1
|
Li Z, Luo D, Zhang Y, Niu X, Liu H. Smart Health Monitoring: Review of Electrochemical Biosensors for Cortisol Monitoring. Adv Healthc Mater 2025; 14:e2404454. [PMID: 40099568 DOI: 10.1002/adhm.202404454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Cortisol, also known as the stress hormone, is a crucial corticosteroid hormone that significantly increases secretion in the human body when facing notable stress. Monitoring cortisol levels is crucial for personal stress management and the diagnosis and treatment of certain diseases. Electrochemical biosensors combine the efficient sensitivity of electrochemical technology with the high specificity of biological recognition processes, making them widely applicable in the analysis of human body fluid components. This work outlines the working mechanism of cortisol electrochemical biosensors, focusing particularly on sensing elements such as antibodies, aptamers, and molecularly imprinted polymers. It provides detailed explanations of the operational principles of these different recognition elements. This work summarizes and evaluates the latest advancements in electrochemical biosensors for detecting cortisol in human body fluids, discussing the influence of different recognition elements on sensor design and electrochemical performance. Subsequently, through a comparative analysis of various sensor performances, the work further discusses the challenges in translating laboratory achievements into practical applications, including enhancing key metrics such as sensor reusability, reproducibility, long-term stability, continuous monitoring capability, and response time. Finally, it offers insights and recommendations for achieving real-time, continuous, and long-term monitoring with cortisol electrochemical biosensors.
Collapse
Affiliation(s)
- Zhijie Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Dan Luo
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Yaqian Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
| | - Xin Niu
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
- School of Arts, Tiangong University, Tianjin, 300387, China
| | - Hao Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
- Institute of Intelligent Wearable Electronic Textiles, Tiangong University, Tianjin, 300387, China
- Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
2
|
Shen Q, Ding J, Guo Z, Yang X, Zhang Y, Xu B, Yang H, Sun Y, Hang L. Au NPs modified Ni-B nanosheets/graphene oxide three-dimensional network as label-free electrochemical immunosensor for the detection of diethylstilbestrol. Bioelectrochemistry 2024; 160:108778. [PMID: 39003948 DOI: 10.1016/j.bioelechem.2024.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Three-dimensional (3D) network provide a promising platform for construction of high sensitive electrochemical immunosensor due to the benefits of high specific surface area and electron mobility. Herein, a sensitive label-free electrochemical immunosensor based on Au nanoparticles modified Ni-B nanosheets/graphene matrix was constructed to detect diethylstilbestrol (DES). The 3D network not only could increase the electron transport rate and surface area, but also could provide confinement area, which is conducive to increases the collision frequency with the active site. Moreover, Au NPs also have good biocompatibility, which is beneficial for ligating antibodies. Benefiting from the 3D network structure and Au collective effect, the electrochemical immunosensor possess sterling detection ability with wide linear response range (0.00038-150 ng/mL) and low detection limit (31.62 fg/mL). Moreover, the constructed immunosensor can also be extend to detect DES in Tap-water and river water. This work may provide a novel material model for the construction of high sensitive immunosensor.
Collapse
Affiliation(s)
- Qi Shen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Jianjun Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Zengsheng Guo
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Xiaodong Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China.
| | - Yuhan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Bo Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Hongxiao Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250055, PR China.
| | - Lifeng Hang
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou 518037, PR China.
| |
Collapse
|
3
|
Seesaard T, Kamjornkittikoon K, Wongchoosuk C. A comprehensive review on advancements in sensors for air pollution applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175696. [PMID: 39197792 DOI: 10.1016/j.scitotenv.2024.175696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Air pollution, originating from both natural and human-made sources, presents significant threats to human health and the environment. This review explores the latest technological advancements in air quality sensors focusing on their applications in monitoring a wide range of pollution sources from volcanic eruptions and wildfires to industrial emissions, transportation, agricultural activities and indoor air quality. The review categorizes these sources and examines the operational principles, system architectures, and effectiveness of various air quality monitoring instruments including low-cost sensors, gas analyzers, weather stations, passive sampling devices and remote sensing technologies such as satellite and LiDAR. Key insights include the rapid evolution of sensor technology driven by the need for more accurate, real-time monitoring solutions that are both cost-effective and widely accessible. Despite significant advancements, challenges such as sensor calibration, standardization, and data integration remain critical for ensuring reliable air quality assessments. The manuscript concludes by emphasizing the need for continued innovation and the integration of advanced sensor technologies with regulatory frameworks to enhance environmental management and public health protection.
