1
|
TMAO to the rescue of pathogenic protein variants. Biochim Biophys Acta Gen Subj 2022; 1866:130214. [PMID: 35902028 DOI: 10.1016/j.bbagen.2022.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Trimethylamine N-oxide (TMAO) is a chemical chaperone found in various organisms including humans. Various studies unveiled that it is an excellent protein-stabilizing agent, and induces folding of unstructured proteins. It is also well established that it can counteract the deleterious effects of urea, salt, and hydrostatic pressure on macromolecular integrity. There is also existence of large body of data regarding its ability to restore functional deficiency of various mutant proteins or pathogenic variants by correcting misfolding defects and inhibiting the formation of high-order toxic protein oligomers. Since an important class of human disease called "protein conformational disorders" is due to protein misfolding and/or formation of high-order oligomers, TMAO stands as a promising molecule for the therapeutic intervention of such diseases. The present review has been designed to gather a comprehensive knowledge of the TMAO's effect on the functional restoration of various mutants, identify its shortcomings and explore its potentiality as a lead molecule. Future prospects have also been suitably incorporated.
Collapse
|
2
|
White JT, Rives J, Tharp ME, Wrabl JO, Thompson EB, Hilser VJ. Tumor Susceptibility Gene 101 Regulates the Glucocorticoid Receptor through Disorder-Mediated Allostery. Biochemistry 2021; 60:1647-1657. [PMID: 34009973 PMCID: PMC11999013 DOI: 10.1021/acs.biochem.1c00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumor susceptibility gene 101 (TSG101) is involved in endosomal maturation and has been implicated in the transcriptional regulation of several steroid hormone receptors, although a detailed characterization of such regulation has yet to be conducted. Here we directly measure binding of TSG101 to one steroid hormone receptor, the glucocorticoid receptor (GR). Using biophysical and cellular assays, we show that the coiled-coil domain of TSG101 (1) binds and folds the disordered N-terminal domain of the GR, (2) upon binding improves the DNA binding of the GR in vitro, and (3) enhances the transcriptional activity of the GR in vivo. Our findings suggest that TSG101 is a bona fide transcriptional co-regulator of the GR and reveal how the underlying thermodynamics affect the function of the GR.
Collapse
Affiliation(s)
- Jordan T. White
- Department of Biology at Johns Hopkins University, Baltimore, MD 21218
| | - James Rives
- Department of Chemistry at Johns Hopkins University
| | - Marla E. Tharp
- Department of Biology at Johns Hopkins University, Baltimore, MD 21218
| | - James O. Wrabl
- Department of Biology at Johns Hopkins University, Baltimore, MD 21218
| | - E. Brad Thompson
- Department of Biology at Johns Hopkins University, Baltimore, MD 21218
- Sealy Center for Structural Biology and Molecular Biophysics and the Department of Biochemistry and Molecular Biology at Univ. of Texas Medical Branch, Galveston, TX
| | - Vincent J. Hilser
- Department of Biology at Johns Hopkins University, Baltimore, MD 21218
- T. C. Jenkins Department of Biophysics at Johns Hopkins University
| |
Collapse
|
3
|
The PKA-p38MAPK-NFAT5-Organic Osmolytes Pathway in Duchenne Muscular Dystrophy: From Essential Player in Osmotic Homeostasis, Inflammation and Skeletal Muscle Regeneration to Therapeutic Target. Biomedicines 2021; 9:biomedicines9040350. [PMID: 33808305 PMCID: PMC8066813 DOI: 10.3390/biomedicines9040350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022] Open
Abstract
In Duchenne muscular dystrophy (DMD), the absence of dystrophin from the dystrophin-associated protein complex (DAPC) causes muscle membrane instability, which leads to myofiber necrosis, hampered regeneration, and chronic inflammation. The resulting disabled DAPC-associated cellular pathways have been described both at the molecular and the therapeutical level, with the Toll-like receptor nuclear factor kappa-light-chain-enhancer of activated B cells pathway (NF-ƘB), Janus kinase/signal transducer and activator of transcription proteins, and the transforming growth factor-β pathways receiving the most attention. In this review, we specifically focus on the protein kinase A/ mitogen-activated protein kinase/nuclear factor of activated T-cells 5/organic osmolytes (PKA-p38MAPK-NFAT5-organic osmolytes) pathway. This pathway plays an important role in osmotic homeostasis essential to normal cell physiology via its regulation of the influx/efflux of organic osmolytes. Besides, NFAT5 plays an essential role in cell survival under hyperosmolar conditions, in skeletal muscle regeneration, and in tissue inflammation, closely interacting with the master regulator of inflammation NF-ƘB. We describe the involvement of the PKA-p38MAPK-NFAT5-organic osmolytes pathway in DMD pathophysiology and provide a clear overview of which therapeutic molecules could be of potential benefit to DMD patients. We conclude that modulation of the PKA-p38MAPK-NFAT5-organic osmolytes pathway could be developed as supportive treatment for DMD in conjunction with genetic therapy.
