1
|
Fu X, Li P, Zhang L, Li S. RNA-Seq-based transcriptomic analysis of Saccharomyces cerevisiae during solid-state fermentation of crushed sweet sorghum stalks. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Lan YB, Huang YZ, Qu F, Li JQ, Ma LJ, Yan J, Zhou JH. Time course of global gene expression alterations in Candida albicans during infection of HeLa cells. Bosn J Basic Med Sci 2017; 17:120-131. [PMID: 28397609 DOI: 10.17305/bjbms.2017.1667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023] Open
Abstract
Candida albicans (C. albicans) is an opportunistic fungus that quickly adapts to various microniches. It causes candidiasis, a common fungal infection for which the pathogenic mechanism has not been elucidated yet. To explore the pathogenic mechanism of candidiasis we used several methods, including microscopic observation of morphological changes of HeLa cells and fungus, analysis of differentially expressed genes using gene chips, and a series of biological and bioinformatic analyses to explore genes that are possibly involved in the pathogenesis of C. albicans. During the C. albicans infection, significant morphological changes of the fungus were observed, and the HeLa cells were gradually destroyed. The gene chip experiments showed upregulated expression of 120 genes and downregulated expression of 178 genes. Further analysis showed that some genes may play an important role in the pathogenesis of C. albicans. Overall, morphological variation and adaptive gene expression within a particular microniche may exert important effects during C. albicans infections.
Collapse
Affiliation(s)
- Yi-Bing Lan
- Department of Gynecology, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Moghnie S, Tovmasyan A, Craik J, Batinic-Haberle I, Benov L. Cationic amphiphilic Zn-porphyrin with high antifungal photodynamic potency. Photochem Photobiol Sci 2017; 16:1709-1716. [DOI: 10.1039/c7pp00143f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amphiphilic, cationic, water soluble Zn-porphyrins with six-carbon aliphatic chains attached to four pyridyl nitrogens atmesopositions of the porphyrin ring displayed high antifungal photo-efficiency and minimal dark toxicity.
Collapse
Affiliation(s)
- Sara Moghnie
- Department of Biochemistry
- Faculty of Medicine
- Kuwait University
- Safat 13110
- Kuwait
| | - Artak Tovmasyan
- Department of Radiation Oncology
- Duke University Medical Center
- Durham
- USA
| | - James Craik
- Department of Biochemistry
- Faculty of Medicine
- Kuwait University
- Safat 13110
- Kuwait
| | | | - Ludmil Benov
- Department of Biochemistry
- Faculty of Medicine
- Kuwait University
- Safat 13110
- Kuwait
| |
Collapse
|
4
|
Vannini C, Carpentieri A, Salvioli A, Novero M, Marsoni M, Testa L, de Pinto MC, Amoresano A, Ortolani F, Bracale M, Bonfante P. An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts. THE NEW PHYTOLOGIST 2016; 211:265-275. [PMID: 26914272 DOI: 10.1111/nph.13895] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal-endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B-) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signalling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B-. A shift towards pentose phosphate metabolism was detected in B-. Quantification of carbonylated proteins indicated that the B- line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal-plant interactions.
Collapse
Affiliation(s)
- Candida Vannini
- Department of Biotechnology and Life Science, Università dell'Insubria, via J.H. Dunant 3, I-21100, Varese, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, Università di Napoli 'Federico II', via Cintia 4, I-80126, Napoli, Italy
| | - Alessandra Salvioli
- Department of Life Sciences and Systems Biology, Università di Torino, viale Mattioli 25, I-10125, Torino, Italy
| | - Mara Novero
- Department of Life Sciences and Systems Biology, Università di Torino, viale Mattioli 25, I-10125, Torino, Italy
| | - Milena Marsoni
- Department of Biotechnology and Life Science, Università dell'Insubria, via J.H. Dunant 3, I-21100, Varese, Italy
| | - Lorenzo Testa
- Department of Biotechnology and Life Science, Università dell'Insubria, via J.H. Dunant 3, I-21100, Varese, Italy
| | - Maria Concetta de Pinto
- Department of Biology, Università di Bari 'Aldo Moro', via E. Orabona 4, I-70125, Bari, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, Università di Napoli 'Federico II', via Cintia 4, I-80126, Napoli, Italy
| | - Francesca Ortolani
