1
|
Zhang C, Nie S, Shang L, Liu C, Zhang Y, Zhang Y, Guo J. A novel fluorescent probe based on naphthalimide and nile blue for selective recognition of Cu2+ and pH. J Mol Struct 2023; 1294:136541. [DOI: 10.1016/j.molstruc.2023.136541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Chen R, Wang L, Ding G, Han G, Qiu K, Sun Y, Diao J. Constant Conversion Rate of Endolysosomes Revealed by a pH-Sensitive Fluorescent Probe. ACS Sens 2023; 8:2068-2078. [PMID: 37141429 DOI: 10.1021/acssensors.3c00340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Endolysosome dynamics plays an important role in autophagosome biogenesis. Hence, imaging the subcellular dynamics of endolysosomes using high-resolution fluorescent imaging techniques would deepen our understanding of autophagy and benefit the development of pharmaceuticals against endosome-related diseases. Taking advantage of the intramolecular charge-transfer mechanism, herein we report a cationic quinolinium-based fluorescent probe (PyQPMe) that exhibits excellent pH-sensitive fluorescence in endolysosomes at different stages of interest. A systematic photophysical and computational study on PyQPMe was carried out to rationalize its highly pH-dependent absorption and emission spectra. The large Stokes shift and strong fluorescence intensity of PyQPMe can effectively reduce the background noise caused by excitation light and microenvironments and provide a high signal-to-noise ratio for high-resolution imaging of endolysosomes. By applying PyQPMe as a small molecular probe in live cells, we were able to reveal a constant conversion rate from early endosomes to late endosomes/lysosomes during autophagy at the submicron level.
Collapse
Affiliation(s)
- Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lei Wang
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Guodong Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Guanqun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Kangqiang Qiu
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jiajie Diao
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| |
Collapse
|
3
|
Niu H, Liu J, O'Connor HM, Gunnlaugsson T, James TD, Zhang H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem Soc Rev 2023; 52:2322-2357. [PMID: 36811891 DOI: 10.1039/d1cs01097b] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Typical PeT-based fluorescent probes are multi-component systems where a fluorophore is connected to a recognition/activating group by an unconjugated linker. PeT-based fluorescent probes are powerful tools for cell imaging and disease diagnosis due to their low fluorescence background and significant fluorescence enhancement towards the target. This review provides research progress towards PeT-based fluorescent probes that target cell polarity, pH and biological species (reactive oxygen species, biothiols, biomacromolecules, etc.) over the last five years. In particular, we emphasise the molecular design strategies, mechanisms, and application of these probes. As such, this review aims to provide guidance and to enable researchers to develop new and improved PeT-based fluorescent probes, as well as promoting the use of PeT-based systems for sensing, imaging, and disease therapy.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Junwei Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Helen M O'Connor
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
4
|
Alvelid J, Bucci A, Testa I. Far Red-Shifted CdTe Quantum Dots for Multicolour Stimulated Emission Depletion Nanoscopy. Chemphyschem 2023; 24:e202200698. [PMID: 36239140 PMCID: PMC10098508 DOI: 10.1002/cphc.202200698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Indexed: 02/03/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy is a widely used nanoscopy technique. Two-colour STED imaging in fixed and living cells is standardised today utilising both fluorescent dyes and fluorescent proteins. Solutions to image additional colours have been demonstrated using spectral unmixing, photobleaching steps, or long-Stokes-shift dyes. However, these approaches often compromise speed, spatial resolution, and image quality, and increase complexity. Here, we present multicolour STED nanoscopy with far red-shifted semiconductor CdTe quantum dots (QDs). STED imaging of the QDs is optimized to minimize blinking effects and maximize the number of detected photons. The far-red and compact emission spectra of the investigated QDs free spectral space for the simultaneous use of fluorescent dyes, enabling straightforward three-colour STED imaging with a single depletion beam. We use our method to study the internalization of QDs in cells, opening up the way for future super-resolution studies of particle uptake and internalization.