Collapse
|
4
|
Guillien M, le Maire A, Mouhand A, Bernadó P, Bourguet W, Banères JL, Sibille N. IDPs and their complexes in GPCR and nuclear receptor signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:105-155. [DOI: 10.1016/bs.pmbts.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Rani A, Venkatesu P. Changing relations between proteins and osmolytes: a choice of nature. Phys Chem Chem Phys 2018; 20:20315-20333. [DOI: 10.1039/c8cp02949k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stabilization and destabilization of the protein in the presence of any additive is mainly attributed to its preferential exclusion from protein surface and its preferential binding to the protein surface, respectively.
Collapse
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | | |
Collapse
|
6
|
Ranjan A, Ansari SA. Therapeutic potential of Mediator complex subunits in metabolic diseases. Biochimie 2017; 144:41-49. [PMID: 29061530 DOI: 10.1016/j.biochi.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023]
Abstract
The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases.
Collapse
Affiliation(s)
- Amol Ranjan
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, MO, 64110, USA
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, AlAin, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Chatterjee T, Pal A, Chakravarty D, Dey S, Saha RP, Chakrabarti P. Protein l-isoaspartyl-O-methyltransferase of Vibrio cholerae: interaction with cofactors and effect of osmolytes on unfolding. Biochimie 2012; 95:912-21. [PMID: 23274130 DOI: 10.1016/j.biochi.2012.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
Protein l-isoaspartyl-O-methyltransferase (PIMT) is an ubiquitous enzyme widely distributed in cells and plays a role in the repair of deamidated and isomerized proteins. In this study, we show that this enzyme is present in cytosolic extract of Vibrio cholerae, an enteric pathogenic Gram-negative bacterium and is enzymatically active. Additionally, we focus on the detailed biophysical characterization of the recombinant PIMT from V. cholerae to gain insight into its structure, stability and the cofactor binding. The equilibrium denaturation of PIMT has been studied using tryptophan fluorescence and CD spectroscopy. The far- and near-UV CD, as well as fluorescence experiments reveal the presence of a non-native intermediate in the folding pathway. Binding of the hydrophobic fluorescent probe, bis-ANS, to the intermediate occurs with high affinity because of the exposure of the hydrophobic clusters during the unfolding process. The existence of the probable intermediate has also been confirmed from limited tryptic digestion and DLS experiments. The protein shows higher binding affinity for AdoHcy, in comparison to AdoMet, and the binding increases the midpoint of thermal unfolding by 6 and 5 °C, respectively. Modeling and molecular dynamics simulations also support the higher stability of the protein in presence of AdoHcy.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India.