- Department of Biotechnology and Life Science, Università dell'Insubria, via J.H. Dunant 3, I-21100, Varese, Italy
| | - Marcella Bracale
- Department of Biotechnology and Life Science, Università dell'Insubria, via J.H. Dunant 3, I-21100, Varese, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, Università di Torino, viale Mattioli 25, I-10125, Torino, Italy
| |
Collapse
|
5
|
Song P, Wei H, Cao Z, Wang P, Zhu G. Single arginine mutation in two yeast isocitrate dehydrogenases: biochemical characterization and functional implication. PLoS One 2014; 9:e115025. [PMID: 25502799 PMCID: PMC4263744 DOI: 10.1371/journal.pone.0115025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022] Open
Abstract
Isocitrate dehydrogenase (IDH), a housekeeping gene, has drawn the attention of cancer experts. Mutation of the catalytic Arg132 residue of human IDH1 (HcIDH) eliminates the enzyme's wild-type isocitrate oxidation activity, but confer the mutant an ability of reducing α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG). To examine whether an analogous mutation in IDHs of other eukaryotes could cause similar effects, two yeast mitochondrial IDHs, Saccharomyces cerevisiae NADP+-IDH1 (ScIDH1) and Yarrowia lipolytica NADP+-IDH (YlIDH), were studied. The analogous Arg residues (Arg148 of ScIDH1 and Arg141 of YlIDH) were mutated to His. The Km values of ScIDH1 R148H and YlIDH R141H for isocitrate were determined to be 2.4-fold and 2.2-fold higher, respectively, than those of the corresponding wild-type enzymes. The catalytic efficiencies (kcat/Km) of ScIDH1 R148H and YlIDH R141H for isocitrate oxidation were drastically reduced by 227-fold and 460-fold, respectively, of those of the wild-type enzymes. As expected, both ScIDH1 R148H and YlIDH R141H acquired the neomorphic activity of catalyzing α-KG to 2-HG, and the generation of 2-HG was confirmed using gas chromatography/time of flight-mass spectrometry (GC/TOF-MS). Kinetic analysis showed that ScIDH1 R148H and YlIDH R141H displayed 5.2-fold and 3.3-fold higher affinities, respectively, for α-KG than the HcIDH R132H mutant. The catalytic efficiencies of ScIDH1 R148H and YlIDH R141H for α-KG were 5.5-fold and 4.5-fold, respectively, of that of the HcIDH R132H mutant. Since the HcIDH Arg132 mutation is associated with the tumorigenesis, this study provides fundamental information for further research on the physiological role of this IDH mutation in vivo using yeast.
Collapse
Affiliation(s)
- Ping Song
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
| | - Huanhuan Wei
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
| | - Zhengyu Cao
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
| | - Peng Wang
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
- * E-mail: (PW); (GPZ)
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, China
- * E-mail: (PW); (GPZ)
| |
Collapse
|
6
|
NADP(+)-specific isocitrate dehydrogenase from oleaginous yeast Yarrowia lipolytica CLIB122: biochemical characterization and coenzyme sites evaluation. Appl Biochem Biotechnol 2013; 171:403-16. [PMID: 23846800 DOI: 10.1007/s12010-013-0373-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/26/2013] [Indexed: 12/18/2022]
Abstract
NADP(+)-dependent isocitrate dehydrogenase from Yarrowia lipolytica CLIB122 (YlIDP) was overexpressed and purified. The molecular mass of YlIDP was estimated to be about 81.3 kDa, suggesting its homodimeric structure in solution. YlIDP was divalent cation dependent and Mg(2+) was found to be the most favorable cofactor. The purified recombinant YlIDP displayed maximal activity at 55 °C and its optimal pH for catalysis was found to be around 8.5. Heat inactivation studies revealed that the recombinant YlIDP was stable below 45 °C, but its activity dropped quickly above this temperature. YlIDP was absolutely dependent on NADP(+) and no NAD-dependent activity could be detected. The K m values displayed for NADP(+) and isocitrate were 59 and 31 μM (Mg(2+)), 120 μM and 58 μM (Mn(2+)), respectively. Mutant enzymes were constructed to tentatively alter the coenzyme specificity of YlIDP. The K m values for NADP(+) of R322D mutant was 2,410 μM, being about 41-fold higher than that of wild type enzyme. NAD(+)-dependent activity was detected for R322D mutant and the K m and k cat values for NAD(+) were 47,000 μM and 0.38 s(-1), respectively. Although the R322D mutant showed low activity with NAD(+), it revealed the feasibility of engineering an eukaryotic IDP to a NAD(+)-dependent one.
