Collectively, the presented approach represents a rapid, entirely gas-phase method for near-complete FAHFA structural elucidation and confident isomer discrimination without the requirement for authentic FAHFA standards.
Collapse
Affiliation(s)
- Caitlin E Randolph
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
41
|
Feng G, Hao Y, Wu L, Chen S. A visible-light activated [2 + 2] cycloaddition reaction enables pinpointing carbon-carbon double bonds in lipids. Chem Sci 2020; 11:7244-7251. [PMID: 34123010 PMCID: PMC8159383 DOI: 10.1039/d0sc01149e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
The precise location of C[double bond, length as m-dash]C bonds in bioactive molecules is critical for a deep understanding of the relationship between their structures and biological roles. However, the traditional ultraviolet light-based approaches exhibited great limitations. Here, we discovered a new type of visible-light activated [2 + 2] cycloaddition of carbonyl with C[double bond, length as m-dash]C bonds. We found that carbonyl in anthraquinone showed great reactivities towards C[double bond, length as m-dash]C bonds in lipids to form oxetanes under the irradiation of visible-light. Combined with tandem mass spectrometry, this site-specific dissociation of oxetane enabled precisely locating the C[double bond, length as m-dash]C bonds in various kinds of monounsaturated and polyunsaturated lipids. The proof-of-concept applicability of this new type of [2 + 2] photocycloaddition was validated in the global identification of unsaturated lipids in a complex human serum sample. 86 monounsaturated and polyunsaturated lipids were identified with definitive positions of C[double bond, length as m-dash]C bonds, including phospholipids and fatty acids even with up to 6 C[double bond, length as m-dash]C bonds. This study provides new insights into both the photocycloaddition reactions and the structural lipidomics.
Collapse
Affiliation(s)
- Guifang Feng
- Institute for Advanced Studies, Wuhan University Wuhan Hubei 430072 China
| | - Yanhong Hao
- Institute for Advanced Studies, Wuhan University Wuhan Hubei 430072 China
| | - Liang Wu
- Institute for Advanced Studies, Wuhan University Wuhan Hubei 430072 China
| | - Suming Chen
- Institute for Advanced Studies, Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
42
|
Zhao X, Zhu S, Liu H. Recent progresses of derivatization approaches in the targeted lipidomics analysis by mass spectrometry. J Sep Sci 2020; 43:1838-1846. [DOI: 10.1002/jssc.201901346] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Xian‐En Zhao
- Key Laboratory of Life‐organic Analysis of Shandong Province and Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical EngineeringQufu Normal University Qufu P.R. China
| | - Shuyun Zhu
- Key Laboratory of Life‐organic Analysis of Shandong Province and Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical EngineeringQufu Normal University Qufu P.R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular EngineeringPeking University Beijing P.R. China
| |
Collapse
|
43
|
Xu S, Wei F, Xie Y, Wu B, Lv X, Qin Z, Chen H. Localisation of C=C Bond and absolute quantification of unsaturated Fatty Acids in Vegetable Oils based on photochemical derivatisation reaction coupled with mass spectrometry. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shuling Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Fang Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Ya Xie
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Bangfu Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Xin Lv
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Zuojian Qin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| | - Hong Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences Key Laboratory of Oilseeds Processing of Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Oil Crops, of Ministry of Agriculture P. R. China and Hubei Key Laboratory of Lipid Chemistry and Nutrition Hubei China
| |
Collapse
|
44
|
Sorensen MJ, Miller KE, Jorgenson JW, Kennedy RT. Ultrahigh-Performance capillary liquid chromatography-mass spectrometry at 35 kpsi for separation of lipids. J Chromatogr A 2020; 1611:460575. [PMID: 31607445 PMCID: PMC6980658 DOI: 10.1016/j.chroma.2019.460575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022]
Abstract
Improvements in sample preparation, separation, and mass spectrometry continue to expand the coverage in LC-MS based lipidomics. While longer columns packed with smaller particles in theory give higher separation performance compared to shorter columns, the implementation of this technology above commercial limits has been sparse due to difficulties in packing long columns and successfully operating instruments at ultrahigh pressures. In this work, a liquid chromatograph that operates up to 35 kpsi was investigated for the separation and identification of lipid species from human plasma. Capillary columns between 15-50 cm long were packed with 1.7 µm BEH C18 particles and evaluated for their ability to separate lipid isomers and complex lipid extracts from human plasma. Putative lipid class identifications were assigned using accurate mass and relative retention time data of the eluting peaks. Our findings indicate that longer columns packed and operated at 35 kpsi outperform shorter columns packed and run at lower pressures in terms of peak capacity and numbers of features identified. Packing columns with relatively high concentration slurries (200 mg/mL) while sonicating the column resulted in 6-34% increase in peak capacity for 50 cm columns compared to lower slurry concentrations and no sonication. For a given analysis time, 50 cm long columns operated at 35 kpsi provided a 20-95% increase in chromatographic peak capacity compared with 15 cm columns operated at 15 kpsi. Analysis times up to 4 h were evaluated, generating peak capacities up to 410 ± 5 (n = 3, measured at 4σ) and identifying 480 ± 85 lipids (n = 2). Importantly, the results also show a correlation between the peak capacity and the number of lipids identified from a human plasma extract. This correlation indicates that ionization suppression is a limiting factor in obtaining sufficient signal for identification by mass spectrometry. The result also shows that the higher resolution obtained by shallow gradients overcomes possible signal reduction due to broader, more dilute peaks in long gradients for improving detection of lipids in LC-MS. Lastly, longer columns operated at shallow gradients allowed for the best separation of both regional and geometrical isomers. These results demonstrate a system that enables the advantages of using longer columns packed and run at ultrahigh pressure for improving lipid separations and lipidome coverage.