Collapse
Affiliation(s)
- Thara Seesaard
- Department of Physics, Faculty of Science and Technology, Kanchanaburi Rajabhat University, Kanchanaburi 71190, Thailand
| | - Kamonrat Kamjornkittikoon
- Department of Mathematics and Statistics, Faculty of Science and Technology, Kanchanaburi Rajabhat University, Kanchanaburi 71190, Thailand
| | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
4
|
Meng J, Zahran M, Li X. Metal-Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers. BIOSENSORS 2024; 14:495. [PMID: 39451708 PMCID: PMC11506703 DOI: 10.3390/bios14100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Sweat is considered the most promising candidate to replace conventional blood samples for noninvasive sensing. There are many tools and optical and electrochemical methods that can be used for detecting sweat biomarkers. Electrochemical methods are known for their simplicity and cost-effectiveness. However, they need to be optimized in terms of selectivity and catalytic activity. Therefore, electrode modifiers such as nanostructures and metal-organic frameworks (MOFs) or combinations of them were examined for boosting the performance of the electrochemical sensors. The MOF structures can be prepared by hydrothermal/solvothermal, sonochemical, microwave synthesis, mechanochemical, and electrochemical methods. Additionally, MOF nanostructures can be prepared by controlling the synthesis conditions or mixing bulk MOFs with nanoparticles (NPs). In this review, we spotlight the previously examined MOF-based nanostructures as well as promising ones for the electrochemical determination of sweat biomarkers. The presence of NPs strongly improves the electrical conductivity of MOF structures, which are known for their poor conductivity. Specifically, Cu-MOF and Co-MOF nanostructures were used for detecting sweat biomarkers with the lowest detection limits. Different electrochemical methods, such as amperometric, voltammetric, and photoelectrochemical, were used for monitoring the signal of sweat biomarkers. Overall, these materials are brilliant electrode modifiers for the determination of sweat biomarkers.
Collapse
Affiliation(s)
- Jing Meng
- School of Civil Engineering, Nantong Institute of Technology, Nantong 226002, China
| | - Moustafa Zahran
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Xiaolin Li
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
5
|
Rossi F, Trakoolwilaiwan T, Gigli V, Tortolini C, Lenzi A, Isidori AM, Thanh NTK, Antiochia R. Progress in nanoparticle-based electrochemical biosensors for hormone detection. NANOSCALE 2024; 16:18134-18164. [PMID: 39254475 DOI: 10.1039/d4nr02075h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Hormones are chemical messengers that regulate a wide range of physiological processes including metabolism, development, growth, reproduction and mood. The concentration of hormones that orchestrate the numerous bodily functions is very low (1 nM or less). Efforts have been made to develop highly sensitive tools to detect them. This review represents a critical comparison between different types of nanoparticle-based electrochemical biosensors for the detection of various hormones, namely cortisol, sex hormones (estradiol, progesterone, testosterone), insulin, thyroid-stimulating hormone (TSH) and growth hormone (GH). The electrochemical biosensors investigated for each hormone are first divided on the basis of the biological fluid tested for their detection, and successively on the basis of the electrochemical transducer utilized in the device (voltammetric or impedimetric). Focus is placed on the nanoparticles employed and the successive electrode modification developed in order to improve detection sensitivity and specificity and biosensor stability. Limit of detection (LOD), linear range, reproducibility and possibility of regeneration for continuous reuse are also investigated and compared. The review also addresses the recent trends in the development of wearable biosensors and point-of-care testing for hormone detection in clinical diagnostics useful for endocrinology research, and the future perspectives regarding the integration of nanomaterials, microfluidics, near field communication (NFC) technology and portable devices.
