1
|
Zhou W, Fisher PM, Vanderloop BH, Shen Y, Shi H, Maldonado AJ, Leaver DJ, Nes WD. A nematode sterol C4α-methyltransferase catalyzes a new methylation reaction responsible for sterol diversity. J Lipid Res 2019; 61:192-204. [PMID: 31548366 PMCID: PMC6997595 DOI: 10.1194/jlr.ra119000317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/22/2019] [Indexed: 11/28/2022] Open
Abstract
Primitive sterol evolution plays an important role in fossil record interpretation and offers potential therapeutic avenues for human disease resulting from nematode infections. Recognizing that C4-methyl stenol products [8(14)-lophenol] can be synthesized in bacteria while C4-methyl stanol products (dinosterol) can be synthesized in dinoflagellates and preserved as sterane biomarkers in ancient sedimentary rock is key to eukaryotic sterol evolution. In this regard, nematodes have been proposed to convert dietary cholesterol to 8(14)-lophenol by a secondary metabolism pathway that could involve sterol C4 methylation analogous to the C2 methylation of hopanoids (radicle-type mechanism) or C24 methylation of sterols (carbocation-type mechanism). Here, we characterized dichotomous cholesterol metabolic pathways in Caenorhabditis elegans that generate 3-oxo sterol intermediates in separate paths to lophanol (4-methyl stanol) and 8(14)-lophenol (4-methyl stenol). We uncovered alternate C3-sterol oxidation and Δ7 desaturation steps that regulate sterol flux from which branching metabolite networks arise, while lophanol/8(14)-lophenol formation is shown to be dependent on a sterol C4α-methyltransferse (4-SMT) that requires 3-oxo sterol substrates and catalyzes a newly discovered 3-keto-enol tautomerism mechanism linked to S-adenosyl-l-methionine-dependent methylation. Alignment-specific substrate-binding domains similarly conserved in 4-SMT and 24-SMT enzymes, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of methyl sterols. The combination of these results provides evolutionary leads to sterol diversity and points to cryptic C4-methyl steroidogenic pathways of targeted convergence that mediate lineage-specific adaptations.
Collapse
Affiliation(s)
- Wenxu Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Paxtyn M Fisher
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Boden H Vanderloop
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Yun Shen
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| | - Adrian J Maldonado
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX
| | - David J Leaver
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX.,Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX
| |
Collapse
|
2
|
Yang X, Chen XJ, Yang Z, Xi YB, Wang L, Wu Y, Yan YB, Rao Y. Synthesis, Evaluation, and Structure-Activity Relationship Study of Lanosterol Derivatives To Reverse Mutant-Crystallin-Induced Protein Aggregation. J Med Chem 2018; 61:8693-8706. [PMID: 30153006 DOI: 10.1021/acs.jmedchem.8b00705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We describe here the development of potent synthetic analogues of the naturally occurring triterpenoid lanosterol to reverse protein aggregation in cataracts. Lanosterol showed superiority to other scaffolds in terms of efficacy and generality in previous studies. Various modified lanosterol derivatives were synthesized via modification of the side chain, ring A, ring B, and ring C. Evaluation of these synthetic analogues draws a clear picture for SAR. In particular, hydroxylation of the 25-position in the side chain profoundly improved the potency, and 2-fluorination further enhanced the biological activity. This work also revealed that synthetic lanosterol analogues could reverse multiple types of mutant-crystallin aggregates in cell models with excellent potency and efficacy. Notably, lanosterol analogues have no cytotoxicity but can improve the viability of the HLE-B3 cell line. Furthermore, representative compound 6 successfully redissolved the aggregated crystallin proteins from the amyloid-like fibrils in a concentration-dependent manner.
Collapse
Affiliation(s)
| | - Xiang-Jun Chen
- Eye Center of the Second Affiliated Hospital, Institutes of Translational Medicine , Zhejiang University School of Medicine , Hangzhou 310058 , PR China
| | | | | | | | | | | | | |
Collapse
|
3
|
Haubrich BA, Collins EK, Howard AL, Wang Q, Snell WJ, Miller MB, Thomas CD, Pleasant SK, Nes WD. Characterization, mutagenesis and mechanistic analysis of an ancient algal sterol C24-methyltransferase: Implications for understanding sterol evolution in the green lineage. PHYTOCHEMISTRY 2015; 113:64-72. [PMID: 25132279 PMCID: PMC5182512 DOI: 10.1016/j.phytochem.2014.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/11/2014] [Accepted: 06/09/2014] [Indexed: 05/15/2023]
Abstract
Sterol C24-methyltransferases (SMTs) constitute a group of sequence-related proteins that catalyze the pattern of sterol diversity across eukaryotic kingdoms. The only gene for sterol alkylation in green algae was identified and the corresponding catalyst from Chlamydomonas reinhardtii (Cr) was characterized kinetically and for product distributions. The properties of CrSMT were similar to those predicted for an ancient SMT expected to possess broad C3-anchoring requirements for substrate binding and formation of 24β-methyl/ethyl Δ(25(27))-olefin products typical of primitive organisms. Unnatural Δ(24(25))-sterol substrates, missing a C4β-angular methyl group involved with binding orientation, convert to product ratios in favor of Δ(24(28))-products. Remodeling the active site to alter the electronics of Try110 (to Leu) results in delayed timing of the hydride migration from methyl attack of the Δ(24)-bond, that thereby produces metabolic switching of product ratios in favor of Δ(25(27))-olefins or impairs the second C1-transfer activity. Incubation of [27-(13)C]lanosterol or [methyl-(2)H3]SAM as co-substrates established the CrSMT catalyzes a sterol methylation pathway by the "algal" Δ(25(27))-olefin route, where methylation proceeds by a conserved SN2 reaction and de-protonation proceeds from the pro-Z methyl group on lanosterol corresponding to C27. This previously unrecognized catalytic competence for an enzyme of sterol biosynthesis, together with phylogenomic analyses, suggest that mutational divergence of a promiscuous SMT produced substrate- and phyla-specific SMT1 (catalyzes first biomethylation) and SMT2 (catalyzes second biomethylation) isoforms in red and green algae, respectively, and in the case of SMT2 selection afforded modification in reaction channeling necessary for the switch in ergosterol (24β-methyl) biosynthesis to stigmasterol (24α-ethyl) biosynthesis during the course of land plant evolution.
