1
|
He KY, Yu HP, Zou J, Chen X, Chen L, Ruan DD, Chen T, Chen Q, Zhang L, Gao MZ, Lin XF, Li H, Fang ZT, Wu J, Luo JW, Liao LS. A novel stoploss mutation CYB5R3 c.906A>G(p.*302Trpext*42) involved in the pathogenesis of hereditary methemoglobinemia. Clin Chim Acta 2025; 564:119930. [PMID: 39154701 DOI: 10.1016/j.cca.2024.119930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Recessive congenital methemoglobinemia (RCM) is a hereditary autosomal disorder with an extremely low incidence rate. Here, we report a case of methemoglobinemia type I in a patient with congenital persistent cyanosis. The condition was attributed to a novel compound heterozygous mutation in CYB5R3, characterized by elevated methemoglobin levels (13.4 % of total hemoglobin) and undetectable NADH cytochrome b5 reductase (CYB5R3) activity. Whole-exome sequencing (WES) revealed two heterozygous mutations in CYB5R3: a previously reported pathogenic missense mutation c.611G>A(p.Cys204Tyr) inherited from the father, and a novel stop codon mutation c.906A>G(p.*302Trpext*42) from the mother, the latter mutation assessed as likely pathogenic according to ACMG guidelines. In cells overexpressing the CYB5R3 c.906A>G mutant construct, the CYB5R3 mRNA level was significantly lower than in cells overexpressing the wild-type (WT) CYB5R3 construct. However, there was no significant difference in protein expression levels between the mutant and WT constructs. Notably, an additional protein band of approximately 55 kDa was detected in the mutant cells. Immunofluorescence localization showed that, compared to wild-type CYB5R3, the subcellular localization of the CYB5R3 p.*302Trpext*42 mutant protein did not show significant changes and remained distributed in the endoplasmic reticulum and mitochondria. However, the c.906A>G(p.*302Trpext*42) mutation resulted in increased intracellular reactive oxygen species (ROS) levels and decreased NAD+/NADH ratio, suggesting impaired CYB5R3 function and implicating this novel mutation as likely pathogenic.
Collapse
Affiliation(s)
- Kai-Ying He
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Hong-Ping Yu
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Jing Zou
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xiang Chen
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Li Chen
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Dan-Dan Ruan
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Ting Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Qian Chen
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Li Zhang
- Nephrology Department, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Mei-Zhu Gao
- Nephrology Department, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xin-Fu Lin
- Pediatrics Department, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Hong Li
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Zhu-Ting Fang
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China; Clinical School of Oncology, Fujian Medical University, Fuzhou 350001, China.
| | - Jing Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China.
| | - Jie-Wei Luo
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China.
| | - Li-Sheng Liao
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China; Department of Hematology, Fujian Provincial Hospital, Fuzhou 350001, China.
| |
Collapse
|
2
|
Bouatrous E, Nouira S, Menif S, Ouragini H. Identification of High-Risk Single Nucleotide Polymorphisms in the Human CYB5R3 Gene Responsible for Recessive Congenital Methemoglobinemia: A Computational Approach. Mol Syndromol 2023; 14:375-393. [PMID: 37901856 PMCID: PMC10601824 DOI: 10.1159/000530173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/10/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction NADH-cytochrome b5 reductase deficiency due to pathogenic variants in the CYB5R3 gene causes recessive congenital methemoglobinemia (RCM) type I or type II. In type I, cyanosis from birth is the only major symptom, and the enzyme deficiency is restricted only to erythrocytes. Whereas in type II, cyanosis is associated with severe neurological manifestations, and the enzyme deficiency is generalized to all tissues. Methods In this study, several computational methods (SIFT, Polyphen-2, PROVEAN, Mutation Assessor, Panther, Phd-SNP, SNPs&GO, SNAP2, Align, GVGD, MutPred2, I-Mutant 2.0, MUpro, Duet, ConSurf and Netsurf-2.0 tools) were used to find the most deleterious nsSNPs in the CYB5R3 gene. Furthermore, structural analysis by Swiss-PDB viewer, protein-ligand docking using FTSite, and protein-protein interaction using STRING were carried out to evaluate the impact of these nsSNPs on the protein structure and function. Results Our in silico analysis suggested that out of 339 nsSNPs of the CYB5R3 gene, 17 (L47H, L47P, R61P, L73R G76D, G76C, P96H, G104C, S128P, G144D, P145S, L149P, Y151H, M177T, I178T, I216N, and G251V), are the most deleterious. Among them, two (P96H and S128P) were reported to be associated with the severe form RCM type II, six are related to RCM type I (G104C, G144D, P145S, L149P, M177T, and I178T), and the remaining nine high-risk nsSNPs have not yet been reported in RCM patients. Discussion This study highlighted the potential pathogenic nsSNPs of the CYB5R3 gene. To comprehend how these most harmful nsSNPs contribute to disease, it is crucial to experimentally validate their functional effects.
