1
|
Taufiq S, Nagata M, Abbas SR, Sode K. An electrochemical biosensor for the detection of tuberculosis specific DNA with CRISPR-Cas12a and redox-probe modified oligonucleotide. Heliyon 2024; 10:e40754. [PMID: 39698074 PMCID: PMC11652901 DOI: 10.1016/j.heliyon.2024.e40754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Background The development of a robust and accurate point-of-care platform for the detection of tuberculosis (TB) biomarkers is important for disease control. In the current study, the detection principle relies on the shredding of PES-modified non-specific ssDNA (Poly T) in the presence of target DNA IS6110, a reliable biomarker for TB diagnosis by the CRISPR-Cas12a mechanism. Cas protein has great potential in the detection of nucleic acids. Results Herein, we developed a biosensing platform by utilizing the trans cleavage activity of CRISPR-Cas12a into an electrochemical biosensor. Square wave voltammetry technique is used for the analysis of the fabricated biosensing platform. In the presence of target DNA, the trans cleavage activity is observed by a nonspecific ssDNA substrate, PolyT chain. Various concentration of target DNA is tested on the constructed biosensor, the fabricated biosensor successfully detected TB target DNA by trans cleavage of PES-modified poly T. This novel biosensor was able to detect the target DNA, IS6110 with the limit of detection of 14.5 nM within 60 min by trans-cleavage activity of CRISPR-Cas12a and the results revealed the potential of Cas12a-based biosensors as a diagnostic platform. Significance This is the first study reporting the CRISPR-Cas12a-based electrochemical sensor for TB. The developed CRISPR-Cas12a endonuclease-based electrochemical biosensor provides a potentially powerful platform for the accurate detection of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Saman Taufiq
- Joint Department of Biomedical Engineering at UNC Chapel Hill and North Carolina State University, Chapel Hill, 27599, North Carolina, USA
- Department of Microbiology and Biotechnology, Atta ur Rahman School of Applied Biosciences, & Biosensors and Therapeutic Lab, SINES, National University of Sciences and Technology, Islamabad, Pakistan
| | - Madoka Nagata
- Joint Department of Biomedical Engineering at UNC Chapel Hill and North Carolina State University, Chapel Hill, 27599, North Carolina, USA
| | - Shah Rukh Abbas
- Department of Microbiology and Biotechnology, Atta ur Rahman School of Applied Biosciences, & Biosensors and Therapeutic Lab, SINES, National University of Sciences and Technology, Islamabad, Pakistan
| | - Koji Sode
- Joint Department of Biomedical Engineering at UNC Chapel Hill and North Carolina State University, Chapel Hill, 27599, North Carolina, USA
| |
Collapse
|
2
|
Cerdeira Ferreira LM, Lima D, Marcolino-Junior LH, Bergamini MF, Kuss S, Campanhã Vicentini F. Cutting-edge biorecognition strategies to boost the detection performance of COVID-19 electrochemical biosensors: A review. Bioelectrochemistry 2024; 157:108632. [PMID: 38181592 DOI: 10.1016/j.bioelechem.2023.108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Electrochemical biosensors are known for their high sensitivity, selectivity, and low cost. Recently, they have gained significant attention and became particularly important as promising tools for the detection of COVID-19 biomarkers, since they offer a rapid and accurate means of diagnosis. Biorecognition strategies are a crucial component of electrochemical biosensors and determine their specificity and sensitivity based on the interaction of biological molecules, such as antibodies, enzymes, and DNA, with target analytes (e.g., viral particles, proteins and genetic material) to create a measurable signal. Different biorecognition strategies have been developed to enhance the performance of electrochemical biosensors, including direct, competitive, and sandwich binding, alongside nucleic acid hybridization mechanisms and gene editing systems. In this review article, we present the different strategies used in electrochemical biosensors to target SARS-CoV-2 and other COVID-19 biomarkers, as well as explore the advantages and disadvantages of each strategy and highlight recent progress in this field. Additionally, we discuss the challenges associated with developing electrochemical biosensors for clinical COVID-19 diagnosis and their widespread commercialization.
Collapse
Affiliation(s)
- Luís Marcos Cerdeira Ferreira
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000, Buri, SP, Brazil; Laboratory of Electrochemical Sensors (LabSensE) Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Dhésmon Lima
- Laboratory for Bioanalytics and Electrochemical Sensing (LBES), Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada.
| | - Luiz Humberto Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE) Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Marcio Fernando Bergamini
- Laboratory of Electrochemical Sensors (LabSensE) Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Sabine Kuss
- Laboratory for Bioanalytics and Electrochemical Sensing (LBES), Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Fernando Campanhã Vicentini
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000, Buri, SP, Brazil.
| |
Collapse
|
3
|
Zhang J, Li Z, Guo C, Guan X, Avery L, Banach D, Liu C. Intrinsic RNA Targeting Triggers Indiscriminate DNase Activity of CRISPR-Cas12a. Angew Chem Int Ed Engl 2024; 63:e202403123. [PMID: 38516796 PMCID: PMC11073899 DOI: 10.1002/anie.202403123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
The CRISPR-Cas12a system has emerged as a powerful tool for next-generation nucleic acid-based molecular diagnostics. However, it has long been believed to be effective only on DNA targets. Here, we investigate the intrinsic RNA-enabled trans-cleavage activity of AsCas12a and LbCas12a and discover that they can be directly activated by full-size RNA targets, although LbCas12a exhibits weaker trans-cleavage activity than AsCas12a on both single-stranded DNA and RNA substrates. Remarkably, we find that the RNA-activated Cas12a possesses higher specificity in recognizing mutated target sequences compared to DNA activation. Based on these findings, we develop the "Universal Nuclease for Identification of Virus Empowered by RNA-Sensing" (UNIVERSE) assay for nucleic acid testing. We incorporate a T7 transcription step into this assay, thereby eliminating the requirement for a protospacer adjacent motif (PAM) sequence in the target. Additionally, we successfully detect multiple PAM-less targets in HIV clinical samples that are undetectable by the conventional Cas12a assay based on double-stranded DNA activation, demonstrating unrestricted target selection with the UNIVERSE assay. We further validate the clinical utility of the UNIVERSE assay by testing both HIV RNA and HPV 16 DNA in clinical samples. We envision that the intrinsic RNA targeting capability may bring a paradigm shift in Cas12a-based nucleic acid detection and further enhance the understanding of CRISPR-Cas biochemistry.
