1
|
Zakharova IO, Sokolova TV, Bayunova LV, Zorina II, Rychkova MP, Shpakov AO, Avrova NF. The Protective Effect of Insulin on Rat Cortical Neurons in Oxidative Stress and Its Dependence on the Modulation of Akt, GSK-3beta, ERK1/2, and AMPK Activities. Int J Mol Sci 2019; 20:ijms20153702. [PMID: 31362343 PMCID: PMC6696072 DOI: 10.3390/ijms20153702] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Insulin is a promising drug for the treatment of diseases associated with brain damage. However, the mechanism of its neuroprotective action is far from being understood. Our aim was to study the insulin-induced protection of cortical neurons in oxidative stress and its mechanism. Immunoblotting, flow cytometry, colorimetric, and fluorometric techniques were used. The insulin neuroprotection was shown to depend on insulin concentration in the nanomolar range. Insulin decreased the reactive oxygen species formation in neurons. The insulin-induced modulation of various protein kinase activities was studied at eight time-points after neuronal exposure to prooxidant (hydrogen peroxide). In prooxidant-exposed neurons, insulin increased the phosphorylation of GSK-3beta at Ser9 (thus inactivating it), which resulted from Akt activation. Insulin activated ERK1/2 in neurons 5–30 min after cell exposure to prooxidant. Hydrogen peroxide markedly activated AMPK, while it was for the first time shown that insulin inhibited it in neurons at periods of the most pronounced activation by prooxidant. Insulin normalized Bax/Bcl-2 ratio and mitochondrial membrane potential in neurons in oxidative stress. The inhibitors of the PI3K/Akt and MEK1/2/ERK1/2 signaling pathways and the AMPK activator reduced the neuroprotective effect of insulin. Thus, the protective action of insulin on cortical neurons in oxidative stress appear to be realized to a large extent through activation of Akt and ERK1/2, GSK-3beta inactivation, and inhibition of AMPK activity increased by neuronal exposure to prooxidant.
Collapse
Affiliation(s)
- Irina O Zakharova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Tatiana V Sokolova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Liubov V Bayunova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Inna I Zorina
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Maria P Rychkova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Alexander O Shpakov
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia
| | - Natalia F Avrova
- Department of Molecular Endocrinology and Neurochemistry, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez avenue, 44, Saint-Petersburg 194223, Russia.
| |
Collapse
|
2
|
Wang L, Zhang Y, Wan H, Jin W, Yu L, Zhou H, Yang J. Glycyrrhetinic acid protects H9c2 cells from oxygen glucose deprivation-induced injury through the PI3K/AKt signaling pathway. J Nat Med 2016; 71:27-35. [PMID: 27406329 DOI: 10.1007/s11418-016-1023-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/27/2016] [Indexed: 12/24/2022]
Abstract
Glycyrrhetinic acid (GA) is an ingredient of triterpene saponins found in Gancao (Radix Glycyrrhizae). Here, we investigated the protective effects of GA in H9c2 cells, and explored its possible mechanism of action. Different concentrations of GA were used to treat H9c2 cells under oxygen glucose deprivation. We analyzed cell necrosis and apoptosis using optical microscopy, Hoechst 33342 staining, FITC-annexin V/PI double-staining and lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) and interleukin (IL)-1β assays. Changes in related pro-apoptosis and anti-apoptosis proteins were detected by Western blot. Optical microscopy showed that GA improved cell morphology, including cell shrinkage, cauliflower-like membrane blebbing, and even some cell debris. Meanwhile, GA also ameliorated cell nuclei characteristics such as nucleus size, chromatin condensation and bright staining from Hoechst 33342 staining. GA also lowered the apoptotic rate and the levels of LDH, CK-MB and IL-1β in a dose-dependent manner. Furthermore, GA treatment increased Bcl-2 protein expression and decreased caspase-8 and Bax protein expression, while elevating the Bcl-2/Bax ratio. GA preconditioning increased p-AKt protein expression; however, after adding LY 294002, the p-AKt expression decreased obviously. Our results demonstrated that GA could protect H9c2 cells from apoptosis in a dose-dependent manner, and the potential mechanism might be related to the PI3K/AKt signaling pathway.