Collapse
|
7
|
Ward PS, Lu C, Cross JR, Abdel-Wahab O, Levine RL, Schwartz GK, Thompson CB. The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. J Biol Chem 2012; 288:3804-15. [PMID: 23264629 DOI: 10.1074/jbc.m112.435495] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Monoallelic point mutations in cytosolic isocitrate dehydrogenase 1 (IDH1) and its mitochondrial homolog IDH2 can lead to elevated levels of 2-hydroxyglutarate (2HG) in multiple cancers. Here we report that cellular 2HG production from cytosolic IDH1 mutation is dependent on the activity of a retained wild-type IDH1 allele. In contrast, expression of mitochondrial IDH2 mutations led to robust 2HG production in a manner independent of wild-type mitochondrial IDH function. Among the recurrent IDH2 mutations at Arg-172 and Arg-140, IDH2 Arg-172 mutations consistently led to greater 2HG accumulation than IDH2 Arg-140 mutations, and the degree of 2HG accumulation correlated with the ability of these mutations to block cellular differentiation. Cytosolic IDH1 Arg-132 mutations, although structurally analogous to mutations at mitochondrial IDH2 Arg-172, were only able to elevate intracellular 2HG to comparable levels when an equivalent level of wild-type IDH1 was co-expressed. Consistent with 2HG production from cytosolic IDH1 being limited by substrate production from wild-type IDH1, we observed 2HG levels to increase in cancer cells harboring an endogenous monoallelic IDH1 mutation when mitochondrial IDH flux was diverted to the cytosol. Finally, expression of an IDH1 construct engineered to localize to the mitochondria rather than the cytosol resulted in greater 2HG accumulation. These data demonstrate that allelic and subcellular compartment differences can regulate the potential for IDH mutations to produce 2HG in cells. The consequences of 2HG elevation are dose-dependent, and the non-equivalent 2HG accumulation resulting from IDH1 and IDH2 mutations may underlie their differential prognosis and prevalence in various cancers.
Collapse
Affiliation(s)
- Patrick S Ward
- Cancer Biology and Genetics Program, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Simcock DC, Walker LR, Pedley KC, Simpson HV, Brown S. The tricarboxylic acid cycle in L₃ Teladorsagia circumcincta: metabolism of acetyl CoA to succinyl CoA. Exp Parasitol 2011; 128:68-75. [PMID: 21320492 DOI: 10.1016/j.exppara.2011.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/02/2011] [Accepted: 02/08/2011] [Indexed: 11/30/2022]
Abstract
Nematodes, like other species, derive much of the energy for cellular processes from mitochondrial pathways including the TCA cycle. Previously, we have shown L₃ Teladorsagia circumcincta consume oxygen and so may utilise a full TCA cycle for aerobic energy metabolism. We have assessed the relative activity levels and substrate affinities of citrate synthase, aconitase, isocitrate dehydrogenase (both NAD+ and NADP+ specific) and α-ketoglutarate dehydrogenase in homogenates of L₃ T. circumcincta. All of these enzymes were present in homogenates. Compared with citrate synthase, low levels of enzyme activity and low catalytic efficiency was observed for NAD+ isocitrate dehydrogenase and especially α-ketoglutarate dehydrogenase. Therefore, it is likely that the activity of these to enzymes regulate overall metabolite flow through the TCA cycle, especially when [NAD+] limits enzyme activity. Of the enzymes tested, only citrate synthase had substrate affinities which were markedly different from values obtained from mammalian species. Overall, the results are consistent with the suggestion that a full TCA cycle exists withinL₃ T. circumcincta. While there may subtle variations in enzyme properties, particularly for citrate synthase, the control points for the TCA cycle inL₃ T. circumcincta are probably similar to those in the tissues of their host species.
Collapse
Affiliation(s)
- D C Simcock
- Institute of Food Nutrition and Human Health, Massey University, Palmerston North 4442, New Zealand.
