1
|
Yin J, Jia X, Li H, Zhao B, Yang Y, Ren TL. Recent Progress in Biosensors for Depression Monitoring-Advancing Personalized Treatment. BIOSENSORS 2024; 14:422. [PMID: 39329797 PMCID: PMC11430531 DOI: 10.3390/bios14090422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
Depression is currently a major contributor to unnatural deaths and the healthcare burden globally, and a patient's battle with depression is often a long one. Because the causes, symptoms, and effects of medications are complex and highly individualized, early identification and personalized treatment of depression are key to improving treatment outcomes. The development of wearable electronics, machine learning, and other technologies in recent years has provided more possibilities for the realization of this goal. Conducting regular monitoring through biosensing technology allows for a more comprehensive and objective analysis than previous self-evaluations. This includes identifying depressive episodes, distinguishing somatization symptoms, analyzing etiology, and evaluating the effectiveness of treatment programs. This review summarizes recent research on biosensing technologies for depression. Special attention is given to technologies that can be portable or wearable, with the potential to enable patient use outside of the hospital, for long periods.
Collapse
Affiliation(s)
- Jiaju Yin
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China; (J.Y.); (B.Z.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xinyuan Jia
- Xingjian College, Tsinghua University, Beijing 100084, China;
| | - Haorong Li
- Weiyang College, Tsinghua University, Beijing 100084, China;
| | - Bingchen Zhao
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China; (J.Y.); (B.Z.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China; (J.Y.); (B.Z.)
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China; (J.Y.); (B.Z.)
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Das S, Sil S, Pal SK, Kula P, Sinha Roy S. Label-free liquid crystal-based optical detection of norfloxacin using an aptamer recognition probe in soil and lake water. Analyst 2024; 149:3828-3838. [PMID: 38855814 DOI: 10.1039/d4an00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Norfloxacin (NOX), a broad spectrum fluoroquinolone (FQ) antibiotic, is commonly detected in environmental residues, potentially contributing to biological drug resistance. In this paper, an aptamer recognition probe has been used to develop a label-free liquid crystal-based biosensor for simple and robust optical detection of NOX in aqueous solutions. Stimuli-receptive liquid crystals (LCs) have been employed to report aptamer-target binding events at the LC-aqueous interface. The homeotropic alignment of LCs at the aqueous-LC interface is due to the self-assembly of the cationic surfactant cetyltrimethylammonium bromide (CTAB). In the presence of the negatively charged NOX aptamer, the ordering changes to planar/tilted. On addition of NOX, the aptamer-NOX binding causes redistribution of CTAB at the LC-aqueous interface and the homeotropic orientation is restored. This results in a bright-to-dark optical transition under a polarized optical microscope (POM). This optical transition serves as a visual indicator to mark the presence of NOX. The devised aptasensor demonstrates high specificity with a minimum detection limit of 5 nM (1.596 ppb). Moreover, the application of the developed aptasensor for the detection of NOX in freshwater and soil samples underscores its practical utility in environmental monitoring. This proposed LC-based method offers several advantages over conventional detection techniques for a rapid, feasible and convenient way to detect norfloxacin.
Collapse
Affiliation(s)
- Sayani Das
- Nanocarbon and Sensor Laboratory, Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, India.
| | - Soma Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Przemysław Kula
- Institute of Chemistry, Military University of Technology, Warsaw, Poland
| | - Susanta Sinha Roy
- Nanocarbon and Sensor Laboratory, Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, India.
| |
Collapse
|
3
|
Ahn JS, Jang CH. Sensitive detection of 17β-estradiol at a picomolar level using an aptamer-assisted liquid crystal-based optical sensor. Anal Bioanal Chem 2023; 415:6323-6332. [PMID: 37581706 DOI: 10.1007/s00216-023-04907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
A liquid crystal (LC)-based aptasensor was developed that can detect 17β-estradiol (E2) at the picomolar level. This aptasensor is based on competitive reactions of the aptamer that interacts with cetyl trimethyl ammonium bromide (CTAB) and E2 at the aqueous/LC interface. The long alkyl chain of CTAB anchored the 4-cyano-4'-pentylbiphenyl (5CB) to a homeotropic state and controls the local anchoring depending on the extent of electrostatic interaction with the aptamer. Upon addition of the aptamer solution to the CTAB-saturated LC layer, LCs change from dark to bright optical response. This is due to the perturbed orientation of 5CB at the aqueous/LC interface as a result of electrostatic attraction of the cationic group of CTAB and the phosphate group of the aptamer. The conformational change of the aptamer due to specific binding with E2 weakens the electrostatic attraction between CTAB and aptamer. When specific binding becomes relatively dominant, CTAB induces the orientation of LCs to the homeotropic state, resulting in a dark optical image observed. We also analyzed the change in the optical response of LCs according to the interfacial events and compared the grayscale values of the optical image for each concentration of E2 to determine the detection limit. Accordingly, the detection limit of the E2 sensor was found to be 3.1 pM (0.8 pg/ml) in Tris-buffered saline (TBS), and 6.8 pM (1.9 pg/ml) in human urine. The LC-based optical aptasensor was thus shown to be highly sensitive and selective with no requirement for complex analysis equipment.
