1
|
Wang J, Hu S, Xu Y, Wang T. Omega-6 polyunsaturated fatty acids and their metabolites: a potential targeted therapy for pulmonary hypertension. Respir Res 2025; 26:102. [PMID: 40089708 PMCID: PMC11909876 DOI: 10.1186/s12931-025-03172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Pulmonary hypertension (PH) is a progressive and life-threatening cardiopulmonary disease that is not uncommon. The modulation of the pulmonary artery (PA) involves various fatty acids, including omega-6 polyunsaturated fatty acids (ω-6 PUFAs) and ω-6 PUFAs-derived oxylipins. These lipid mediators are produced through cyclooxygenase (COX), lipoxygenase (LOX), cytochrome P450 (CYP450), and non-enzymatic pathways. They play a crucial role in the occurrence and development of PH by regulating the function and phenotype of pulmonary artery endothelial cells (PAECs), pulmonary artery smooth muscle cells (PASMCs), pulmonary fibroblasts, alveolar macrophages, and inflammatory cells. The alterations in ω-6 PUFAs and oxylipins are pivotal in causing vasoconstriction, pulmonary remodeling, and ultimately leading to right heart failure in PH. Despite the limited understanding of the PH pathophysiology, there is potential for novel interventions through dietary and pharmacological approaches targeting ω-6 PUFAs and oxylipins. The aim of this review is to summarize the significant advances in clinical and basic research on omega-6 PUFAs and oxylipins in pulmonary vascular disease, particularly PH, and to propose a potential targeted therapeutic modality against omega-6 PUFAs.
Collapse
Affiliation(s)
- Jiayao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- The Center for Biomedical Research, Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, National Health Committee (NHC), Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shunlian Hu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- The Center for Biomedical Research, Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, National Health Committee (NHC), Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yahan Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- The Center for Biomedical Research, Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, National Health Committee (NHC), Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- The Center for Biomedical Research, Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, National Health Committee (NHC), Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Pecchillo Cimmino T, Panico I, Scarano S, Stornaiuolo M, Esposito G, Ammendola R, Cattaneo F. Formyl Peptide Receptor 2-Dependent cPLA2 and 5-LOX Activation Requires a Functional NADPH Oxidase. Antioxidants (Basel) 2024; 13:220. [PMID: 38397818 PMCID: PMC10886330 DOI: 10.3390/antiox13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Phospholipases (PL) A2 catalyzes the hydrolysis of membrane phospholipids and mostly generates arachidonic acid (AA). The enzyme 5-lipoxygenase (5-LOX) can metabolize AA to obtain inflammatory leukotrienes, whose biosynthesis highly depends on cPLA2 and 5-LOX activities. Formyl Peptide Receptor 2 (FPR2) belongs to a subfamily of class A GPCRs and is considered the most versatile FPRs isoform. Signaling triggered by FPR2 includes the activation of several downstream kinases and NADPH oxidase (NOX)-dependent ROS generation. In a metabolomic analysis we observed a significant increase in AA concentration in FPR2-stimulated lung cancer cell line CaLu-6. We analyzed cPLA2 phosphorylation and observed a time-dependent increase in cPLA2 Ser505 phosphorylation in FPR2-stimulated cells, which was prevented by the MEK inhibitor (PD098059) and the p38MAPK inhibitor (SB203580) and by blocking NOX function. Similarly, we demonstrated that phosphorylation of 5-LOX at Ser271 and Ser663 residues requires FPR2-dependent p38MAPK and ERKs activation. Moreover, we showed that 5-LOX Ser271 phosphorylation depends on a functional NOX expression. Our overall data demonstrate for the first time that FPR2-induced ERK- and p38MAPK-dependent phosphorylation/activation of cPLA2 and 5-LOX requires a functional NADPH oxidase. These findings represent an important step towards future novel therapeutic possibilities aimed at resolving the inflammatory processes underlying many human diseases.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Iolanda Panico
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Simona Scarano
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (T.P.C.); (I.P.); (S.S.); (G.E.); (R.A.)