| | | | | | | | | | | |
Collapse
|
8
|
Khan SH, Awasthi S, Guo C, Goswami D, Ling J, Griffin PR, Simons SS, Kumar R. Binding of the N-terminal region of coactivator TIF2 to the intrinsically disordered AF1 domain of the glucocorticoid receptor is accompanied by conformational reorganizations. J Biol Chem 2012; 287:44546-60. [PMID: 23132854 DOI: 10.1074/jbc.m112.411330] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of gene transcription by glucocorticoid receptors (GRs) is important for many physiological processes. Like other steroid hormone receptors, the regulation of target genes by GR is mediated by two transactivation domains: activation function 1 (AF1) in the N-terminal domain and AF2 in the C-terminal ligand-binding domain (LBD). Full receptor activity requires both AF1 and -2 plus assorted coregulatory proteins. Crystal structures of the ligand-bound LBD have provided insight regarding how AF2 interacts with specific coactivators. However, despite its being the major activation domain of GRs, knowledge of AF1 structure/function has languished. This is mainly because of the highly disorganized structure of the GR N-terminal domain. This lack of AF1 structure is shared by all members of the steroid/nuclear receptor superfamily for which it has been examined and AF1 is thought to allow productive interactions with assorted cofactors via protein-induced changes in secondary/tertiary structures. To date, there are no reports of a classical coactivator altering the secondary/tertiary structure of the GR AF1 domain. Earlier, we reported an N-terminal fragment of the p160 coactivator TIF2, called TIF2.0, that binds the GR N-terminal domain and alters GR transcriptional activity. We therefore proposed that TIF2.0 binding to AF1 changes both its conformation and transcriptional activity. We now report that TIF2.0 interacts with the GR AF1 domain to increase the amount of α-helical structure in the complex. Furthermore, TIF2 coactivator activity is observed in the absence of the GR LBD in a manner that requires the AF1 domain. This contrasts with previous models where TIF2 receptor interaction domains binding to GR LBD somehow alter AF1 conformation. Our results establish for the first time that coactivators can modify the structure of the AF1 domain directly via the binding of a second region of the coactivator and suggest a molecular explanation for how coactivators increase the transcriptional activity of GR-agonist complexes.
Collapse
Affiliation(s)
- Shagufta H Khan
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania 18509, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Li J, Motlagh HN, Chakuroff C, Thompson EB, Hilser VJ. Thermodynamic dissection of the intrinsically disordered N-terminal domain of human glucocorticoid receptor. J Biol Chem 2012; 287:26777-87. [PMID: 22669939 PMCID: PMC3411015 DOI: 10.1074/jbc.m112.355651] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/01/2012] [Indexed: 01/12/2023] Open
Abstract
Intrinsically disordered (ID) sequence segments are abundant in cell signaling proteins and transcription factors. Because ID regions commonly fold as part of their intracellular function, it is crucial to understand the folded states as well as the transitions between the unfolded and folded states. Specifically, it is important to determine 1) whether large ID segments contain different thermodynamically and/or functionally distinct regions, 2) whether any ID regions fold upon activation, 3) the degree of coupling between the different ID regions, and 4) whether the stability of ID domains is a determinant of function. In this study, we thermodynamically characterized the full-length ID N-terminal domain (NTD) of human glucocorticoid receptor (GR) and two of its naturally occurring translational isoforms. The protective osmolyte trimethylamine N-oxide (TMAO) was used to induce folding transitions. Each of the three NTD isoforms was found to undergo a cooperative folding transition that is thermodynamically indistinguishable (based on m-values) from that of a globular protein of similar size. The extrapolated stabilities for the NTD isoforms showed clear correlation with the known activities of their corresponding GR translational isoforms. The data reveal that the full-length NTD can be viewed as having at least two thermodynamically coupled regions, a functional region, which is indispensable for GR transcriptional activity, and a regulatory region, the length of which serves to regulate the stability of NTD and thus the activity of GR. These results suggest a new functional paradigm whereby steroid hormone receptors in particular and ID proteins in general can have multiple functionally distinct ID regions that interact and modulate the stability of important functional sites.