Collapse
Affiliation(s)
- Liqin Wang
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yuyan Zhang
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Haitong Wan
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Weifeng Jin
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Li Yu
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
The Interplay of Akt and ERK in Aβ Toxicity and Insulin-Mediated Protection in Primary Hippocampal Cell Culture. J Mol Neurosci 2015; 57:325-34. [PMID: 26266487 DOI: 10.1007/s12031-015-0622-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/14/2015] [Indexed: 01/11/2023]
Abstract
It is not known if insulin prevents Aβ-induced cell death, MAPK, and Akt activity in isolated hippocampal cell culture. This study was aimed to explore the effect of insulin on Aβ-induced cell death and ERK and Akt signaling alteration in isolated hippocampal cell culture. Additionally, it was desirable to assess if there is any interaction between these two pathways. The hippocampal cells were derived from fetuses at the embryonic day 18-19. The cells were treated with different drugs, and MTT assay, morphological assessments, and Western blot were done. Insulin prevented Aβ-induced cell death and caspase-3 cleavage. Aβ-induced toxicity was aligned with decrement of the phosphorylated Akt (pAkt) which was prevented by insulin. The PI3 kinase inhibitor, LY294002, decreased pAkt and abolished the protective effect of insulin. Aβ exposure increased phosphorylated ERK (pERK) in parallel with cell death and apoptosis. Insulin-inhibited ERK activation (phosphorylation) induced by Aβ and PD98059 (as ERK inhibitor) did not affect the protective effect of insulin. One of the interesting finding of this study was the interplay of Akt and ERK in Aβ toxicity and insulin-mediated protection; meaning that there is an inverse relation between pERK and pAkt, in a way that PI3-Akt pathway inhibition leads to pERK increment while ERK inhibition causes Akt phosphorylation (activation). This study showed, for the first time, that insulin protects against Aβ toxicity in isolated hippocampal cell culture via modulating Akt and ERK phosphorylation and also revealed an interaction between those signals in Aβ toxicity and insulin-mediated protection.
Collapse
|
4
|
Yao H, Shang Z, Wang P, Li S, Zhang Q, Tian H, Ren D, Han X. Protection of Luteolin-7-O-Glucoside Against Doxorubicin-Induced Injury Through PTEN/Akt and ERK Pathway in H9c2 Cells. Cardiovasc Toxicol 2015; 16:101-10. [DOI: 10.1007/s12012-015-9317-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Yao H, Han X, Han X. The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway. Am J Cardiovasc Drugs 2014; 14:433-42. [PMID: 25160498 DOI: 10.1007/s40256-014-0089-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis occurs frequently in myocardial infarction, oxidative stress injury, and ischemia/reperfusion injury, and plays a pivotal role in the development of heart diseases. Inhibition of apoptosis alone does not necessarily lead to meaningful rescue in terms of either cardiomyocyte survival or function. Activation of the PI3K/Akt signaling pathway induced by insulin not only inhibits cardiomyocyte apoptosis but also substantially preserves and even improves regional and overall cardiac function. Insulin can protect cardiomyocytes from apoptosis by regulating a number of signaling molecules, such as eNOS, FOXOs, Bad, GSK-3β, mTOR, NDRG2, and Nrf2, through activating PI3K and Akt. This review focuses on the protective mechanisms and targets of insulin identified in the prevention and treatment of myocardial injury.