Collapse
Affiliation(s)
- Jun-Seong Ahn
- Department of Chemistry, Gachon University, Seongnam-daero 1342, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 13120, Republic of Korea
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, Seongnam-daero 1342, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do, 13120, Republic of Korea.
| |
Collapse
|
4
|
Kulabhusan PK, Ray R, Ramachandra SG, Srinivasulu M, Hariharan A, Balaji K, Mani NK. Coalescing aptamers and liquid-crystals for sensing applications. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Rouhbakhsh Z, Huang JW, Ho TY, Chen CH. Liquid crystal-based chemical sensors and biosensors: From sensing mechanisms to the variety of analytical targets. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Design strategies, current applications and future perspective of aptasensors for neurological disease biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Chang TK, Tung PC, Lee MJ, Lee W. A liquid-crystal aptasensing platform for label-free detection of a single circulating tumor cell. Biosens Bioelectron 2022; 216:114607. [PMID: 35969962 DOI: 10.1016/j.bios.2022.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022]
Abstract
Circulating tumor cells (CTCs), which are shed from a primary site into the bloodstream and lead to distal metastases, are pivotal as a prognostic marker for evaluating the treatment response of cancer patients. One of the major challenges of detecting CTCs is their scarcity in blood. We report herein a label-free liquid crystal (LC) cytosensor by adopting an aptamer against epithelial cell adhesion molecule (EpCAM) to capture EpCAM-positive cancer cells. The optical and dielectric signals transduced from the interaction between LC and different numbers of captured breast cancer cells were investigated. A limit of detection (LOD) of 5 CTCs was resulted from the optical biosensing approach relying on texture observation and image analysis of the optical signal in polarizing micrographs. The LOD was further lowered to a single CTC in the dielectric approach by studying the real- and imaginary-part dielectric constants of LC at 1 kHz and 30 Hz as well as the relaxation frequency. The LC-based EpCAM-specific dielectric cytosensor was successfully applied to single-cell CTC detection in cancer cell-spiked human serum and whole blood. This platform demonstrates the potential of LC-based biosensing technologies in cellular-level detection and quantitation, which is crucial to the early diagnosis of cancer metastasis and progression.
Collapse
Affiliation(s)
- Tsung-Keng Chang
- College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist, Tainan, 711010, Taiwan; National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115202, Taiwan
| | - Pei-Chi Tung
- Department of Bioscience Technology, Chang Jung Christian University, Guiren Dist, Tainan, 711301, Taiwan
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Guiren Dist, Tainan, 711301, Taiwan; Department of Medical Science Industries, Chang Jung Christian University, Guiren Dist, Tainan, 711301, Taiwan.
| | - Wei Lee
- College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist, Tainan, 711010, Taiwan; Institute of Imaging and Biomedical Photonics, College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist, Tainan, 711010, Taiwan.
