1
|
Li H, Xiao N, Jiang M, Long J, Li Z, Zhu Z. Advances of Transition Metal-Based Electrochemical Non-enzymatic Glucose Sensors for Glucose Analysis: A Review. Crit Rev Anal Chem 2024:1-37. [PMID: 38635407 DOI: 10.1080/10408347.2024.2339955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Glucose concentration is a crucial parameter for assessing human health. Over recent years, non-enzymatic electrochemical glucose sensors have drawn considerable attention due to their substantial progress. This review explores the common mechanism behind the transition metal-based electrocatalytic oxidation of glucose molecules through classical electrocatalytic frameworks like the Pletcher model and the Hydrous Oxide-Adatom Mediator model (IHOAM), as well as the redox reactions at the transition metal centers. It further compiles the electrochemical characterization techniques, associated formulas, and their ensuing conclusions pertinent to transition metal-based non-enzymatic electrochemical glucose sensors. Subsequently, the review covers the latest advancements in the field of transition metal-based active materials and support materials used in non-enzymatic electrochemical glucose sensors in the last decade (2014-2023). Additionally, it presents a comprehensive classification of representative studies according to the active metal catalysts components involved.
Collapse
Affiliation(s)
- Haotian Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Nan Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengyi Jiang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjun Long
- Danyang Development Zone, Jiangsu Yuwell-POCT Biological Technology Co., Ltd, Danyang, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Vanadium-PEDOT-PANI hybrid nanocomposite modified glassy carbon electrode for enhanced electrochemical and photocatalytic activities. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Osuna V, Vega-Rios A, Zaragoza-Contreras EA, Estrada-Moreno IA, Dominguez RB. Progress of Polyaniline Glucose Sensors for Diabetes Mellitus Management Utilizing Enzymatic and Non-Enzymatic Detection. BIOSENSORS 2022; 12:137. [PMID: 35323407 PMCID: PMC8946794 DOI: 10.3390/bios12030137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 05/21/2023]
Abstract
Glucose measurement is a fundamental tool in the daily care of Diabetes Mellitus (DM) patients and healthcare professionals. While there is an established market for glucose sensors, the rising number of DM cases has promoted intensive research to provide accurate systems for glucose monitoring. Polyaniline (PAni) is a conductive polymer with a linear conjugated backbone with sequences of single C-C and double C=C bonds. This unique structure produces attractive features for the design of sensing systems such as conductivity, biocompatibility, environmental stability, tunable electrochemical properties, and antibacterial activity. PAni-based glucose sensors (PBGS) were actively developed in past years, using either enzymatic or non-enzymatic principles. In these devices, PAni played roles as a conductive material for electron transfer, biocompatible matrix for enzymatic immobilization, or sensitive layer for detection. In this review, we covered the development of PBGS from 2015 to the present, and it is not even exhaustive; it provides an overview of advances and achievements for enzymatic and non-enzymatic PBGB PBGS for self-monitoring and continuous blood glucose monitoring. Additionally, the limitations of PBGB PBGS to advance into robust and stable technology and the challenges associated with their implementation are presented and discussed.
Collapse
Affiliation(s)
- Velia Osuna
- CONACYT-CIMAV, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (V.O.); (I.A.E.-M.)
| | - Alejandro Vega-Rios
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (A.V.-R.); (E.A.Z.-C.)
| | - Erasto Armando Zaragoza-Contreras
- Centro de Investigación en Materiales Avanzados, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (A.V.-R.); (E.A.Z.-C.)
| | | | - Rocio B. Dominguez
- CONACYT-CIMAV, SC, Av. Miguel de Cervantes #120, Chihuahua C.P. 31136, Mexico; (V.O.); (I.A.E.-M.)
| |
Collapse
|
4
|
How to fit a response current-concentration curve? Part (Ⅱ): Synergy of heterogeneous PANI@Ni(OH)2/NF towards high performance glucose sensing and a general semi-empirical model. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Ternary NiO/Ag/reduced graphene oxide nanocomposites as, a sensitive electrochemical sensor for nanomolarity detection of sunset yellow in soft drinks. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Ghanbari K, Sivandi A. Development of a Novel Nanocomposite Based on Reduced Graphene Oxide/Chitosan/Au/ZnO and Electrochemical Sensor for Determination of Losartan. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411016666191218161500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Hypertension is a major risk for morbidity and mortality, while hypertension
is associated with cardiovascular disease and organ damage. Recent research efforts have focused
on the development of highly selective angiotensin receptor blockers. In which losartan (LOS)
is considered as a new generation of an effective oral drug product against arterial hypertension.