| |
Collapse
|
3
|
López-Acosta O, Ruiz-Ramírez A, Barrios-Maya MÁ, Alarcon-Aguilar J, Alarcon-Enos J, Céspedes Acuña CL, El-Hafidi M. Lipotoxicity, glucotoxicity and some strategies to protect vascular smooth muscle cell against proliferative phenotype in metabolic syndrome. Food Chem Toxicol 2023; 172:113546. [PMID: 36513245 DOI: 10.1016/j.fct.2022.113546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a risk factor for the development of cardiovascular disease (CVD) and atherosclerosis through a mechanism that involves vascular smooth muscle cell (VSMC) proliferation, lipotoxicity and glucotoxicity. Several molecules found to be increased in MetS, including free fatty acids, fatty acid binding protein 4, leptin, resistin, oxidized lipoprotein particles, and advanced glycation end products, influence VSMC proliferation. Most of these molecules act through their receptors on VSMCs by activating several signaling pathways associated with ROS generation in various cellular compartments. ROS from NADPH-oxidase and mitochondria have been found to promote VSMC proliferation and cell cycle progression. In addition, most of the natural or synthetic substances described in this review, including pharmaceuticals with hypoglycemic and hypolipidemic properties, attenuate VSMC proliferation by their simultaneous modulation of cell signaling and their scavenging property due to the presence of a phenolic ring in their structure. This review discusses recent data in the literature on the role that several MetS-related molecules and ROS play in the change from contractile to proliferative phenotype of VSMCs. Hence the importance of proposing an appropriate strategy to prevent uncontrolled VSMC proliferation using antioxidants, hypoglycemic and hypolipidemic agents.
Collapse
Affiliation(s)
- Ocarol López-Acosta
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Angélica Ruiz-Ramírez
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Miguel-Ángel Barrios-Maya
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Depto. de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| | - Julio Alarcon-Enos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile
| | - Carlos L Céspedes Acuña
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile.
| | - Mohammed El-Hafidi
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico.
| |
Collapse
|
4
|
Paloschi MV, Boeno CN, Lopes JA, Rego CMA, Silva MDS, Santana HM, Serrath SN, Ikenohuchi YJ, Farias BJC, Felipin KP, Nery NM, Dos Reis VP, de Lima Lemos CT, Evangelista JR, da Silva Setúbal S, Soares AM, Zuliani JP. Reactive oxygen species-dependent-NLRP3 inflammasome activation in human neutrophils induced by l-amino acid oxidase derived from Calloselasma rhodostoma venom. Life Sci 2022; 308:120962. [PMID: 36113732 DOI: 10.1016/j.lfs.2022.120962] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/20/2022]
Abstract
l-Amino acid oxidase isolated from Calloselasma rhodostoma (Cr-LAAO) snake venom is a potent stimulus for neutrophil activation and production of inflammatory mediators, contributing to local inflammatory effects in victims of envenoming. Cr-LAAO triggered the activation of nicotinamide adenine dinucleotide phosphatase (NADPH) oxidase complex and protein kinase C (PKC)-α signaling protein for reactive oxygen species (ROS) production. This study aims to evaluate the ROS participation in the NLRP3 inflammasome complex activation in human neutrophil. Human neutrophils were isolated and stimulated for 1 or 2 h with RPMI (negative control), LPS (1 μg/mL, positive control) or Cr-LAAO (50 μg/mL). The neutrophil transcriptome was examined using the microarray technique, and RT-qPCR for confirmation of gene expression. Immunofluorescence assays for NLRP3, caspase-1, IL-1β and GSDMD proteins was performed by Western blot in the presence and/or absence of Apocynin, an inhibitor of NADPH oxidase. IL-1β release was also detected in the presence and/or absence of NLRP3, caspase-1 and NADPH oxidase inhibitors. Results showed that Cr-LAAO upregulated the expression of genes that participate in the NADPH oxidase complex formation and inflammasome assembly. NLRP3 was activated and accumulated in the cytosol forming punctas, indicating its activation. Gasdermin D was not cleaved but lactate dehydrogenase was released. Furthermore, ROS inhibition decreased the expression of NLRP3 inflammasome complex proteins, as observed by protein expression in the presence and/or absence of apocynin, an NADPH oxidase inhibitor. IL-1β was also released, and pharmacological inhibition of NLRP3, caspase-1, and ROS reduced the amount of released cytokine. This is the first report demonstrating the activation of the NLRP3 inflammasome complex via ROS generation by Cr-LAAO, which may lead to the development of local inflammatory effects observed in snakebite victims.