| | | | | | | | | |
Collapse
|
9
|
Leroux AE, Maugeri DA, Cazzulo JJ, Nowicki C. Functional characterization of NADP-dependent isocitrate dehydrogenase isozymes from Trypanosoma cruzi. Mol Biochem Parasitol 2011; 177:61-4. [PMID: 21291916 DOI: 10.1016/j.molbiopara.2011.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/07/2011] [Accepted: 01/21/2011] [Indexed: 11/18/2022]
Abstract
Trypanosoma cruzi exhibits two putative isocitrate dehydrogenases (IDHs). Both idh genes were cloned and the recombinant enzymes expressed in Escherichia coli. Our results showed that T. cruzi IDHs are strictly dependent on NADP(+) and display apparent affinities towards isocitrate and the coenzyme in the low micromolar range. In T. cruzi, IDHs are cytosolic and mitochondrial enzymes, and there is no evidence for the typical Krebs cycle-related NAD-dependent IDH. Hence, like in Trypanosoma brucei, the Krebs cycle is not a canonical route in T. cruzi. However, the citrate produced in the mitochondrion could be isomerized into isocitrate in the cytosol and the mitochondrion by means of the putative aconitase, which would provide the substrate for both IDHs. The cytosolic IDH is significantly more abundant in amastigotes, cell-derived and metacyclic trypomastigotes than in epimastigotes. This observation fits in well with the expected oxidative burst this pathogen has to face when infecting the mammalian host.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Química y Fisicoquímica Biológica IQUIFIB-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
10
|
Zera AJ, Newman S, Berkheim D, Black C, Klug L, Crone E. Purification and characterization of cytoplasmic NADP+-isocitrate dehydrogenase, and amplification of the NADP+-IDH gene from the wing-dimorphic sand field cricket, Gryllus firmus. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:53. [PMID: 21861657 PMCID: PMC3281439 DOI: 10.1673/031.011.5301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/13/2010] [Indexed: 05/31/2023]
Abstract
Cytoplasmic NADP(+)-isocitrate dehydrogenase (NADP(+)-IDH) has been purified and characterized, and its gene sequenced in many animal, plant, and yeast species. However, much less information is available on this enzyme-gene in insects. As a first step in investigating the biochemical and molecular mechanisms by which NADP(+)-IDH contributes to adaptations for flight vs. reproduction in insects, the enzyme was purified to homogeneity in the wing-dimorphic cricket, Gryllus firmus, characterized, and its corresponding gene sequenced. Using a combination of polyethylene glycol precipitation, Cibacron-Blue affinity chromatography, and hydrophobic interaction chromatography the enzyme was purified 291-fold (7% yield; specific activity = 15.8 µmol NADPH/min/mg protein). The purified enzyme exhibited a single band on SDS PAGE (46.3 kD), but consisted of two N-terminal amino acid sequences that differed in the first two amino acids. Purified enzyme exhibited standard Michaelis-Menten kinetics at pH 8.0 and 28° C (K(M(NADP+)) = 2.3 ± 0.4 µM; K(M(Na+-Isocitrate)) = 14.7 + 1.8 µM). Subunit molecular mass and K(M)S were similar to published values for NADP(+)-IDHs from a variety of vertebrate and two insect species. PCR amplification of an internal sequence using genomic DNA followed by 3' and 5' RACE yielded a nucleotide sequence of the mature protein and translated amino-acid sequences that exhibited high similarity (40-50% and 70-80%, respectively) to sequences from insect and vertebrate NADP(+)-IDHs. Two potential ATG start codons were identified. Both Nterminal amino-acid sequences matched the nucleotide sequence, consistent with both enzyme forms being transcribed from the same gene, although these variants could also be encoded by different genes. Bioinformatic analyses and differential centrifugation indicated that the majority, if not all, of the enzyme is cytoplasmic. The enzyme exhibited high specific activity in fat body, head and gut, and a single band on native PAGE.
Collapse
Affiliation(s)
- Anthony J. Zera
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| | - Susan Newman
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| | - David Berkheim
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| | - Christine Black
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| | - Lindsay Klug
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| | - Erica Crone
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588 USA
| |
Collapse
|
11
|
Isocitrate dehydrogenase is important for nitrosative stress resistance in Cryptococcus neoformans, but oxidative stress resistance is not dependent on glucose-6-phosphate dehydrogenase. EUKARYOTIC CELL 2010; 9:971-80. [PMID: 20400467 DOI: 10.1128/ec.00271-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The opportunistic intracellular fungal pathogen Cryptococcus neoformans depends on many antioxidant and denitrosylating proteins and pathways for virulence in the immunocompromised host. These include the glutathione and thioredoxin pathways, thiol peroxidase, cytochrome c peroxidase, and flavohemoglobin denitrosylase. All of these ultimately depend on NADPH for either catalytic activity or maintenance of a reduced, functional form. The need for NADPH during oxidative stress is well established in many systems, but a role in resistance to nitrosative stress has not been as well characterized. In this study we investigated the roles of two sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1) and NADP(+)-dependent isocitrate dehydrogenase (Idp1), in production of NADPH and resistance to oxidative and nitrosative stress. Deletion of ZWF1 in C. neoformans did not result in an oxidative stress sensitivity phenotype or changes in the amount of NADPH produced during oxidative stress compared to those for the wild type. Deletion of IDP1 resulted in greater sensitivity to nitrosative stress than to oxidative stress. The amount of NADPH increased 2-fold over that in the wild type during nitrosative stress, and yet the idp1Delta strain accumulated more mitochondrial damage than the wild type during nitrosative stress. This is the first report of the importance of Idp1 and NADPH for nitrosative stress resistance.