Collapse
Affiliation(s)
- Emna Bouatrous
- LR16IPT07, Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Sonia Nouira
- LR16IPT07, Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Molecular Biology Cell and Biotechnology Department, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Samia Menif
- LR16IPT07, Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Houyem Ouragini
- LR16IPT07, Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
3
|
Iqbal T, Das D. Biochemical Investigation of Membrane-Bound Cytochrome b5 and the Catalytic Domain of Cytochrome b5 Reductase from Arabidopsis thaliana. Biochemistry 2022; 61:909-921. [PMID: 35475372 DOI: 10.1021/acs.biochem.2c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum (ER) membrane of plant cells contains several enzymes responsible for the biosynthesis of a diverse range of molecules essential for plant growth and holds potential for industrial applications. Many of these enzymes are dependent on electron transfer proteins to sustain their catalytic cycles. In plants, two crucial ER-bound electron transfer proteins are cytochrome b5 and cytochrome b5 reductase, which catalyze the stepwise transfer of electrons from NADH to redox enzymes such as fatty acid desaturases, cytochrome P450s, and plant aldehyde decarbonylase. Despite the high significance of plant cytochrome b5 and cytochrome b5 reductase, they have eluded detailed characterization to date. Here, we overexpressed the full-length membrane-bound cytochrome b5 isoform B from the model plant Arabidopsis thaliana in Escherichia coli, purified the protein employing detergents as well as styrene-maleic acid (SMA) copolymers, and biochemically characterized the protein. The SMA-encapsulated cytochrome b5 exhibits a discoidal shape and the characteristic features of the active heme-bound state. We also overexpressed and purified the soluble domain of cytochrome b5 reductase from A. thaliana, establishing its activity, stability, and kinetic parameters. Further, we demonstrated that the plant cytochrome b5, purified in detergents and styrene maleic acid lipid particles (SMALPs), readily accepts electrons from the cognate plant cytochrome b5 reductase and distant electron mediators such as plant NADPH-cytochrome P450 oxidoreductase and cyanobacterial NADPH-ferredoxin reductase. We also measured the kinetic parameters of cytochrome b5 reductase for cytochrome b5. Our studies are the first to report the purification and detailed biochemical characterization of the plant cytochrome b5 and cytochrome b5 reductase from the bacterial overexpression system.
Collapse
Affiliation(s)
- Tabish Iqbal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
4
|
Kedar PS, Gupta V, Warang P, Chiddarwar A, Madkaikar M. Novel mutation (R192C) in CYB5R3 gene causing NADH-cytochrome b5 reductase deficiency in eight Indian patients associated with autosomal recessive congenital methemoglobinemia type-I. ACTA ACUST UNITED AC 2018; 23:567-573. [PMID: 29482478 DOI: 10.1080/10245332.2018.1444920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the cause of recessive congenital methemoglobinemia (RCM) in Indian families and to identify molecular defect associated with RCM. METHODS Eight cases of RCM have been addressed to our laboratory in order to investigate the cause of cyanosis associated with genetic disorders. NADH-cytochrome b5 reductase (cytb5r) enzyme activities were measured by standard methods, and molecular analysis was performed by polymerase chain reaction (PCR) followed by DNA sequencing. The interpretation of mutation effect and the molecular modeling were performed by using specific software DEEP VIEW SWISS-PDB VIEWER and Pymol molecular graphics program. RESULTS AND DISCUSSION Eight index cases from four unrelated families were referred for the cause of cyanosis. All patients showed mild to moderate cyanosis without mental retardation or any neurologic abnormalities. The methemoglobin levels were in the range of 11.5-22.41% with 50-70% reduction in CYTB5R activity. Spectroscopic analysis of the hemolysate showed normal peaks suggesting the absence of Hb-M. Molecular characterization showed a novel homozygous mutation p.Arg192Cys in CYB5R3 gene is an evolutionarily conserved position located in exon 7 in all eight index cases. The substitution of Cys is located on the interface of two domains of NADH-binding domain and is close proximity to the adenosine moiety would preclude the reciprocal ionic interaction (salt bridge) between Arg192 and Ile97 and may influence binding of the NADH coenzyme is hypothesized to cause disruption of hydrogen bonding and instability. Our study indicated that novel homozygous mutation p.Arg192Cys in CYB5R3 gene present in eight cases and the possibility of high prevalence of heterozygous in Indian population causing Type I RCM.