Collapse
Affiliation(s)
- Jonatan Alvelid
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden
| | - Andrea Bucci
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden
| | - Ilaria Testa
- Department of Applied Physics and SciLifeLab, KTH Royal Institute of Technology, 114 28, Stockholm, Sweden
| |
Collapse
|
5
|
Li S, Yu X, Zeng L, Xu Y, Zhao X, Tang W, Duan X. A Sensitive Fluorescent Probe with Large Stokes Shift for Real‐Time Tracking Lysosomal pH Changes in Live Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202202620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Siyuan Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Xianrong Yu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Linlin Zeng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Yuhan Xu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Xiaolan Zhao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering Shaanxi Normal University 620 Xi Chang'an Street, Xi'an Shaanxi 710119 People's Republic of China
| |
Collapse
|
6
|
Lan JS, Zeng RF, Wang Y, Zhen L, Liu Y, Ho RJY, Ding Y, Zhang T. All-in-one: Accurate quantification, on-site detection, and bioimaging of sulfite using a colorimetric and ratiometric fluorescent probe in vitro and in vivo. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127229. [PMID: 34653860 DOI: 10.1016/j.jhazmat.2021.127229] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
SO2 and its derivatives (SO32-/HSO3-) are used widely in food, beverages, and pharmaceutical production. However, they could induce multiple diseases in respiratory, nervous, and cardiovascular systems. Although several fluorescent probes have been developed for detecting SO32-/HSO3-, reports on rapid fluorescent probes for the on-site detection of SO2 derivatives are scarce. Herein, a colorimetric and ratiometric fluorescent probe 1 based on the intramolecular charge transfer (ICT) was reported. Probe 1 resulted in a 122 nm blue-shift in fluorescent emission and decrement of absorbance at 500 nm upon the addition of sulfite. Therefore, probe 1 could quantify SO32-/HSO3- using both UV-Vis and fluorescent methods (LOD: UV-Vis method 34 nM; fluorescent method 51 nM). Importantly, probe 1 was used for a rapid (60 s) and convenient (1 step, on-site) measurement of the SO2 derivatives in real samples (LOD: 0.47 µM) using smartphone based on the colorimetric method. The SO32-/HSO3--sensing mechanism was confirmed as the Michael addition reaction. Furthermore, the probe was used for the real-time monitoring of SO32-/HSO3- in A549 cells and zebrafish. In summary, an all-in-one fluorescent probe was successfully developed for the accurate quantification, on-site detection, and bioimaging of SO32-/HSO3-.
Collapse
Affiliation(s)
- Jin-Shuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui-Feng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Zhen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Liu
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Song G, Jiang D, Wang L, Sun X, Liu H, Tian Y, Chen M. A series of simple curcumin-derived colorimetric and fluorescent probes for ratiometric-pH sensing and cell imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Yin J, Huang L, Wu L, Li J, James TD, Lin W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem Soc Rev 2021; 50:12098-12150. [PMID: 34550134 DOI: 10.1039/d1cs00645b] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, People's Republic of China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
9
|
Zhang D, Qi Y, Li Y, Song Y, Xian C, Li H, Cong P. A New Spiropyran-Based Fluorescent Probe for Dual Sensing of Ferrous Ion and pH. J Fluoresc 2021; 31:1133-1141. [PMID: 33974180 DOI: 10.1007/s10895-021-02741-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
A new spiropyran-based fluorescent probe was developed for dual detection of Fe2+ ion and pH. Addition of Fe2+ and Ag+ to the probe solution enhanced the fluorescence intensity by 6 and 5 fold, respectively. Addition of Fe3+, Hg2+ and Ni2+ caused slight increase in the fluorescence intensity of the probe. While addition of other common metal ions did not bring about substantial change of the fluorescence. Thus the probe can be used for fluorescence turn-on detection of Fe2+ ion in ethanol/water (9:1) medium. The detection limit of the probe for Fe2+ is 0.77 µM. The suitable pH range for the probe to detect Fe2+ was pH 3 - 9. Other metal ions including Li+, Na+, K+, Ag+, Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Sr2+, Hg2+, Ca2+, Mg2+, Al3+, Cr3+, and Fe3+ did not cause marked interference with Fe2+ recognition. The color of the probe solution was yellow at pH 1 - 2 and colorless at other pH values. The fluorescence intensity of the probe was low at pH 1 - 12 and increased significantly when the pH was 13 and 14, indicating that the probe can be used as a colorimetric and fluorescent probe for sensing extremely acidic or extremely alkaline conditions through different channels.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, 201620, China
| | - Youguo Qi
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yanjie Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Chunying Xian
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, 201620, China
| | - Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Peihong Cong
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 200433, Shanghai, China
| |
Collapse
|
10
|
Chen Y. Recent advances in fluorescent probes for extracellular pH detection and imaging. Anal Biochem 2020; 612:113900. [PMID: 32926864 DOI: 10.1016/j.ab.2020.113900] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022]
Abstract
Extracellular pH plays vital roles in physiological and pathological processes including tumor metastasis and chemotherapy resistance. Abnormal extracellular pH is known to be associated with various pathological states, such as those in tumors, ischemic stroke, infection, and inflammation. Specifically, dysregulated pH is regarded as a hallmark of cancer because enhanced glycolysis and poor perfusion in most solid malignant tumors create an acidic extracellular environment, which enhances tumor growth, invasion, and metastasis. Close connection between the cell functions with extracellular pH means that precise and real-time measurement of the dynamic change of extracellular pH can provide critical information for not only studying physiological and pathological processes but also diagnosis of cancer and other diseases. This review highlights the recent development of based fluorescent probes for extracellular pH measurement, including design strategies, reaction mechanism and applications for the detection and imaging of extracellular pH.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|