Collapse
Affiliation(s)
- Jing Li
- From the Department of Biology and
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Hesam N. Motlagh
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218
| | | | - E. Brad Thompson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5056, and
- the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1068
| | - Vincent J. Hilser
- From the Department of Biology and
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
10
|
Kumar R, McEwan IJ. Allosteric modulators of steroid hormone receptors: structural dynamics and gene regulation. Endocr Rev 2012; 33:271-99. [PMID: 22433123 PMCID: PMC3596562 DOI: 10.1210/er.2011-1033] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Steroid hormones are synthesized from cholesterol primarily in the adrenal gland and the gonads and play vital roles in normal physiology, the control of development, differentiation, metabolic homeostasis, and reproduction. The actions of these small lipophilic molecules are mediated by intracellular receptor proteins. It is just over 25 yr since the first cDNA for steroid receptors were cloned, a development that led to the birth of a superfamily of ligand-activated transcription factors: the nuclear receptors. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains but possess distinct N-terminal domains and hinge regions that are intrinsically disordered. Since the original cloning experiments, considerable progress has been made in our understanding of the structure, mechanisms of action, and biology of this important class of ligand-activated transcription factors. In recent years, there has been interest in the structural plasticity and function of the N-terminal domain of steroid hormone receptors and in the allosteric regulation of protein folding and function in response to hormone, DNA response element architecture, and coregulatory protein binding partners. The N-terminal domain can exist as an ensemble of conformers, having more or less structure, which prime this region of the receptor to rapidly respond to changes in the intracellular environment through hormone binding and posttranslation modifications. In this review, we address the question of receptor structure and function dynamics with particular emphasis on the structurally flexible N-terminal domain, intra- and interdomain communications, and the allosteric regulation of receptor action.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, Pennsylvania 18510, USA
| | | |
Collapse
|
11
|
Khan SH, Farkas K, Kumar R, Ling J. A versatile method to measure the binding to basic proteins by surface plasmon resonance. Anal Biochem 2012; 421:385-90. [DOI: 10.1016/j.ab.2011.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 11/24/2022]
|
12
|
Kumar R, Thompson EB. Folding of the glucocorticoid receptor N-terminal transactivation function: dynamics and regulation. Mol Cell Endocrinol 2012; 348:450-6. [PMID: 21501657 DOI: 10.1016/j.mce.2011.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/14/2011] [Accepted: 03/31/2011] [Indexed: 11/25/2022]
Abstract
The glucocorticoid receptor (GR) mediates biological effects of glucocorticoids at the level of gene regulation, and plays important roles in many aspects of physiology. In recent years, it has become quite evident that GR behaves very dynamically, controlled by its reversible interactions with a variety of coregulatory proteins at various DNA and non-DNA sites. The N-terminal activation function domain (AF1) of the GR exists in an intrinsically disordered (ID) state, which promotes molecular recognition by providing surfaces capable of binding specific target molecules. Several studies suggest that when in action, the GR AF1 gains structure. Thus, it is hypothesized that the GR AF1 domain may be structured in vivo, at least when directly involved in transcriptional activation. Our recent work supports this conclusion. We propose that by allowing AF1 to rapidly and reversibly adopt various configurations through structural arrangements, AF1 can create protein surfaces that are readily available for selective binding to coregulatory proteins, resulting in GR-mediated transcriptional regulation of target genes.