Collapse
Affiliation(s)
- Francesco Rossi
- ICCOM-CNR, Polo Scientifico, Via Madonna del piano 10, Sesto Fiorentino, FI, 50019, Italy
| | - Thithawat Trakoolwilaiwan
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Valeria Gigli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Tortolini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
6
|
Sun R, Han S, Zong W, Chu H, Zhang X, Jiang H. Ultrasensitive detection of chlortetracycline in animal-origin food using molecularly imprinted electrochemical sensor based on SnS 2/ZnCo-MOF and AuNPs. Food Chem 2024; 452:139537. [PMID: 38728891 DOI: 10.1016/j.foodchem.2024.139537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
The chlortetracycline (CTC) residue in food poses a threat to human health. Therefore, developing sensitive, convenient and selective analytical methods for CTC detection is crucial. This study innovatively uses tin disulfide/bimetallic organic framework (SnS2/ZnCo-MOF) nanocomposites in conjunction with gold nanoparticles (AuNPs) to co-modify a glassy carbon electrode (GCE). Further, a molecularly imprinted polymer (MIP)-based electrochemical sensing platform Au-MIP/SnS2/ZnCo-MOF/Au/GCE (AZG) was fabricated for selective CTC detection. SnS2/ZnCo-MOF enhanced the stability and surface area of the AZG sensor. The presence of AuNPs facilitated electron transport between the probe and the electrode across the insulating MIP layer. The fixation of AuNPs and MIP via electropolymerization enhanced the selective recognition of this sensor and amplified its output signal. The AZG sensor demonstrated a wide linear detection range (0.1-100 μM), low detection limit (0.072 nM), and high sensitivity (0.830 μA μM-1). It has been used for detecting CTC in animal-origin food with good recovery (96.08%-104.60%).
Collapse
Affiliation(s)
- Ruonan Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, China.
| | - Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Xunan Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Haiyan Jiang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
7
|
Zeng W, Wang K, Zhou Y, Deng X, Xu R, Chen W. Determination of diethylstilbestrol in environmental water based on electrochemical senser modified with vanadium based metal organic framework material composite. NANOTECHNOLOGY 2024; 35:245501. [PMID: 38529942 DOI: 10.1088/1361-6528/ad321d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/10/2024] [Indexed: 03/27/2024]
Abstract
In this research, the MIL-47/ACET/Nafion/GCE electrochemical senser for the determination of diethylstilbestrol (DES) was prepared with vanadyl sulfate (VOSO4·nH2O) and terephthalic acid (H2BDC) as the main raw materials, compounded with acetylene black (ACET) and perfluorosulfonic acid polymer (Nafion). The compound DES belongs to the category of estrogens, and prolonged exposure to the environment can have detrimental effects on the physiological functioning of both humans and animals. Due to the strong DES enrichment performance of MIL-47(V-MOFs) with large specific surface area, in addition to the excellent conductivity and electrocatalysis of composite materials, this modified senser had good electrochemical response to DES. With differential pulse voltammetry, in optimum condition of 0.1 M NaH2PO4-Na2HPO4at pH = 7.0, potential interval of -1.0 to 1.0 V, enrichment time of 120 s and enrichment potential of 0.2 V, there was a good linear relationship between peak current and the concentration of DES over the range of 0.1 and 50μM, and the limit of detection was 0.008μM. The sensor accurately detected DES in actual water samples, with recovery rates ranging from 89.21% to 105.3%. The electrochemical sensor was simple to prepare and had practical significance for the detection of DES in water. The research results of the sensor provide another alternative analytical means for the sensitive detection of DES in the environment, which is important for maintaining public health.