Collapse
Affiliation(s)
- Prabhakar S Kedar
- a National Institute of Immunohematology , Indian Council of Medical Research , Mumbai , India
| | - Vinod Gupta
- a National Institute of Immunohematology , Indian Council of Medical Research , Mumbai , India
| | - Prashant Warang
- a National Institute of Immunohematology , Indian Council of Medical Research , Mumbai , India
| | - Ashish Chiddarwar
- a National Institute of Immunohematology , Indian Council of Medical Research , Mumbai , India
| | - Manisha Madkaikar
- a National Institute of Immunohematology , Indian Council of Medical Research , Mumbai , India
| |
Collapse
|
5
|
Bohnhorst B, Hartmann H, Lange M. Severe methemoglobinemia caused by continuous lidocaine infusion in a term neonate. Eur J Paediatr Neurol 2017; 21:576-579. [PMID: 28082013 DOI: 10.1016/j.ejpn.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/09/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022]
Abstract
Neonates and young infants are especially prone to develop drug-induced methemoglobinemia. Therefore, lidocaine is not licensed as local anesthetic in children below the age of 3 months. However, its systemic use is advocated for neonatal seizures. Cardiac arrhythmia has been reported as sole major side effect. Here we report a case of severe methemoglobinemia caused by continuous infusion of lidocaine in a term neonate with neonatal seizures. The increase of methemoglobin up to 13.8% was accompanied by hypoxemia and cyanosis, necessitating additional inspired oxygen and CPAP ventilation. After stopping lidocaine infusion methemoglobin levels fell and the neonate could be weaned from ventilation. Neonates treated with lidocaine for seizures must be monitored for the occurrence of methemoglobinemia.
Collapse
|
6
|
Elahian F, Sepehrizadeh Z, Moghimi B, Mirzaei SA. Human cytochrome b5 reductase: structure, function, and potential applications. Crit Rev Biotechnol 2012; 34:134-43. [PMID: 23113554 DOI: 10.3109/07388551.2012.732031] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cytochrome b5 reductase is a flavoprotein that is produced as two different isoforms that have different localizations. The amphipathic microsomal isoform, found in all cell types with the exception of erythrocytes, consists of one hydrophobic membrane-anchoring domain and a larger hydrophilic flavin catalytic domain. The soluble cytochrome b5 reductase isoform, found in human erythrocytes, is a truncated protein that is encoded by an alternative transcript and consists of the larger domain only. Cytochrome b5 reductase is involved in the transfer of reducing equivalents from the physiological electron donor, NADH, via an FAD domain to the small molecules of cytochrome b5. This protein has received much attention from researchers due to its involvement in many oxidation and reduction reactions, such as the reduction of methemoglobin to hemoglobin. Autosomal cytochrome b5 reductase gene deficiency manifests with the accumulation of oxidized Fe+3 and recessive congenital methemoglobinemia in humans. In this article, we provide a comprehensive overview of the structure and function of cytochrome b5 reductase from different eukaryotic sources and its potential use in the food industry, biosensor, and diagnostic areas.