Collapse
Affiliation(s)
- Jiongyu Zhang
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ziyue Li
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Chong Guo
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xin Guan
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lori Avery
- Department of Pathology and Laboratory Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - David Banach
- Department of Medicine, Division of Infectious Diseases, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
4
|
Rananaware SR, Meister KS, Shoemaker GM, Vesco EK, Sandoval LSW, Lewis JG, Bodin AP, Karalkar VN, Lange IH, Pizzano BLM, Chang M, Ahmadimashhadi MR, Flannery SJ, Nguyen LT, Wang GP, Jain PK. PAM-free diagnostics with diverse type V CRISPR-Cas systems. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.02.24306194. [PMID: 38746294 PMCID: PMC11092703 DOI: 10.1101/2024.05.02.24306194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Type V CRISPR-Cas effectors have revolutionized molecular diagnostics by facilitating the detection of nucleic acid biomarkers. However, their dependence on the presence of protospacer adjacent motif (PAM) sites on the target double-stranded DNA (dsDNA) greatly limits their flexibility as diagnostic tools. Here we present a novel method named PICNIC that solves the PAM problem for CRISPR-based diagnostics with just a simple ∼10-min modification to contemporary CRISPR-detection protocols. Our method involves the separation of dsDNA into individual single-stranded DNA (ssDNA) strands through a high- temperature and high-pH treatment. We then detect the released ssDNA strands with diverse Cas12 enzymes in a PAM-free manner. We show the utility of PICNIC by successfully applying it for PAM-free detection with three different subtypes of the Cas12 family- Cas12a, Cas12b, and Cas12i. Notably, by combining PICNIC with a truncated 15-nucleotide spacer containing crRNA, we demonstrate PAM-independent detection of clinically important single- nucleotide polymorphisms with CRISPR. We apply this approach to detect the presence of a drug-resistant variant of HIV-1, specifically the K103N mutant, that lacks a PAM site in the vicinity of the mutation. Additionally, we successfully translate our approach to clinical samples by detecting and genotyping HCV-1a and HCV-1b variants with 100% specificity at a PAM-less site within the HCV genome. In summary, PICNIC is a simple yet groundbreaking method that enhances the flexibility and precision of CRISPR-Cas12-based diagnostics by eliminating the restriction of the PAM sequence.
Collapse
|
5
|
Zeng D, Jiao J, Mo T. Combination of nucleic acid amplification and CRISPR/Cas technology in pathogen detection. Front Microbiol 2024; 15:1355234. [PMID: 38380103 PMCID: PMC10877009 DOI: 10.3389/fmicb.2024.1355234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Major health events caused by pathogenic microorganisms are increasing, seriously jeopardizing human lives. Currently PCR and ITA are widely used for rapid testing in food, medicine, industry and agriculture. However, due to the non-specificity of the amplification process, researchers have proposed the combination of nucleic acid amplification technology with the novel technology CRISPR for detection, which improves the specificity and credibility of results. This paper summarizes the research progress of nucleic acid amplification technology in conjunction with CRISPR/Cas technology for the detection of pathogens, which provides a reference and theoretical basis for the subsequent application of nucleic acid amplification technology in the field of pathogen detection.
Collapse
Affiliation(s)
| | | | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Yudin Kharismasari C, Irkham, Zein MIHL, Hardianto A, Nur Zakiyyah S, Umar Ibrahim A, Ozsoz M, Wahyuni Hartati Y. CRISPR/Cas12-based electrochemical biosensors for clinical diagnostic and food monitoring. Bioelectrochemistry 2024; 155:108600. [PMID: 37956622 DOI: 10.1016/j.bioelechem.2023.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Each organism has a unique sequence of nitrogenous bases in in the form of DNA or RNA which distinguish them from other organisms. This characteristic makes nucleic acid-based detection extremely selective and compare to other molecular techniques. In recent years, several nucleic acid-based detection technology methods have been developed, one of which is the electrochemical biosensor. Electrochemical biosensors are known to have high sensitivity and accuracy. In addition, the ease of miniaturization of this electrochemical technique has garnered interest from many researchers. On the other hand, the CRISPR/Cas12 method has been widely used in detecting nucleic acids due to its highly selective nature. The CRISPR/Cas12 method is also reported to increase the sensitivity of electrochemical biosensors through the utilization of modified electrodes. The electrodes can be modified according to detection needs so that the biosensor's performance can be improved. This review discusses the application of CRISPR/Cas12-based electrochemical biosensors, as well as various electrode modifications that have been successfully used to improve the performance of these biosensors in the clinical and food monitoring fields.
Collapse
Affiliation(s)
- Clianta Yudin Kharismasari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Muhammad Ihda H L Zein
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia
| | - Abdullahi Umar Ibrahim
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey; Operational Research Centre in Healthcare, Near East University, Mersin 10, TRNC, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjajaran University, Sumedang 45363, Indonesia.
| |
Collapse
|