Collapse
Affiliation(s)
- Brad A Haubrich
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Emily K Collins
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Alicia L Howard
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Qian Wang
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX 75390, United States
| | - William J Snell
- Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX 75390, United States
| | - Matthew B Miller
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Crista D Thomas
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Stephanie K Pleasant
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - W David Nes
- Center for Chemical Biology and Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
4
|
O'Keeffe R, Kenny O, Brunton NP, Hossain MB, Rai DK, Jones PW, O'Brien N, Maguire AR, Collins SG. Synthesis of novel 24-amino-25,26,27-trinorlanost-8-enes: cytotoxic and apoptotic potential in U937 cells. Bioorg Med Chem 2015; 23:2270-80. [PMID: 25800433 DOI: 10.1016/j.bmc.2015.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/17/2015] [Accepted: 02/04/2015] [Indexed: 11/29/2022]
Abstract
In the present study, the synthesis of a range of novel 24-amino-25,26,27-trinorlanost-8-ene derivatives including 24-piperadino-trinorlanost-8-enes, 24-piperazino-trinorlanost-8-enes, 24-morpholino-trinorlanost-8-enes, and 24-diethylamino-trinorlanost-8-enes is reported and their cytotoxic and apoptotic potential evaluated in U937 cell lines. Excellent IC₅₀ results for piperidine and 1-(2-hydroxyethyl)piperazine derivatives have been observed (IC₅₀ values of 1.9 μM and 2.7 μM in U937 cells, respectively).
Collapse
Affiliation(s)
- Roisin O'Keeffe
- Department of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Ireland
| | - Olivia Kenny
- School of Food and Nutritional Sciences, University College Cork, Ireland
| | - Nigel P Brunton
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Mohammad B Hossain
- Food Biosciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Dilip K Rai
- Food Biosciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Peter W Jones
- Department of Zoology, Ecology and Plant Science, University College Cork, Ireland
| | - Nora O'Brien
- School of Food and Nutritional Sciences, University College Cork, Ireland.
| | - Anita R Maguire
- Department of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Ireland.
| | - Stuart G Collins
- Department of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Ireland.
| |
Collapse
|
5
|
Patkar P, Haubrich BA, Qi M, Nguyen TTM, Thomas CD, Nes WD. C-24-methylation of 26-fluorocycloartenols by recombinant sterol C-24-methyltransferase from soybean: evidence for channel switching and its phylogenetic implications. Biochem J 2013; 456:253-62. [PMID: 23984880 DOI: 10.1042/bj20121818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The tightly coupled nature of the electrophilic alkylation reaction sequence catalysed by 24-SMT (sterol C-24-methyltransferase) of land plants and algae can be distinguished by the formation of cationic intermediates that yield phyla-specific product profiles. C-24-methylation of the cycloartenol substrate by the recombinant Glycine max (soybean) 24-SMT proceeds to a single product 24(28)-methylenecycloartanol, whereas the 24-SMT from green algae converts cycloartenol into two products cyclolaudenol [∆(25(27))-olefin] and 24(28)-methylenecycloartanol [(∆24(28))-olefin]. Substrate analogues that differed in the steric-electronic features at either end of the molecule, 26-homocycloartenol or 3β-fluorolanostadiene, were converted by G. max SMT into a single 24(28)-methylene product. Alternatively, incubation of the allylic 26-fluoro cyclosteroid with G. max SMT afforded a bound intermediate that converted in favour of the ∆(25(27))-olefin product via the cyclolaudenol cation formed initially during the C-24-methylation reaction. A portion of the 26-fluorocycloartenol substrate was also intercepted by the enzyme and the corresponding hydrolysis product identified by GC-MS as 26-fluoro-25-hydroxy-24-methylcycloartanol. Finally, the 26-fluorocycloartenols are competitive inhibitors for the methylation of cycloartenol and 26-monofluorocycloartenol generated timedependent inactivation kinetics exhibiting a kinact value of 0.12 min(-1). The ability of soybean 24-SMT to generate a 25-hydroxy alkylated sterol and fluorinated ∆(25(27))-olefins is consistent with our hypothesis that (i) achieving the cyclolaudenyl cation intermediate by electrophilic alkylation of cycloartenol is significant to the overall reaction rate, and (ii) the evolution of variant sterol C-24-methylation patterns is driven by competing reaction channels that have switched in algae from formation of primarily ∆(25(27)) products that convert into ergosterol to, in land plants, formation of ∆(24(28)) products that convert into sitosterol.
Collapse
Affiliation(s)
- Presheet Patkar
- *Center for Chemical Biology and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, U.S.A
| | | | | | | | | | | |
Collapse
|