Collapse
Affiliation(s)
- Wanpen Zeng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu, Sichuan, 610059, People's Republic of China
| | - Keli Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu, Sichuan, 610059, People's Republic of China
| | - Yuan Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu, Sichuan, 610059, People's Republic of China
| | - Xiang Deng
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu, Sichuan, 610059, People's Republic of China
| | - Ruichao Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
| | - Wen Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, People's Republic of China
- Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institution, Chengdu, Sichuan, 610059, People's Republic of China
| |
Collapse
|
8
|
Mugo SM, Robertson SV, Lu W. A molecularly imprinted screen-printed carbon electrode for electrochemical epinephrine, lactate, and cortisol metabolites detection in human sweat. Anal Chim Acta 2023; 1278:341714. [PMID: 37709457 DOI: 10.1016/j.aca.2023.341714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
This study presents a novel approach to the detection of epinephrine, lactate, and cortisol biomarkers in human sweat using molecularly-imprinted polymers (MIP) embedded screen printed carbon electrode (SPCE) sensors. The epinephrine and lactate MIP SPCE sensors were fabricated by epinephrine or lactate-imprinted polyaniline co-polymerized with 3-aminophenylboronic acid and gold nanoparticles (PANI-co-PBA/AuNP) selective membrane on a commercial SPCE. The cortisol sensor was comprised of a cortisol-imprinted poly(glycidyl methacryate-co-ethylene glycol dimethacrylate) (poly (GMA-co-EGDMA)@AuNP selective membrane deposited on a SPCE. Both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used as modes of analysis for the MIP SPCE sensors. All sensors exhibited a rapid (∼1 min) and selective response to the epinephrine, lactate, and cortisol target analytes, with excellent precision between scans for both CV and DPV analysis modes. For CV, the LOD for epinephrine, lactate, and cortisol was 8.2 nM, 13 mM, and 0.042 μM, respectively. The LOD for DPV were 0.60 nM, 2.2 mM, and 0.025 μM for epinephrine, lactate, and cortisol, respectively. The MIP SPCE sensor platforms were further validated through the successful quantification of epinephrine, lactate, and cortisol in human sweat.
Collapse
Affiliation(s)
- Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada.
| | - Scott V Robertson
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Weihao Lu
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| |
Collapse
|
9
|
Jiang LL, Niu X, Pei WY, Ma JF. Electrochemical Detection of Flutamide by the Composite of Complex Based on Thiacalix[4]arene Derivatives and Reduced Graphene Oxide. Inorg Chem 2023; 62:12803-12813. [PMID: 37535463 DOI: 10.1021/acs.inorgchem.3c01432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
In this paper, a thiacalix[4]arene complex [Zn2(TIT4A)L2]·4DMF·2CH3OH (H2L = 4,4'-oxybisbenzoic acid) (Zn-TIT4A-L) was synthesized by a solvothermal method. The composites were prepared by combining Zn-TIT4A-L with reduced graphene oxide (RGO), mesoporous carbon (MC), and multi-walled carbon nanotubes (MWCNTs), respectively. Three representative composites are Zn-TIT4A-L@RGO(1:1), Zn-TIT4A-L@MC(1:2), and Zn-TIT4A-L@MWCNT(1:2). X-ray diffraction and scanning electron microscopy characterized their structures and morphologies. The results showed that three composites were successfully prepared, and the crystals of the complex remained in the composites. The electrochemical properties of the composites were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicated that they had good electrocatalytic activity and conductivity. Among them, Zn-TIT4A-L@RGO(1:1) had the best performance and was used for the quantitative detection of flutamide (FTA). The linear range of detection is 0.1-200 μM, and the limit of detection is 0.015 μM. At the same time, the sensor also had good reproducibility, anti-interference, and stability. The sensor was also used for the detection of FTA in lake water, human urine, and serum with a satisfactory recovery rate. The possible mechanism of electrochemical detection of FTA was also discussed.
Collapse
Affiliation(s)
- Lu-Lu Jiang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xia Niu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|