| |
Collapse
|
8
|
Nguyen DK, Jang CH. Ultrasensitive colorimetric detection of amoxicillin based on Tris-HCl-induced aggregation of gold nanoparticles. Anal Biochem 2022; 645:114634. [PMID: 35271807 DOI: 10.1016/j.ab.2022.114634] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Abstract
An ultrasensitive colorimetric aptasensor for the detection of amoxicillin (AMO) based on the Tris-HCl buffer-induced aggregation of gold nanoparticles (AuNPs) was developed. The AuNPs were aggregated by the addition of Tris-HCl buffer. The adsorption of the aptamer on the AuNP surface increased its negative charge density, leading to the enhancement of the electrostatic repulsion between the nanoparticles, thus protecting AuNPs from aggregation in the Tris-HCl buffer. However, the specific binding of the aptamer with AMO induced conformational changes in the aptamer, which reduced the adsorption of the aptamer on the AuNP surface, diminishing the protective effect of the aptamer. This resulted in the aggregation of AuNPs by Tris-HCl buffer, and consequently, color change of the solution containing AuNPs from red to blue. Under optimized conditions, a linear relationship between the absorbance ratio variation (ΔA680/A520) and the AMO concentration was observed in the concentration range of 0.1-125 nM, with a detection limit of 67 pM. The developed biosensor exhibited high selectivity toward AMO. Moreover, this strategy was successfully applied to the detection of AMO in lake water samples. Thus, the present aptasensor is a promising alternative for the simple and ultrasensitive detection of AMO in the environment.
Collapse
Affiliation(s)
- Duy Khiem Nguyen
- Department of Chemistry, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
9
|
Applications of Microfluidics in Liquid Crystal-Based Biosensors. BIOSENSORS-BASEL 2021; 11:bios11100385. [PMID: 34677341 PMCID: PMC8534167 DOI: 10.3390/bios11100385] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023]
Abstract
Liquid crystals (LCs) with stimuli-responsive configuration transition and optical anisotropic properties have attracted enormous interest in the development of simple and label-free biosensors. The combination of microfluidics and the LCs offers great advantages over traditional LC-based biosensors including small sample consumption, fast analysis and low cost. Moreover, microfluidic techniques provide a promising tool to fabricate uniform and reproducible LC-based sensing platforms. In this review, we emphasize the recent development of microfluidics in the fabrication and integration of LC-based biosensors, including LC planar sensing platforms and LC droplets. Fabrication and integration of LC-based planar platforms with microfluidics for biosensing applications are first introduced. The generation and entrapment of monodisperse LC droplets with different microfluidic structures, as well as their applications in the detection of chemical and biological species, are then summarized. Finally, the challenges and future perspectives of the development of LC-based microfluidic biosensors are proposed. This review will promote the understanding of microfluidic techniques in LC-based biosensors and facilitate the development of LC-based microfluidic biosensing devices with high performance.
Collapse
|
10
|
Fan H, Liu Y, Dong J, Luo Z. Screening Aptamers that Are Specific for Beclomethasone and the Development of Quantum Dot-Based Assay. Appl Biochem Biotechnol 2021; 193:3139-3150. [PMID: 34085169 DOI: 10.1007/s12010-021-03585-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
We developed an aptamer that was specific for beclomethasone (BEC) via systematic evolution of ligands by exponential enrichment (SELEX). Development was monitored by real-time quantitative PCR (Q-PCR) and the enriched library was sequenced by high-throughput sequencing. Forty-seven aptamer candidates were obtained; of these, BEC-6 showed the highest affinity (Kd = 0.15 ± 0.02 μM) and did not cross-react with other BEC analogs. We also developed a quantum dot-based assay (QDA) for the detection of BEC that was based upon a quantum dot (QD) composite probe. Under optimized reaction conditions, the linear range of this method for BEC was 0.1 to 10 μM with a low detection limit (LOD) of 0.1 μM. Subsequently, the method was used to detect BEC in Traditional Chinese Medicine (TCM) with a mean recovery of 81.72-91.84%. This is the first report to describe the development of an aptamer against BEC; BEC-6 can also be engineered into QDA for the detection of BEC.
Collapse
Affiliation(s)
- Hongli Fan
- Institute of Mathematical Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yaxiong Liu
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou, 510663, China
| | - Jiamei Dong
- Institute of Mathematical Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhuoya Luo
- NMPA Key Laboratory for Rapid Testing Technology of Drugs, Guangdong Institute for Drug Control, Guangzhou, 510663, China.