Collapse
|
12
|
Lu Q, McAlister-Henn L. Peroxisomal localization and function of NADP+ -specific isocitrate dehydrogenases in yeast. Arch Biochem Biophys 2009; 493:125-34. [PMID: 19854152 DOI: 10.1016/j.abb.2009.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 11/17/2022]
Abstract
Yeast peroxisomal NADP(+)-specific isocitrate dehydrogenase (IDP3) contains a canonical type I peroxisomal targeting sequence (a carboxyl-terminal Cys-Lys-Leu tripeptide), and provides the NADPH required for beta-oxidation of some fatty acids in that organelle. Cytosolic yeast IDP2 carrying a PTS1 (IDP2(+CKL)) was only partially localized to peroxisomes, and the enzyme was able to function in lieu of either peroxisomal IDP3 or cytosolic IDP2. The analogous isocitrate dehydrogenase enzyme (IDPA) from Aspergillus nidulans, irrespective of the presence or absence of a putative PTS1, was found to exhibit patterns of dual compartmental distribution and of dual function in yeast similar to those observed for IDP2(+CKL). To test a potential cellular limit on peroxisomal levels, authentic yeast IDP3, which is normally strictly peroxisomal, was over-expressed. This also resulted in dual distribution and function of the enzyme in both the cytosol and in peroxisomes, supporting the possibility of a restriction on organellar amounts of IDP.
Collapse
Affiliation(s)
- Qian Lu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | |
Collapse
|
13
|
Lu Q, Minard KI, McAlister-Henn L. Dual compartmental localization and function of mammalian NADP+-specific isocitrate dehydrogenase in yeast. Arch Biochem Biophys 2008; 472:17-25. [PMID: 18275837 PMCID: PMC2295207 DOI: 10.1016/j.abb.2008.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 11/28/2022]
Abstract
Isozymes of NADP+-specific isocitrate dehydrogenase (IDP) provide NADPH in cytosolic, mitochondrial, and peroxisomal compartments of eukaryotic cells. Analyses of purified IDP isozymes from yeast and from mouse suggest a general correspondence of pH optima for catalysis and pI values with pH values reported for resident cellular compartments. However, mouse IDP2, which partitions between cytosolic and peroxisomal compartments in mammalian cells, exhibits a broad pH optimum and an intermediate pI value. Mouse IDP2 was found to similarly colocalize in both cellular compartments when expressed in yeast at levels equivalent to those of endogenous yeast isozymes. The mouse enzyme can compensate for loss of yeast cytosolic IDP2 and of peroxisomal IDP3. Removal of the peroxisomal targeting signal of the mouse enzyme precludes both localization in peroxisomes and compensation for loss of yeast IDP3.
Collapse
Affiliation(s)
- Qian Lu
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Karyl I. Minard
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Lee McAlister-Henn
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
14
|
Leterrier M, Del Río LA, Corpas FJ. Cytosolic NADP-isocitrate dehydrogenase of pea plants: genomic clone characterization and functional analysis under abiotic stress conditions. Free Radic Res 2007; 41:191-9. [PMID: 17364945 DOI: 10.1080/10715760601034055] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NADPH is an essential electron donor in numerous biosynthetic and detoxification reactions. In animal, yeast and bacteria, the NADP-dependent isocitrate dehydrogenase (NADP-ICDH), which catalyzes the production of NADPH, is being recognized as an essential component of the antioxidative defence mechanisms. In plant cells, there is little information on the antioxidant properties of NADP-ICDH. Using a pea cDNA lambdagt11 library, the full-length cDNA of a NADP-ICDH was obtained. In pea leaves, the analyses of activity, protein and transcript expression of NADP-ICDH under six different abiotic stress conditions (CL, continuous light, HLI, high light intensity, D, continuous dark, LT, low-temperature HT, high-temperature and W, mechanical wounding) revealed a differential regulation at transcriptional and post-translational level depending on the abiotic stress. The activity and protein expression of NADP-ICDH and catalase increased only under HLI but the NADP-ICDH transcripts were up-regulated by cold stress (70%) and W (40%). Under the same conditions, the transcript analysis of glutathione reductase (GR), monodehydroascorbate reductase (MDAR) and ascorbate peroxidase (APX), key components of the antioxidative ascorbate-glutathione cycle, showed similar inductions. These data indicate that in pea plants the cytosolic NADP-ICDH shows a differential response, at mRNA and activity level, depending on the type of abiotic stress and suggests that this dehydrogenase could have a protective antioxidant role against certain environmental stresses in plants.