Collapse
Affiliation(s)
- Fatemeh Elahian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences , Iran and
| | | | | | | |
Collapse
|
7
|
Zhao C, Tang T, Liu J, Feng X, Qiu L. Identification and expression analysis of NADH-cytochrome b₅ reductase gene in the cotton bollworm, Helicoverpa armigera. Gene 2012; 511:96-102. [PMID: 22986333 DOI: 10.1016/j.gene.2012.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 11/15/2022]
Abstract
NADH-cytochrome b(5) reductase (CBR) is one of the most important components of cytochrome P450s, which play an essential role in the detoxification of xenobiotics as well as insecticide resistance in insect pest. In the present study, two novel full-length cDNAs of CBR of the cotton bollworm, Helicoverpa armigera (Hübner) were amplified by means of reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) techniques. The sequencing results showed that the transcripts were 1809bp and 1518bp for HaCBR1 and HaCBR2, respectively, including 969bp and 939bp of complete open reading frame (ORF), which encoded 322 and 312 amino acids respectively. The putative structure and function of HaCBR1 and HaCBR2 were preliminarily analyzed by SMART program. HaCBR1 and HaCBR2 (GenBank accession numbers: HQ638220 and HQ190046HQ638220HQ190046) showed high identities with CBRs of other species. The expression of HaCBR1 and HaCBR2 mRNA was detected by real-time quantitative polymerase chain reaction (RT-qPCR) in most developmental stages of H. armigera with the exception of eggs, as well as in tissues such as cuticle, fatbody and midgut. The expression level of the two genes was significantly induced by phenobarbital (PB). These results would contribute to the understanding of CBR function in H. armigera and provide information for further study on the interactions of different components of cytochrome P450 enzyme systems.
Collapse
Affiliation(s)
- Chunqing Zhao
- College of Science, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
8
|
Regulation of hemocytes in Drosophila requires dappled cytochrome b5. Biochem Genet 2011; 49:329-51. [PMID: 21279680 PMCID: PMC3092937 DOI: 10.1007/s10528-010-9411-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/20/2010] [Indexed: 12/12/2022]
Abstract
A major category of mutant hematopoietic phenotypes in Drosophila is melanotic tumors or nodules, which consist of abnormal and overproliferated blood cells, similar to granulomas. Our analyses of the melanotic mutant dappled have revealed a novel type of gene involved in blood cell regulation. The dappled gene is an essential gene that encodes cytochrome b5, a conserved hemoprotein that participates in electron transfer in multiple biochemical reactions and pathways. Viable mutations of dappled cause melanotic nodules and hemocyte misregulation during both hematopoietic waves of development. The sexes are similarly affected, but hemocyte number is different in females and males of both mutants and wild type. Additionally, initial tests show that curcumin enhances the dappled melanotic phenotype and establish screening of endogenous and xenobiotic compounds as a route for analysis of cytochrome b5 function. Overall, dappled provides a tractable genetic model for cytochrome b5, which has been difficult to study in higher organisms.
Collapse
|
9
|
Mirzaei SA, Yazdi MT, Sepehrizadeh Z. Secretory expression and purification of a soluble NADH cytochrome b5 reductase enzyme from Mucor racemosus in Pichia pastoris based on codon usage adaptation. Biotechnol Lett 2010; 32:1705-11. [DOI: 10.1007/s10529-010-0348-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/29/2010] [Indexed: 11/30/2022]
|
10
|
Huang LJ, Shen YM, Bulut GB. Advances in understanding the pathogenesis of primary familial and congenital polycythaemia. Br J Haematol 2010; 148:844-52. [PMID: 20096014 DOI: 10.1111/j.1365-2141.2009.08069.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Primary familial and congenital polycythemia (PFCP) is an autosomal-dominant proliferative disorder characterized by erythrocytosis and hypersensitivity of erythroid progenitors to erythropoietin (Epo). Several lines of evidence suggest a causal role of truncated erythropoietin receptor (EpoR) in this disease. In this review, we discuss PFCP in the context of erythrocytosis and EpoR signalling. We focus on recent studies describing mechanisms underlying Epo-dependent EpoR down-regulation. One mechanism depends on internalization mediated through the p85 regulatory subunit of the Phosphoinositide 3-Kinase, and the other utilizes ubiquitin-based proteasomal degradation. Truncated PFCP EpoRs are not properly down-regulated upon stimulation, underscoring the importance of these mechanisms in the pathogenesis of PFCP.