Collapse
Affiliation(s)
- R Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA-18510, USA.
| | | |
Collapse
|
13
|
Blocquel D, Habchi J, Gruet A, Blangy S, Longhi S. Compaction and binding properties of the intrinsically disordered C-terminal domain of Henipavirus nucleoprotein as unveiled by deletion studies. ACTA ACUST UNITED AC 2012; 8:392-410. [DOI: 10.1039/c1mb05401e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, Toraldo G, Singh R, Bhasin S, Jasuja R. The dynamic structure of the estrogen receptor. JOURNAL OF AMINO ACIDS 2011; 2011:812540. [PMID: 22312471 PMCID: PMC3268042 DOI: 10.4061/2011/812540] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/06/2011] [Indexed: 01/12/2023]
Abstract
The estrogen receptor (ER) mediates most of the biological effects of estrogens at the level of gene regulation by interacting through its site-specific DNA and with other coregulatory proteins. In recent years, new information regarding the dynamic structural nature of ER has emerged. The physiological effects of estrogen are manifested through ER's two isoforms, ERα and ERβ. These two isoforms (ERα and ERβ) display distinct regions of sequence homology. The three-dimensional structures of the DNA-binding domain (DBD) and ligand-binding domain (LBD) have been solved, whereas no three-dimensional natively folded structure for the ER N-terminal domain (NTD) is available to date. However, insights about the structural and functional correlations regarding the ER NTD have recently emerged. In this paper, we discuss the knowledge about the structural characteristics of the ER in general and how the structural features of the two isoforms differ, and its subsequent role in gene regulation.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA 18510, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Szasz CS, Alexa A, Toth K, Rakacs M, Langowski J, Tompa P. Protein disorder prevails under crowded conditions. Biochemistry 2011; 50:5834-44. [PMID: 21634433 DOI: 10.1021/bi200365j] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crowding caused by the high concentrations of macromolecules in the living cell changes chemical equilibria, thus promoting aggregation and folding reactions of proteins. The possible magnitude of this effect is particularly important with respect to the physiological structure of intrinsically disordered proteins (IDPs), which are devoid of well-defined three-dimensional structures in vitro. To probe this effect, we have studied the structural state of three IDPs, α-casein, MAP2c, and p21(Cip1), in the presence of the crowding agents Dextran and Ficoll 70 at concentrations up to 40%, and also the small-molecule osmolyte, trimethylamine N-oxide (TMAO), at concentrations up to 3.6 M. The structures of IDPs under highly diluted and crowded conditions were compared by a variety of techniques, fluorescence spectroscopy, acrylamide quenching, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, fluorescence correlation spectroscopy (FCS), and far-UV and near-UV circular dichroism (CD) spectroscopy, which allow us to visualize various levels of structural organization within these proteins. We observed that crowding causes limited structural changes, which seem to reflect the functional requirements of these IDPs. α-Casein, a protein of nutrient function in milk, changes least under crowded conditions. On the other hand, MAP2c and, to a lesser degree, p21(Cip1), which carry out their functions by partner binding and accompanying partially induced folding, show signs of local structuring and also some global compaction upon crowded conditions, in particular in the presence of TMAO. The observations are compatible with the possible preformation of binding-competent conformations in these proteins. The magnitude of these changes, however, is far from that of the cooperative folding transitions elicited by crowding in denatured globular proteins; i.e., these IDPs do remain in a state of rapidly interconverting structural ensemble. Altogether, our results underline that structural disorder is the physiological state of these proteins.
Collapse
Affiliation(s)
- C S Szasz
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
16
|
An overview of the importance of conformational flexibility in gene regulation by the transcription factors. JOURNAL OF BIOPHYSICS 2010; 2009:210485. [PMID: 20169123 PMCID: PMC2821642 DOI: 10.1155/2009/210485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 11/18/2009] [Accepted: 11/30/2009] [Indexed: 11/18/2022]
Abstract
A number of proteins with intrinsically disordered (ID) regions/domains are reported to be found disproportionately higher in transcription factors. Available evidences suggest that presence of ID region/domain within a transcription factor plays an important role in its biological functions. These ID sequences provide large flexible surfaces that can allow them to make more efficient physical and functional interactions with their target partners. Since transcription factors regulate expression of target genes by interacting with specific coregulatory proteins, these ID regions/domains can be used as a platform for such large macromolecular interactions, and may represent a mechanism for regulation of cellular processes. The precise structural basis for the function of these ID regions/domains of the transcription factors remains to be determined. In the recent years there has been growing evidence suggesting that an induced fit-like process leads to imposition of folded functional structure in these ID domains on which large multiprotein complexes are built. These multiprotein complexes may eventually dictate the final outcome of the gene regulation by the transcription factors.