Collapse
Affiliation(s)
- Marina Leterrier
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Instituto de Biología Vegetal y Medio Ambiente, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada, E-18080, Spain
| | | | | |
Collapse
|
15
|
Singh R, Beriault R, Middaugh J, Hamel R, Chenier D, Appanna VD, Kalyuzhnyi S. Aluminum-tolerant Pseudomonas fluorescens: ROS toxicity and enhanced NADPH production. Extremophiles 2005; 9:367-73. [PMID: 15970995 DOI: 10.1007/s00792-005-0450-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 04/07/2005] [Indexed: 11/27/2022]
Abstract
Aluminum (Al) triggered a marked increase in reactive oxygen species (ROS) such as O(2) (-) and H(2)O(2) in Pseudomonas fluorescens. Although the Al-stressed cells were characterized with higher amounts of oxidized lipids and proteins than controls, NADPH production was markedly increased in these cells. Blue native polyacrylamide gel electrophoresis (BN-PAGE) analyses coupled with activity and Coomassie staining revealed that NADP(+) -dependent isocitrate dehydrogenase (ICDH, E.C. 1.1.1.42) and glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) played a pivotal role in diminishing the oxidative environment promoted by Al. These enzymes were overexpressed in the Al-tolerant microbes and were modulated by the presence of either Al or hydrogen peroxide (H(2)O(2)) or menadione. The activity of superoxide dismutase (SOD, E.C. 1.15.1.1), an enzyme known to combat ROS stress was also increased in the cells cultured in millimolar amounts of Al. Hence, Al-tolerant P. fluorescens invokes an anti-oxidative defense strategy in order to survive.
Collapse
Affiliation(s)
- Ranji Singh
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E2C6, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Contreras-Shannon V, Lin AP, McCammon MT, McAlister-Henn L. Kinetic properties and metabolic contributions of yeast mitochondrial and cytosolic NADP+-specific isocitrate dehydrogenases. J Biol Chem 2004; 280:4469-75. [PMID: 15574419 DOI: 10.1074/jbc.m410140200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To compare kinetic properties of homologous isozymes of NADP+-specific isocitrate dehydrogenase, histidine-tagged forms of yeast mitochondrial (IDP1) and cytosolic (IDP2) enzymes were expressed and purified. The isozymes were found to share similar apparent affinities for cofactors. However, with respect to isocitrate, IDP1 had an apparent Km value approximately 7-fold lower than that of IDP2, whereas, with respect to alpha-ketoglutarate, IDP2 had an apparent Km value approximately 10-fold lower than that of IDP1. Similar Km values for substrates and cofactors in decarboxylation and carboxylation reactions were obtained for IDP2, suggesting a capacity for bidirectional catalysis in vivo. Concentrations of isocitrate and alpha-ketoglutarate measured in extracts from the parental strain were found to be similar with growth on different carbon sources. For mutant strains lacking IDP1, IDP2, and/or the mitochondrial NAD+-specific isocitrate dehydrogenase (IDH), metabolite measurements indicated that major cellular flux is through the IDH-catalyzed reaction in glucose-grown cells and through the IDP2-catalyzed reaction in cells grown with a nonfermentable carbon source (glycerol and lactate). A substantial cellular pool of alpha-ketoglutarate is attributed to IDH function during glucose growth, and to both IDP1 and IDH function during growth on glycerol/lactate. Complementation experiments using a strain lacking IDH demonstrated that overexpression of IDP1 partially compensated for the glutamate auxotrophy associated with loss of IDH. Collectively, these results suggest an ancillary role for IDP1 in cellular glutamate synthesis and a role for IDP2 in equilibrating and maintaining cellular levels of isocitrate and alpha-ketoglutarate.
Collapse
Affiliation(s)
- Veronica Contreras-Shannon
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|