Collapse
Affiliation(s)
- Lily J Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9039, USA.
| | | | | |
Collapse
|
11
|
Abstract
The approach to a patient with erythrocytosis is greatly simplified by assessing the clonality of the process upfront. In this regard, there has been a dramatic shift toward genetic testing and away from traditional tests, such as measurement of red cell mass. Clonal erythrocytosis is the diagnostic feature of polycythemia vera (PV) and is almost always associated with a JAK2 mutation (JAK2V617F or exon 12). All other scenarios represent non-clonal erythrocytosis, often referred to as secondary erythrocytosis. Serum erythropoietin (Epo) level is usually normal or elevated in secondary erythrocytosis and subnormal in PV. Therefore, in a patient with acquired erythrocytosis, it is reasonable to begin the diagnostic work-up with peripheral blood JAK2 mutation analysis and serum Epo measurement to distinguish PV from secondary erythrocytosis. Conversely, the patient with life-long erythrocytosis is more likely to suffer from congenital polycythemia and should therefore be evaluated for germline mutations that result in enhanced Epo effect (for example, Epo receptor mutations), altered intracellular oxygen sensing (for example, mutations involving the von Hippel-Lindau tumor suppressor gene) or decreased P50 (for example, high-oxygen-affinity hemoglobinopathy). The order of tests in this instance depends on the clinical scenario and serum Epo level.
Collapse
|
12
|
Percy MJ, Lappin TR. Recessive congenital methaemoglobinaemia: cytochrome b(5) reductase deficiency. Br J Haematol 2008; 141:298-308. [PMID: 18318771 DOI: 10.1111/j.1365-2141.2008.07017.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH-cytochrome b5 reductase (cb(5)r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b(5) reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb(5)r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb(5)r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb(5)r to be assessed and has provided insight into the function of cb(5)r.
Collapse
|
13
|
Haque MM, Panda K, Tejero J, Aulak KS, Fadlalla MA, Mustovich AT, Stuehr DJ. A connecting hinge represses the activity of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 2007; 104:9254-9. [PMID: 17517617 PMCID: PMC1890481 DOI: 10.1073/pnas.0700332104] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mammals, endothelial nitric oxide synthase (eNOS) has the weakest activity, being one-tenth and one-sixth as active as the inducible NOS (iNOS) and the neuronal NOS (nNOS), respectively. The basis for this weak activity is unclear. We hypothesized that a hinge element that connects the FMN module in the reductase domain but is shorter and of unique composition in eNOS may be involved. To test this hypothesis, we generated an eNOS chimera that contained the nNOS hinge and two mutants that either eliminated (P728IeNOS) or incorporated (I958PnNOS) a proline residue unique to the eNOS hinge. Incorporating the nNOS hinge into eNOS increased NO synthesis activity 4-fold, to an activity two-thirds that of nNOS. It also decreased uncoupled NADPH oxidation, increased the apparent K(m)O(2) for NO synthesis, and caused a faster heme reduction. Eliminating the hinge proline had similar, but lesser, effects. Our findings reveal that the hinge is an important regulator and show that differences in its composition restrict the activity of eNOS relative to other NOS enzymes.
Collapse
Affiliation(s)
- Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Koustubh Panda
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Jesús Tejero
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Kulwant S. Aulak
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Mohammed Adam Fadlalla
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Anthony T. Mustovich
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Kim S, Suga M, Ogasahara K, Ikegami T, Minami Y, Yubisui T, Tsukihara T. Structure of Physarum polycephalum cytochrome b5 reductase at 1.56 A resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:274-9. [PMID: 17401193 PMCID: PMC2330227 DOI: 10.1107/s1744309107010731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 03/07/2007] [Indexed: 11/10/2022]
Abstract
Physarum polycephalum cytochrome b(5) reductase catalyzes the reduction of cytochrome b(5) by NADH. The structure of P. polycephalum cytochrome b(5) reductase was determined at a resolution of 1.56 A. The molecular structure was compared with that of human cytochrome b(5) reductase, which had previously been determined at 1.75 A resolution [Bando et al. (2004), Acta Cryst. D60, 1929-1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data.