| |
Collapse
|
11
|
Asghari A, Wang C, Yoo KM, Rostamian A, Xu X, Shin JD, Dalir H, Chen RT. Fast, accurate, point-of-care COVID-19 pandemic diagnosis enabled through advanced lab-on-chip optical biosensors: Opportunities and challenges. APPLIED PHYSICS REVIEWS 2021; 8:031313. [PMID: 34552683 PMCID: PMC8427516 DOI: 10.1063/5.0022211] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 05/21/2021] [Indexed: 05/14/2023]
Abstract
The sudden rise of the worldwide severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in early 2020 has called into drastic action measures to perform instant detection and reduce the rate of spread. Common clinical and nonclinical diagnostic testing methods have been partially effective in satisfying the increasing demand for fast detection point-of-care (POC) methods to slow down further spread. However, accurate point-of-risk diagnosis of this emerging viral infection is paramount as the need for simultaneous standard operating procedures and symptom management of SARS-CoV-2 will be the norm for years to come. A sensitive, cost-effective biosensor with mass production capability is crucial until a universal vaccination becomes available. Optical biosensors can provide a noninvasive, extremely sensitive rapid detection platform with sensitivity down to ∼67 fg/ml (1 fM) concentration in a few minutes. These biosensors can be manufactured on a mass scale (millions) to detect the COVID-19 viral load in nasal, saliva, urine, and serological samples, even if the infected person is asymptotic. Methods investigated here are the most advanced available platforms for biosensing optical devices that have resulted from the integration of state-of-the-art designs and materials. These approaches include, but are not limited to, integrated optical devices, plasmonic resonance, and emerging nanomaterial biosensors. The lab-on-chip platforms examined here are suitable not only for SARS-CoV-2 spike protein detection but also for other contagious virions such as influenza and Middle East respiratory syndrome (MERS).
Collapse
Affiliation(s)
- Aref Asghari
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Chao Wang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Kyoung Min Yoo
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Ali Rostamian
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA
| | - Xiaochuan Xu
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Jong-Dug Shin
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Hamed Dalir
- Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757, USA
| | - Ray T. Chen
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Liquid crystal-based biosensors as lab-on-chip tools: Promising for future on-site detection test kits. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Wang Z, Xu T, Noel A, Chen YC, Liu T. Applications of liquid crystals in biosensing. SOFT MATTER 2021; 17:4675-4702. [PMID: 33978639 DOI: 10.1039/d0sm02088e] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Liquid crystals (LCs), as a promising branch of highly-sensitive, quick-response, and low-cost materials, are widely applied to the detection of weak external stimuli and have attracted significant attention. Over the past decade, many research groups have been devoted to developing LC-based biosensors due to their self-assembly potential and functional diversity. In this paper, recent investigations on the design and application of LC-based biosensors are reviewed, based on the phenomenon that the orientation of LCs can be directly influenced by the interactions between biomolecules and LC molecules. The sensing principle of LC-based biosensors, as well as their signal detection by probing interfacial interactions, is described to convert, amplify, and quantify the information from targets into optical and electrical parameters. Furthermore, commonly-used LC biosensing targets are introduced, including glucose, proteins, enzymes, nucleic acids, cells, microorganisms, ions, and other micromolecules that are critical to human health. Due to their self-assembly potential, chemical diversity, and high sensitivity, it has been reported that tunable stimuli-responsive LC biosensors show bright perspectives and high superiorities in biological applications. Finally, challenges and future prospects are discussed for the fabrication and application of LC biosensors to both enhance their performance and to realize their promise in the biosensing industry.
Collapse
Affiliation(s)
- Ziyihui Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | | | | | | | | |
Collapse
|
14
|
Nguyen DK, Jang CH. A Label-Free Liquid Crystal Biosensor Based on Specific DNA Aptamer Probes for Sensitive Detection of Amoxicillin Antibiotic. MICROMACHINES 2021; 12:mi12040370. [PMID: 33808299 PMCID: PMC8065461 DOI: 10.3390/mi12040370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
We developed a liquid crystal (LC) aptamer biosensor for the sensitive detection of amoxicillin (AMX). The AMX aptamer was immobilized onto the surface of a glass slide modified with a mixed self-assembled layer of dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP) and (3-aminopropyl) triethoxysilane (APTES). The long alkyl chains of DMOAP maintained the LC molecules in a homeotropic orientation and induced a dark optical appearance under a polarized light microscope (POM). In the presence of AMX, the specific binding of the aptamer and AMX molecules induced a conformational change in the aptamers, leading to the disruption of the homeotropic orientation of LCs, resulting in a bright optical appearance. The developed aptasensor showed high specificity and a low detection limit of 3.5 nM. Moreover, the potential application of the developed aptasensor for the detection of AMX in environmental samples was also demonstrated. Therefore, the proposed aptasensor is a promising platform for simple, rapid, and label-free monitoring of AMX in an actual water environment with high selectivity and sensitivity.
Collapse
|