Collapse
Affiliation(s)
- Matthew J Sorensen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelsey E Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James W Jorgenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
45
|
Randolph CE, Blanksby SJ, McLuckey SA. Toward Complete Structure Elucidation of Glycerophospholipids in the Gas Phase through Charge Inversion Ion/Ion Chemistry. Anal Chem 2020; 92:1219-1227. [PMID: 31763816 PMCID: PMC6949391 DOI: 10.1021/acs.analchem.9b04376] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Shotgun lipidomics has recently gained popularity for lipid analysis. Conventionally, shotgun analysis of glycerophospholipids via direct electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides glycerophospholipid (GPL) class (i.e., headgroup composition) and fatty acyl composition. Reliant on low-energy collision-induced dissociation (CID), traditional ESI-MS/MS fails to define fatty acyl regiochemistry along the glycerol backbone or carbon-carbon double bond position(s) in unsaturated fatty acyl substituents. Therefore, isomeric GPLs are often unresolved, representing a significant challenge for shotgun-MS approaches. We developed a top-down shotgun-MS method utilizing gas-phase ion/ion charge inversion chemistry that provides near-complete GPL structural identification. First, in negative ion mode, CID of mass-selected GPL anions generates fatty acyl carboxylate anions via fragmentation of ester bonds linking the fatty acyl substituents at the sn-1 and sn-2 positions of the glycerol backbone. Product anions, including fatty acyl carboxylate ions, were then derivatized in the mass spectrometer via an ion/ion charge inversion reaction with tris-phenanthroline magnesium dications. Subsequent CID of charge-inverted fatty acyl complex cations yielded isomer-specific product ion spectra that permit (i) unambiguous assignment of carbon-carbon double bond position(s) and (ii) relative quantitation of isomeric fatty acyl substituents. The outlined strategy was applied to the analysis of targeted GPLs extracted from human plasma, including several proposed plasma biomarkers. A single experiment thus facilitates assignment of the GPL headgroup, fatty acyl composition, carbon-carbon double bond position(s) in unsaturated fatty acyl chains, and, in some cases, fatty acyl sn-position and relative abundances for isomeric fatty acyl substituents. Ultimately, this MSn platform paired with ion/ion chemistry permitted identification of major, and some minor, isomeric contributors that are unresolved using conventional ESI-MS/MS.