Collapse
Affiliation(s)
- Sangwoo Kim
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, Japan
| | - Michihiro Suga
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, Japan
| | - Kyoko Ogasahara
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, Japan
| | - Terumi Ikegami
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | - Yoshiko Minami
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | - Toshitsugu Yubisui
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | - Tomitake Tsukihara
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, Japan
| |
Collapse
|
15
|
Abstract
Hemoglobin has functions besides carrying oxygen to the tissues, and regulates vascular tone and inflammation via a redox couple with methemoglobin. Hemoglobin has iron in the reduced valance Fe(II) and methemoglobin has iron in the oxidized valance Fe (III), with a free energy capable of producing water from oxygen. In generating methemoglobin the couple functions as a nitrite reductase. The degree of oxidation of hemoglobin senses the oxygen level in the blood and uses its ability to produce nitric oxide from nitrite to control vascular tone, increasing blood flood when the proportion of oxygenated hemoglobin falls. Additional cardiovascular damage is produced by methemoglobin mediated oxidation of light density lipoproteins, accelerating arteriosclerosis. In addition, the release of heme from methemoglobin is an important factor in inflammation. These physiologic functions are paralleled by the well-described role in the oxidation of various drugs resulting in methemoglobinemia.
Collapse
Affiliation(s)
- Jay Umbreit
- PPD Inc., Wilmington, North Carolina 28412, USA.
| |
Collapse
|
16
|
Roma GW, Crowley LJ, Barber MJ. Expression and characterization of a functional canine variant of cytochrome b5 reductase. Arch Biochem Biophys 2006; 452:69-82. [PMID: 16814740 DOI: 10.1016/j.abb.2006.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 04/24/2006] [Accepted: 04/26/2006] [Indexed: 11/22/2022]
Abstract
Cytochrome b5 reductase (cb5r), a member of the flavoprotein transhydrogenase family of oxidoreductase enzymes, catalyzes the transfer of reducing equivalents from the physiological electron donor, NADH, to two molecules of cytochrome b5. We have determined the correct nucleotide sequence for the putative full-length, membrane-associated enzyme from Canis familiaris, and have generated a heterologous expression system for production of a histidine-tagged variant of the soluble, catalytic diaphorase domain, comprising residues I33 to F300. Using a simple two-step chromatographic procedure, the recombinant diaphorase domain has been purified to homogeneity and demonstrated to be a simple flavoprotein with a molecular mass of 31,364 (m/z) that retained both NADH:ferricyanide reductase and NADH:cytochrome b5 reductase activities. The recombinant protein contained a full complement of FAD and exhibited absorption and CD spectra comparable to those of a recombinant form of the rat cytochrome b5 reductase diaphorase domain generated using an identical expression system, suggesting similar protein folding. Oxidation-reduction potentiometric titrations yielded a standard midpoint potential (Eo') for the FAD/FADH2 couple of -273+/-5 mV which was identical to the value obtained for the corresponding rat domain. Thermal denaturation studies revealed that the canine domain exhibited stability comparable to that of the rat protein, confirming similar protein conformations. Initial-rate kinetic studies revealed the canine diaphorase domain retained a marked preference for NADH versus NADPH as reducing substrate and exhibited kcat's of 767 and 600 s(-1) for NADH:ferricyanide reductase and NADH:cytochrome b5 reductase activities, respectively, with Km's of 7, 8, and 12 microM for NADH, K3Fe(CN)6, and cytochrome b5, respectively. Spectral-binding constants (Ks) determined for a variety of NAD+ analogs indicated the highest and lowest affinities were observed for APAD+ (Ks=71 microM) and PCA+ (Ks=>31 mM), respectively, and indicated the binding contributions of the various portions of the pyridine nucleotide. These results provide the first correct sequence for the full-length, membrane-associated form of C. familiaris cb5r and provide a direct comparison of the enzymes from two phylogenetic sources using identical expression systems that indicate that both enzymes have comparable spectroscopic, kinetic, thermodynamic, and structural properties.