Collapse
|
6
|
Bhuiyan MS, Fukunaga K. Cardioprotection by vanadium compounds targeting Akt-mediated signaling. J Pharmacol Sci 2009; 110:1-13. [PMID: 19423951 DOI: 10.1254/jphs.09r01cr] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Treatment with inorganic and organic compounds of vanadium has been shown to exert a wide range of cardioprotective effects in myocardial ischemia/reperfusion-induced injury, myocardial hypertrophy, hypertension, and vascular diseases. Furthermore, administration of vanadium compounds improves cardiac performance and smooth muscle cell contractility and modulates blood pressure in various models of hypertension. Like other vanadium compounds, we documented bis(1-oxy-2-pyridinethiolato) oxovanadium (IV) [VO(OPT)] as a potent cardioprotective agent to elicit cardiac functional recovery in myocardial infarction and pressure overload-induced hypertrophy. Vanadium compounds activate Akt signaling through inhibition of protein tyrosine phosphatases, thereby eliciting cardioprotection in myocardial ischemia/reperfusion-induced injury and myocardial hypertrophy. Vanadium compounds also promote cardiac functional recovery by stimulation of glucose transport in diabetic heart. We here discuss the current understanding of mechanisms underlying vanadium compound-induced cardioprotection and propose a novel therapeutic strategy targeting for Akt signaling to rescue cardiomyocytes from heart failure.
Collapse
|
7
|
Bhuiyan MS, Shioda N, Fukunaga K. Targeting protein kinase B/Akt signaling with vanadium compounds for cardioprotection. Expert Opin Ther Targets 2008; 12:1217-27. [PMID: 18781821 DOI: 10.1517/14728222.12.10.1217] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Akt is an important signaling molecule that modulates many cellular processes such as cell growth, survival and metabolism. Akt activation has been proposed as a potential strategy for increasing cardiomyocyte survival following ischemia. OBJECTIVES Vanadium compounds activate Akt signaling through inhibition of protein tyrosine phosphatases, thereby eliciting cardioprotection in myocardial ischemia/reperfusion-induced injury along with cardiac functional recovery. Like other vanadium compounds, we documented bis(1-oxy-2-pyridinethiolato) oxovanadium (IV) as a potent cytoprotective agent on myocardial infarction and elicited cardiac functional recovery through activation of Akt signaling pathway. RESULTS/CONCLUSION The ability of vanadium compounds to activate Akt signaling pathways are responsible for their ability to modulate cardiovascular functions and is probably beneficial as a cardioprotective drug in subjects undergoing reperfusion therapy following myocardial infarction.
Collapse
Affiliation(s)
- Md Shenuarin Bhuiyan
- Graduate School of Pharmaceutical Sciences, Department of Pharmacology, Tohoku University, Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan
| | | | | |
Collapse
|
8
|
Bhuiyan MS, Takada Y, Shioda N, Moriguchi S, Kasahara J, Fukunaga K. Cardioprotective effect of vanadyl sulfate on ischemia/reperfusion-induced injury in rat heart in vivo is mediated by activation of protein kinase B and induction of FLICE-inhibitory protein. Cardiovasc Ther 2008; 26:10-23. [PMID: 18466417 DOI: 10.1111/j.1527-3466.2008.00039.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we explored the mechanism of cardioprotective action of a tyrosine phosphatase inhibitor vanadyl sulfate on myocardial infarction and cardiac functional recovery in rats subjected to myocardial ischemia/reperfusion (MI/R) in vivo. Male Sprague-Dawley rats underwent 30 min heart ischemia by left coronary artery occlusion followed by 24-h reperfusion. Rats were randomized to receive either vehicle or vanadyl sulfate (1 and 5 mg/kg) intraperitoneally 0 min and 30 min after the start of reperfusion. Posttreatment with vanadyl sulfate significantly reduced the infarct size and significantly decreased the elevated left ventricular end diastolic pressure, improved left ventricular developed pressure, and left ventricular contractility (+/- dP/dt) after 72-h reperfusion in a dose-dependent manner. Moreover, treatment with vanadyl sulfate also significantly inhibited the apoptosis-related Caspase-3 and Caspase-9 processing, thereby elicited the antiapoptotic effect. The cardioprotective effect of vanadyl sulfate was closely associated with restoration of reduced protein kinase B (Akt) activity following MI/R injury. The recovered Akt activity correlated with increased phosphorylation of forkhead transcription factors, FKHR and FKHRL-1, thereby inhibiting apoptotic signaling. Furthermore, treatment with vanadyl sulfate significantly increased FLICE-inhibitory protein (FLIP) expression, and decreased expression of Fas ligand and Bim in cardiomyocytes. Taken together, rescue of cardiomyocytes by posttreatment with vanadyl sulfate from MI/R injury was mediated by increased FLIP expression and decreased Fas ligand and Bim expression via activation of Akt. These results demonstrate that treatment with vanadyl sulfate exerts significant cardioprotective effects along with cardiac functional recovery.