Collapse
Affiliation(s)
- Caitlin E. Randolph
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| | - Stephen J. Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, USA
| |
Collapse
|
46
|
King AM, Trengove RD, Mullin LG, Rainville PD, Isaac G, Plumb RS, Gethings LA, Wilson ID. Rapid profiling method for the analysis of lipids in human plasma using ion mobility enabled-reversed phase-ultra high performance liquid chromatography/mass spectrometry. J Chromatogr A 2020; 1611:460597. [DOI: 10.1016/j.chroma.2019.460597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
47
|
Knowles SL, Vu N, Todd DA, Raja HA, Rokas A, Zhang Q, Oberlies NH. Orthogonal Method for Double-Bond Placement via Ozone-Induced Dissociation Mass Spectrometry (OzID-MS). JOURNAL OF NATURAL PRODUCTS 2019; 82:3421-3431. [PMID: 31823607 PMCID: PMC7004233 DOI: 10.1021/acs.jnatprod.9b00787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most often, the structures of secondary metabolites are solved using a suite of NMR techniques. However, there are times when it can be challenging to position double bonds, particularly those that are fully substituted or when there are multiple double bonds in similar chemical environments. Ozone-induced dissociation mass spectrometry (OzID-MS) serves as an orthogonal structure elucidation tool, using predictable fragmentation patterns that are generated after ozonolysis across a carbon-carbon double bond. This technique is finding growing use in the lipidomics community, suggestive of its potential value for secondary metabolites. This methodology was evaluated by confirming the double-bond positions in five fungal secondary metabolites, specifically, ent-sartorypyrone E (1), sartorypyrone A (2), sorbicillin (3), trichodermic acid A (4), and AA03390 (5). This demonstrated its potential with a variety of chemotypes, ranging from polyketides to terpenoids and including those in both conjugated and nonconjugated polyenes. In addition, the potential of using this methodology in the context of a mixture was piloted by studying Aspergillus fischeri, first examining a traditional extract and then sampling a live fungal culture in situ. While the intensity of signals varied from pure compound to extract to in situ, the utility of the technique was preserved.
Collapse
Affiliation(s)
- Sonja L. Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Ngoc Vu
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Daniel A. Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235
| | - Qibin Zhang
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, NC 28081
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412
| |
Collapse
|
48
|
Reisdorph NA, Walmsley S, Reisdorph R. A Perspective and Framework for Developing Sample Type Specific Databases for LC/MS-Based Clinical Metabolomics. Metabolites 2019; 10:metabo10010008. [PMID: 31877765 PMCID: PMC7023092 DOI: 10.3390/metabo10010008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Metabolomics has the potential to greatly impact biomedical research in areas such as biomarker discovery and understanding molecular mechanisms of disease. However, compound identification (ID) remains a major challenge in liquid chromatography mass spectrometry-based metabolomics. This is partly due to a lack of specificity in metabolomics databases. Though impressive in depth and breadth, the sheer magnitude of currently available databases is in part what makes them ineffective for many metabolomics studies. While still in pilot phases, our experience suggests that custom-built databases, developed using empirical data from specific sample types, can significantly improve confidence in IDs. While the concept of sample type specific databases (STSDBs) and spectral libraries is not entirely new, inclusion of unique descriptors such as detection frequency and quality scores, can be used to increase confidence in results. These features can be used alone to judge the quality of a database entry, or together to provide filtering capabilities. STSDBs rely on and build upon several available tools for compound ID and are therefore compatible with current compound ID strategies. Overall, STSDBs can potentially result in a new paradigm for translational metabolomics, whereby investigators confidently know the identity of compounds following a simple, single STSDB search.
Collapse
Affiliation(s)
- Nichole A. Reisdorph
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-303-724-9234
| | - Scott Walmsley
- Masonic Cancer Center, University of Minnesota, 516 Delaware St. SE, Minneapolis, MN 55455, USA;
- Institute for Health Informatics, University of Minnesota, 516 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Rick Reisdorph
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO 80045, USA;
| |
Collapse
|
49
|
Wang J, Han X. Analytical challenges of shotgun lipidomics at different resolution of measurements. Trends Analyt Chem 2019; 121:115697. [PMID: 32713986 PMCID: PMC7382544 DOI: 10.1016/j.trac.2019.115697] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The essence of shotgun lipidomics is to maintain consistency of the chemical environment of lipid samples during mass spectrometry acquisition. This strategy is suitable for large-scale quantitative analysis. This strategy also allows sufficient time to collect data to improve the signal-to-noise ratio. The initial approach of shotgun lipidomics was the electrospray ionization (ESI)-based direct infusion mass spectrometry strategy. With development of mass spectrometry for small molecules, shotgun lipidomics methods have been extended to matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and ambient mass spectrometry, including MS imaging methods. Furthermore, the object of analysis has extended from organ and body fluid levels to tissue and cell levels with technological developments. In this article, we summarize the status and technical challenges of shotgun lipidomics at different resolution of measurements from the mass spectrometry perspective.
Collapse
Affiliation(s)
- Jianing Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
- Department of Medicine – Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
50
|
Vvedenskaya O, Wang Y, Ackerman JM, Knittelfelder O, Shevchenko A. Analytical challenges in human plasma lipidomics: A winding path towards the truth. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|