Collapse
Affiliation(s)
- Glenn W Roma
- Department of Molecular Medicine, School of Basic Biomedical Sciences, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC 007, Tampa, FL 33612, USA
| | | | | |
Collapse
|
17
|
Linz AJ, Greenham RK, Fallon LF. Methemoglobinemia: An Industrial Outbreak Among Rubber Molding Workers. J Occup Environ Med 2006; 48:523-8. [PMID: 16688009 DOI: 10.1097/01.jom.0000201815.32098.99] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This case series documents an occupational outbreak of methemoglobinemia among five steam press operators at a rubber plant. Investigative findings identified the cause as repeated exposure (through manual handling) to an adhesive containing dinitrobenzene. RESULTS The workers presented with yellow-stained hands and a variety of clinical manifestations. Methemoglobinemia levels obtained in the emergency room ranged from 3.8% to 41.2%. Methylthioninium chloride (methylene blue) rapidly reversed the cyanosis and alleviated associated symptoms in the rubber molding workers requiring treatment. CONCLUSIONS Prompt action by plant officials and subsequent investigation by National Institute of Occupational Safety and Health/Occupational Safety & Health Administration personnel resulted in the timely and successful resolution of the problem. Individual presentations, assessment, and management are discussed along with recommendations for occupational investigation and referral.
Collapse
|
18
|
Dahshan A, Donovan GK. Severe methemoglobinemia complicating topical benzocaine use during endoscopy in a toddler: a case report and review of the literature. Pediatrics 2006; 117:e806-9. [PMID: 16585290 DOI: 10.1542/peds.2005-1952] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Severe methemoglobinemia resulting from the use of topical benzocaine has been reported in adults as a rare complication. Here we report a case of severe acquired methemoglobinemia resulting from topical use of benzocaine spray during diagnostic upper gastrointestinal endoscopy in a 3-year-old boy with repeated episodes of hematemesis 3 weeks posttonsillectomy. He developed marked cyanosis and became increasingly agitated immediately after completion of his unremarkable endoscopic procedure, which was performed under intravenous sedation. He did not respond to maximum supplemental oxygen and had increased respiratory effort. His pulse oximetry dropped to 85%, but simultaneous arterial blood-gas analysis showed marked hypoxemia (Po2 = 29%) and severe methemoglobinemia (methemoglobin = 39%). His cyanosis and altered mental status promptly resolved after intravenous administration of methylene blue. In patients with methemoglobinemia, pulse oximetry tends to overestimate the actual oxygen saturation and is not entirely reliable. Posttonsillectomy bleeding is a rare but occasionally serious complication that could occur weeks after the surgery, although it more commonly occurs within the first few days. Physicians should remain aware of the possibility of its late onset. This case illustrates the severity of acquired methemoglobinemia that may result from even small doses of topical benzocaine and highlights the fact that prompt treatment of the disorder can be life saving. We question the rationale for routine use of topical anesthetic spray for sedated upper gastrointestinal endoscopy in children. By bringing the attention of pediatricians to this rare but serious complication, we hope that it will result in its improved recognition and possible prevention.
Collapse
Affiliation(s)
- Ahmed Dahshan
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Oklahoma College of Medicine, Tulsa, OK 74135, USA.
| | | |
Collapse
|
19
|
Percy MJ, Crowley LJ, Boudreaux J, Barber MJ. Expression of a novel P275L variant of NADH:cytochrome b5 reductase gives functional insight into the conserved motif important for pyridine nucleotide binding. Arch Biochem Biophys 2006; 447:59-67. [PMID: 16469290 DOI: 10.1016/j.abb.2005.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 10/25/2022]
Abstract
The clinical disorder of recessive congenital methemoglobinemia (RCM, OMIN 250800) is associated with mutations in NADH:cytochrome b5 reductase (cb5r) and manifests as cyanosis from birth. Screening a cyanotic infant indicated elevated methemoglobin levels and decreased cb5r activity suggesting RCM. Sequencing the DIA1 gene encoding cb5r revealed a novel mutation, C27161T (NCBI accession number: NT_011520), resulting in replacement of proline at amino acid 275 with leucine (P275L). To understand how this mutation would affect cb5r's function, the P275L variant was expressed in a heterologous expression system and spectroscopic, thermodynamic, and thermostability studies were performed. The leucine substitution at residue 275 was found to significantly decrease the affinity towards the physiological reducing substrate, NADH, without affecting the activity of the P275L variant. From the rat model, residue 275 is predicted to be part of a conserved "CGPPPM" motif important for the binding and correct positioning of the NADH reducing substrate. Thus P275 influences the interaction with NADH which was confirmed by the change in affinity towards the physiological reducing substrate.