Therefore, the determination of drugs in biological fluids, pharmaceuticals (tablets), and wastewater
is of critical importance for clinical applications, forensics, quality control, and environmental
protection that call for the development of analytical methods. Many ranges of methods such as spectroscopic
methods and chromatographic techniques have been developed to determine LOS in pharmaceutical
formulations and biological fluids. However, there are crucial interference problems in
these methods. For these reasons, more sensitive, desirable, portable, low-cost, simple, and selective
nanocomposite-based sensors are needed in terms of health safety. Nanomaterials such as reduced
graphene oxide, chitosan, and metal nanoparticles are used to improve the sensitivity in the
development of electrochemical sensors.
Objective:
In this study, a novel reduced graphene oxide (RGO), chitosan (Chit), gold (Au), and zinc
oxide (ZnO) nanocomposite (RGO/Chitosan/Au/ZnO) was synthesized and used to develop a sensitive
and efficient electrochemical sensor for LOS detection.
Methods:
Modification of electrode by RGO/Chit/Au/ZnO nanocomposite was performed in four
stages with GO (at -2.0 V for 150 s), Chitosan (at -3.0 V for 300 s), Au nanoparticles (at -0.4 V for
400 s), and Zn nanoflowers like (at -0.7 V for 1200 s). The RGO/Chitosan/Au/ZnO nanocomposite
was characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction
(XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR).
Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) were used to detect LOS, and
the influence of pH value, scan rate, accumulation potential, and time also losartan concentration on
the performance of ZnO/Au/Chitosan/RGO/GCE were investigated. In order to investigate the selectivity
of the modified electrode for the determination of LOS, the effect of possible interfering
species was evaluated and showed that these species are not interferences. Also, the reproducibility
of the modified electrode was investigated and implying that the RGO/Chit/Au/ZnO nanocomposite
was highly reproducible.
Results:
The modified electrode was used as a sensor for the selective and sensitive determination of
LOS with a detection limit of 0.073 μM over the dynamic linear range of 0.5μM to 18.0 μM. In
addition, electrochemical oxidation of LOS was well recovered in pharmaceutical formulations.
Conclusion:
LOS is used to treat high blood pressure, taking into account the oxidation of this
compound, the use of electrochemical based sensors, ideally suited to a specific chemical species,
can be fully selectable and High-sensitivity answer is very important. In this study, the electrodes
with RGO/Chit/Au/ZnO nanocomposite were modified by the electrochemical method.
Nanocomposites were characterized by various methods such as FE-SEM, FT-IR, XRD, Raman, and
XPS. The electrocatalytic activity of the modified electrode was then investigated for measuring
LOS. According to the results of the modified electrode, high sensitivity, reproducibility, and
selectivity have been shown to oxidize this composition.
Collapse
Affiliation(s)
- Khadijeh Ghanbari
- Department of Chemistry, Faculty of Physics and Chemistry, School of Science, Alzahra University, Vanak, Tehran 1993891167, Iran
| | - Ashraf Sivandi
- Department of Chemistry, Faculty of Physics and Chemistry, School of Science, Alzahra University, Vanak, Tehran 1993891167, Iran
| |
Collapse
|
7
|
Tang Q, Zhu G, Ge Y, Yang J, Huang M, Liu J. AuNPs-polyaniline nanosheet array on carbon nanofiber for the determination of As(III). J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Belgherbi O, Chouder D, Lakhdari D, Dehchar C, Laidoudi S, Lamiri L, Hamam A, Seid L. Enzyme-Free Glucose Sensor Based on Star-Like Copper Particles-Polyaniline Composite Film. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01554-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Bonyadi S, Ghanbari K, Ghiasi M. All-electrochemical synthesis of a three-dimensional mesoporous polymeric g-C3N4/PANI/CdO nanocomposite and its application as a novel sensor for the simultaneous determination of epinephrine, paracetamol, mefenamic acid, and ciprofloxacin. NEW J CHEM 2020. [DOI: 10.1039/c9nj05954g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
mpg-C3N4/PANI/CdO nanocomposite was electrochemically synthesized and used for simultaneous determination of EPI, PAR, MFA, and CIP. Also, HOMO and LUMO eigenvalues of the EPI, PAR, MFA and CIP molecules have been evaluated using the DFT method.