Collapse
|
17
|
Site-specific phosphorylation induces functionally active conformation in the intrinsically disordered N-terminal activation function (AF1) domain of the glucocorticoid receptor. Mol Cell Biol 2010; 30:220-30. [PMID: 19841061 DOI: 10.1128/mcb.00552-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intrinsically disordered (ID) regions are disproportionately higher in cell signaling proteins and are predicted to have much larger frequency of phosphorylation sites than ordered regions, suggesting an important role in their regulatory capacity. In this study, we show that AF1, an ID activation domain of the glucocorticoid receptor (GR), adopts a functionally folded conformation due to its site-specific phosphorylation by p38 mitogen-activated protein kinase, which is involved in apoptotic and gene-inductive events initiated by the GR. Further, we show that site-specific phosphorylation-induced secondary and tertiary structure formation specifically facilitates AF1's interaction with critical coregulatory proteins and subsequently its transcriptional activity. These data demonstrate a mechanism through which ID activation domain of the steroid receptors and other similar transcription factors may adopt a functionally active conformation under physiological conditions.
Collapse
|
18
|
Kumar R. Role of naturally occurring osmolytes in protein folding and stability. Arch Biochem Biophys 2009; 491:1-6. [DOI: 10.1016/j.abb.2009.09.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 09/14/2009] [Accepted: 09/14/2009] [Indexed: 11/24/2022]
|
19
|
Kumar R, Litwack G. Structural and functional relationships of the steroid hormone receptors' N-terminal transactivation domain. Steroids 2009; 74:877-83. [PMID: 19666041 PMCID: PMC3074935 DOI: 10.1016/j.steroids.2009.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 11/25/2022]
Abstract
Steroid hormone receptors are members of a family of ligand inducible transcription factors, and regulate the transcriptional activation of target genes by recruiting coregulatory proteins to the pre-initiation machinery. The binding of these coregulatory proteins to the steroid hormone receptors is often mediated through their two activation functional domains, AF1, which resides in the N-terminal domain, and the ligand-dependent AF2, which is localized in the C-terminal ligand-binding domain. Compared to other important functional domains of the steroid hormone receptors, our understanding of the mechanisms of action of the AF1 are incomplete, in part, due to the fact that, in solution, AF1 is intrinsically disordered (ID). However, recent studies have shown that AF1 must adopt a functionally active and folded conformation for its optimal activity under physiological conditions. In this review, we summarize and discuss current knowledge regarding the molecular mechanisms of AF1-mediated gene activation, focusing on AF1 conformation and coactivator binding. We further propose models for the binding/folding of the AF1 domains of the steroid hormone receptors and their protein:protein interactions. The population of ID AF1 can be visualized as a collection of many different conformations, some of which may be assuming the proper functional folding for other critical target binding partners that result in the ultimate assembly of AF1:coactivator complexes and subsequent gene regulation. Knowledge of the mechanisms involved therein will significantly help in understanding how signals from a steroid to a specific target gene are conveyed.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA 18510, USA.