Collapse
Affiliation(s)
- M J Percy
- Department of Hematology, Floor C, Tower Block, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, Northern Ireland, UK.
| | | | | | | |
Collapse
|
20
|
Percy MJ, Crowley LJ, Roper D, Vulliamy TJ, Layton DM, Barber MJ. Identification and characterization of the novel FAD-binding lobe G75S mutation in cytochrome b(5) reductase: an aid to determine recessive congenital methemoglobinemia status in an infant. Blood Cells Mol Dis 2005; 36:81-90. [PMID: 16310381 DOI: 10.1016/j.bcmd.2005.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 10/05/2005] [Accepted: 10/06/2005] [Indexed: 11/26/2022]
Abstract
NADH-cytochrome b(5) reductase deficiency results clinically in either type I or type II recessive congenital methemoglobinemia. The more severe type II form is associated with a global deficiency of cytochrome b(5) reductase and is characterized by cyanosis with neurological dysfunction. In contrast, the only symptom for type I is cyanosis. We have identified a novel G to A mutation at position 15,635 in the DIAI gene of a 4-month-old baby that results in a glycine to serine substitution at codon 75 in the cytochrome b(5) reductase protein. The G75S mutation, located in the FAD-binding lobe of cytochrome b(5) reductase, was found in association with the previously described V252M variant. The V252M mutation is present in the NADH-binding domain and associated with both types I and II recessive congenital methemoglobinemia. Since the G75S and V252M mutations represent radical changes in differing regions of cytochrome b(5) reductase, generating and characterizing these variants singly and in combination using a rat heterologous expression system would provide insight into the differences between types I and II disease at the molecular level. Although all three variants were found to retain stoichiometric levels of FAD with spectroscopic and thermodynamic properties comparable to those of native cytochrome b(5) reductase, all exhibited decreased catalytic efficiency and reduced protein stability reflecting the position of the mutations in the primary structure. The G75S variant retained only 11% of the catalytic efficiency of the wild-type enzyme. Thus, cytochrome b(5) reductase deficient patients who are heterozygous for either FAD- or NADH-binding lobe mutations can exhibit the clinically less severe type I phenotype.
Collapse
Affiliation(s)
- M J Percy
- Department of Haematology, Floor C, Tower Block, Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, N. Ireland.
| | | | | | | | | | | |
Collapse
|
21
|
Percy MJ, Crowley LJ, Davis CA, McMullin MF, Savage G, Hughes J, McMahon C, Quinn RJM, Smith O, Barber MJ, Lappin TRJ. Recessive congenital methaemoglobinaemia: functional characterization of the novel D239G mutation in the NADH-binding lobe of cytochrome b5 reductase. Br J Haematol 2005; 129:847-53. [PMID: 15953014 DOI: 10.1111/j.1365-2141.2005.05526.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type I recessive congenital methaemoglobinaemia (RCM), caused by the reduced form of nicotinamide adenine dinucleotide (NADH)-cytochrome b(5) reductase (cytb(5)r) deficiency, manifests clinically as cyanosis without neurological dysfunction. Two mutations, E255- and G291D, have been identified in the NADH-binding lobe of cytb(5)r in previously reported patients, and we have detected a further novel mutation, D239G, in this lobe in two unrelated Irish families. Although one family belongs to the genetically isolated Traveller Community, which separated from the general Irish population during the 1845-48 famine, the D239G mutation was present on the same haplotype in both families. Three known cytb(5)r mutations were also identified, including the R159- mutation, which causes loss of the entire NADH-binding lobe and had previously been reported in an individual with type II RCM. Characterization of the three NADH-binding lobe mutants using a heterologous expression system revealed that all three variants retained stoichiometric levels of flavin adenine dinucleotide with spectroscopic and thermodynamic properties comparable with those of native cytb(5)r. In contrast to the E255- and G291D variants, the novel D239G mutation had no adverse impact on protein thermostability. The D239G mutation perturbed substrate binding, causing both decreased specificity for NADH and increased specificity for NADPH. Thus cytb(5)r deficient patients who are heterozygous for an NADH-binding lobe mutation can exhibit the clinically less severe type I phenotype, even in association with heterozygous deletion of the NADH-binding lobe.
Collapse
Affiliation(s)
- M J Percy
- Department of Haematology, Belfast City Hospital, Belfast, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|