Collapse
Affiliation(s)
- Md Shenuarin Bhuiyan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Wei D, Li M, Ding W. Effect of vanadate on gene expression of the insulin signaling pathway in skeletal muscle of streptozotocin-induced diabetic rats. J Biol Inorg Chem 2007; 12:1265-73. [PMID: 17874149 DOI: 10.1007/s00775-007-0294-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 08/20/2007] [Indexed: 11/30/2022]
Abstract
An insulin signaling pathway microarray was used to evaluate the gene expression profiling of the insulin signaling pathway in the skeletal muscle of streptozotocin-induced diabetic, NaVO(3)-treated diabetic and insulin-treated diabetic rats for the investigation of the effect of vanadium and insulin on the insulin signaling pathway. Of 96 genes surveyed, transcriptional patterns of 19 genes (20%) showed alterations in diabetic rats compared with controls. Although most of these changed gene expressions were improved after treatment with NaVO(3) (14, 74%) and insulin (16, 84%), NaVO(3) and insulin treatment resulted in the alteration of 20 and 12 additional gene transcripts compared no treatment. We found that both NaVO(3) and insulin treatment achieved a desirable glucose level and most of the alterative gene transcripts in diabetic rats were normalized with NaVO(3) and insulin treatment. Comparison of the gene expression profiling indicates that there is a significant difference between the NaVO(3)-treated group and the insulin-treated group. The present study demonstrated for the first time that several candidate genes of the insulin signaling pathway are involved in the effect of vanadium treatment on hyperglycemia. This study opens the way for more focused investigations that may identify the genes responsible for diabetes and vanadium treatment in the global insulin signaling pathway.
Collapse
Affiliation(s)
- Dan Wei
- Department of Biology, Graduate University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, People's Republic of China
| | | | | |
Collapse
|
10
|
Shukla R, Bhonde RR. Adipogenic action of vanadium: a new dimension in treating diabetes. Biometals 2007; 21:205-10. [PMID: 17671828 DOI: 10.1007/s10534-007-9109-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Vanadium is a well known anti-diabetic agent which mimics most of the actions of insulin on mature adipocytes. We report here the effect of vanadium on proliferation and differentiation of 3T3-L1 preadipocytes. Like insulin, vanadium treatment leads to increased proliferation as evidenced by H(3)thymidine uptake studies and differentiation of 3T3-L1 cells into adipocytes as evidenced by oil-red-O staining. Adipogenic potential of vanadium can be attributed to CREB activation, as documented by phospho-CREB antibody staining. This adipogenic potential is of significance in an in vivo scenario as the new adipocytes are likely to be insulin sensitive as against resistant existing mature adipocytes and thus indirectly may help in reduction of insulin resistance. Till today decrease in insulin resistance by vanadium treatment has been mainly attributed to its potential to inhibit PTP-1B, however the present study opens a new dimension in vanadium treatment for diabetes due to its novel role in adipogenesis.
Collapse
Affiliation(s)
- Ruchi Shukla
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune, India
| | | |
Collapse
|
11
|
Sakurai H, Katoh A, Yoshikawa Y. Chemistry and Biochemistry of Insulin-Mimetic Vanadium and Zinc Complexes. Trial for Treatment of Diabetes Mellitus. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2006. [DOI: 10.1246/bcsj.79.1645] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|