| | | |
Collapse
|
20
|
Intrinsically Disordered Proteins and Their Environment: Effects of Strong Denaturants, Temperature, pH, Counter Ions, Membranes, Binding Partners, Osmolytes, and Macromolecular Crowding. Protein J 2009; 28:305-25. [DOI: 10.1007/s10930-009-9201-4] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Kumar R. Osmolyte-induced folding of an intrinsically disordered activation function subdomain of glucocorticoid receptor. J Recept Signal Transduct Res 2009; 28:465-74. [PMID: 18946767 DOI: 10.1080/10799890802412385] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Intrinsically disordered (ID) regions are disproportionately higher in cell-signaling proteins, suggesting an important role in their regulatory capacity. Activation domains of many transcription factors exist in ID conformation(s). It has been suggested that large flexible regions in ID activation domains have an advantage over proteins with ordered conformations such that ID regions/domains can make more efficient interactions with their target partners. The major activation function-1 (AF1) region, located in the N-terminal domain of several steroid receptors, including the glucocorticoid receptor (GR) possess ID sequences. Recently, we reported that osmolytes fold AF1 into functionally active conformation. Most of known AF1:coregulatory proteins interactions take place in a core subdomain (AF1(C)) that is indispensible for AF1-mediated GR activity. However, it is not known whether osmolytes can induce functionally folded conformation in AF1(C). In this study we have found that a naturally occurring osmolyte, trimethylamine-N-oxide, can cooperatively fold AF1(C) into a compact structure.
Collapse
Affiliation(s)
- Raj Kumar
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-0655, USA.
| |
Collapse
|
22
|
Copland JA, Sheffield-Moore M, Koldzic-Zivanovic N, Gentry S, Lamprou G, Tzortzatou-Stathopoulou F, Zoumpourlis V, Urban RJ, Vlahopoulos SA. Sex steroid receptors in skeletal differentiation and epithelial neoplasia: is tissue-specific intervention possible? Bioessays 2009; 31:629-41. [DOI: 10.1002/bies.200800138] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Gu J, Hilser VJ. Predicting the energetics of conformational fluctuations in proteins from sequence: a strategy for profiling the proteome. Structure 2009; 16:1627-37. [PMID: 19000815 DOI: 10.1016/j.str.2008.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/07/2008] [Accepted: 08/19/2008] [Indexed: 11/30/2022]
Abstract
The abundance of dynamic and disordered regions in proteins suggests that structural determinants alone may not be sufficient to describe function. Instead, descriptors that account for the dynamic features of the energy landscape populated by the protein ensemble may be required. Here, we show that the thermodynamics of the dynamical complexity that imparts biological function can be largely reconstructed using sequence information alone, allowing thermodynamic characterization of entire proteomes without the need for structural analysis. We show that this tool can be used to analyze conserved energetic signatures within classes of proteins, as well as to compare the thermodynamic character of different proteomes.
Collapse
Affiliation(s)
- Jenny Gu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555-1068, USA
| | | |
Collapse
|
24
|
Libich DS, Harauz G. Solution NMR and CD spectroscopy of an intrinsically disordered, peripheral membrane protein: evaluation of aqueous and membrane-mimetic solvent conditions for studying the conformational adaptability of the 18.5 kDa isoform of myelin basic protein (MBP). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1015-29. [PMID: 18449534 DOI: 10.1007/s00249-008-0334-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 04/09/2008] [Accepted: 04/11/2008] [Indexed: 02/05/2023]
Abstract
The stability and secondary structure propensity of recombinant murine 18.5 kDa myelin basic protein (rmMBP, 176 residues) was assessed using circular dichroic and nuclear magnetic resonance spectroscopy (1H-15N HSQC experiments) to determine the optimal sample conditions for further NMR studies (i.e., resonance assignments and protein-protein interactions). Six solvent conditions were selected based on their ability to stabilise the protein, and their tractability to currently standard solution NMR methodology. Selected solvent conditions were further characterised as functions of concentration, temperature, and pH. The results of these trials indicated that 30% TFE-d2 in H2O (v/v), pH 6.5 at 300 K, and 100 mM KCl, pH 6.5 at 277 K were the best conditions to use for future solution NMR studies of MBP. Micelles of DPC were found to be inappropriate for backbone resonance assignments of rmMBP in this instance.
Collapse
Affiliation(s)
- David S Libich
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, ON, Canada
| | | |
Collapse
|