Collapse
Affiliation(s)
- S. Bonyadi
- Department of Chemistry
- Faculty of Physics and Chemistry
- School of Science
- Alzahra University
- Tehran 1993891167
| | - Kh. Ghanbari
- Department of Chemistry
- Faculty of Physics and Chemistry
- School of Science
- Alzahra University
- Tehran 1993891167
| | - M. Ghiasi
- Department of Chemistry
- Faculty of Physics and Chemistry
- School of Science
- Alzahra University
- Tehran 1993891167
| |
Collapse
|
10
|
Affiliation(s)
- Qiangwei Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xu Wen
- School of Chemistry and Chemical Engineering, Huangshan University, Huangshan, China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
11
|
Liu K, Duan X, Yuan M, Xu Y, Gao T, Li Q, Zhang X, Huang M, Wang J. How to fit a response current-concentration curve? A semi-empirical investigation of non-enzymatic glucose sensor based on PANI-modified nickel foam. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
3D porous structured polyaniline/reduced graphene oxide/copper oxide decorated electrode for high performance nonenzymatic glucose detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Fa D, Yu B, Miao Y. Synthesis of ultra-long nanowires of nickel phosphate by a template-free hydrothermal method for electrocatalytic oxidation of glucose. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ, Lakshmi D, Sai-Anand G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Jia L, Wei X, Lv L, Zhang X, Duan X, Xu Y, Liu K, Wang J. Electrodeposition of hydroxyapatite on nickel foam and further modification with conductive polyaniline for non-enzymatic glucose sensing. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Naseri M, Fotouhi L, Ehsani A. Recent Progress in the Development of Conducting Polymer-Based Nanocomposites for Electrochemical Biosensors Applications: A Mini-Review. CHEM REC 2018; 18:599-618. [PMID: 29460399 DOI: 10.1002/tcr.201700101] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/05/2018] [Indexed: 01/09/2023]
Abstract
Among various immobilizing materials, conductive polymer-based nanocomposites have been widely applied to fabricate the biosensors, because of their outstanding properties such as excellent electrocatalytic activity, high conductivity, and strong adsorptive ability compared to conventional conductive polymers. Electrochemical biosensors have played a significant role in delivering the diagnostic information and therapy monitoring in a rapid, simple, and low cost portable device. This paper reviews the recent developments in conductive polymer-based nanocomposites and their applications in electrochemical biosensors. The article starts with a general and concise comparison between the properties of conducting polymers and conducting polymer nanocomposites. Next, the current applications of conductive polymer-based nanocomposites of some important conducting polymers such as PANI, PPy, and PEDOT in enzymatic and nonenzymatic electrochemical biosensors are overviewed. This review article covers an 8-year period beginning in 2010.
Collapse
Affiliation(s)
- Maryam Naseri
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| | - Lida Fotouhi
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
17
|
Ibrahim AA, Sodki EM, Umar A, Amine A, Kumar R, Al-Assiri MS, Al-Salami AE, Baskoutas S. Highly sensitive and selective non-enzymatic monosaccharide and disaccharide sugar sensing based on carbon paste electrodes modified with perforated NiO nanosheets. NEW J CHEM 2018. [DOI: 10.1039/c7nj03253f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fabrication and characterization of enzyme-free electrochemical sensor for the sensing of monosaccharide and disaccharide sugars based on perforated NiO nanosheets (NSs).
Collapse
Affiliation(s)
- Ahmed A. Ibrahim
- Department of Chemistry
- College of Science and Arts
- Najran University
- Najran
- Kingdom of Saudi Arabia
| | - El Mehdi Sodki
- Laboratoire Génie des Procédés et Environnement
- Faculté des Sciences et Techniques Mohammedia, Hassan II University of Casablanca
- Mohammedia
- Morocco
| | - Ahmad Umar
- Department of Chemistry
- College of Science and Arts
- Najran University
- Najran
- Kingdom of Saudi Arabia
| | - Aziz Amine
- Laboratoire Génie des Procédés et Environnement
- Faculté des Sciences et Techniques Mohammedia, Hassan II University of Casablanca
- Mohammedia
- Morocco
| | - Rajesh Kumar
- Department of Chemistry
- JCDAV College
- Dasuya-144205
- India
| | - M. S. Al-Assiri
- Promising Centre for Sensors and Electronic Devices (PCSED)
- Najran University
- Najran
- Kingdom of Saudi Arabia
- Department of Physics
| | - A. E. Al-Salami
- Department of Physics
- Faculty of Science
- King Khalid University
- Abha
- Kingdom of Saudi Arabia
| | - S. Baskoutas
- Department of Materials Science
- University of Patras
- Patras GR-26504
- Greece
| |
Collapse
|
18
|
Ghanbari K, Bonyadi S. An electrochemical sensor based on reduced graphene oxide decorated with polypyrrole nanofibers and zinc oxide–copper oxide p–n junction heterostructures for the simultaneous voltammetric determination of ascorbic acid, dopamine, paracetamol, and tryptophan. NEW J CHEM 2018. [DOI: 10.1039/c8nj00857d] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-dimensional porous nanocomposite was fabricated and used for the simultaneous voltammetric determination of ascorbic acid, dopamine, paracetamol, and tryptophan.
Collapse
Affiliation(s)
- Kh. Ghanbari
- Department of Chemistry
- Faculty of Physics and Chemistry
- School of Science
- Alzahra University
- Tehran 1993891167
| | - S. Bonyadi
- Department of Chemistry
- Faculty of Physics and Chemistry
- School of Science
- Alzahra University
- Tehran 1993891167
| |
Collapse
|