Collapse
Affiliation(s)
- Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Jéssica Amaral Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Cristina Matiele Alves Rego
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Milena Daniela Souza Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Hallison Mota Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Suzanne Nery Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Yoda Janaina Ikenohuchi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Braz Junior Campos Farias
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Kátia Paula Felipin
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Neriane Monteiro Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Valdison Pereira Dos Reis
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Caleb Torres de Lima Lemos
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Jaina Rodrigues Evangelista
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
5
|
Up-regulation of nPKC contributes to proliferation of mice pulmonary artery smooth muscle cells in hypoxia-induced pulmonary hypertension. Eur J Pharmacol 2021; 900:174046. [PMID: 33745958 DOI: 10.1016/j.ejphar.2021.174046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
This study is designed to investigate the role of novel protein kinases C (nPKC) in mediating pulmonary artery smooth muscle cells (PASMCs) proliferation in pulmonary hypertension (PH) and the underlying mechanisms. Mouse PASMCs was isolated using magnetic separation technology. The PASMCs were divided into 24 h group, 48 h group and 72 h group according to different hypoxia treatment time, then detected cell proliferation rate and nPKC expression level in each group. We treated PASMCs with agonists or inhibitors of PKCdelta (PKCδ) and PKCepsilon (PKCε) and exposed them to hypoxia or normoxia for 72 h, then measured the proliferation of PASMCs. We also constructed a lentiviral vector containing siRNA fragments for inhibiting PKCδ and PKCε to transfected PASMCs, then examined their proliferation. PASMCs isolated successfully by magnetic separation method and were in good condition. Hypoxia promoted the proliferation of PASMCs, and the treatment for 72 h had the most significant effect. Hypoxia upregulated the expression of PKCδ and PKCε in mouse PASMCs, leading to PASMCs proliferation. Moreover, Our study demonstrated that hypoxia induced upregulation of PKCδ and PKCε expression resulting to the proliferation of PASMCs via up-regulating the phosphorylation of AKT and ERK. Our study provides clear evidence that increased nPKC expression contributes to PASMCs proliferation and uncovers the correlation between AKT and ERK pathways and nPKC-mediated proliferation of PASMCs. These findings may provide novel targets for molecular therapy of pulmonary hypertension.
Collapse
|
6
|
Glucose fluctuations promote vascular BK channels dysfunction via PKCα/NF-κB/MuRF1 signaling. J Mol Cell Cardiol 2020; 145:14-24. [PMID: 32511969 DOI: 10.1016/j.yjmcc.2020.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 01/01/2023]
Abstract
Glucose fluctuations may contribute to large conductance calcium activated potassium (BK) channel dysfunction. However, the underlying mechanisms remain elusive. The aim of this study was to investigate the molecular mechanisms involved in BK channel dysfunction as a result of glucose fluctuations. A rat diabetic model was established through the injection of streptozotocin. Glucose fluctuations in diabetic rats were induced via consumption and starvation. Rat coronary arteries were isolated and coronary vascular tensions were measured after three weeks. Rat coronary artery smooth muscle cells were isolated and whole-cell BK channel currents were recorded using a patch clamp technique. Human coronary artery smooth muscle cells in vitro were used to explore the underlying mechanisms. After incubation with iberiotoxin (IBTX), the Δ tensions (% Max) of rat coronary arteries in the controlled diabetes mellitus (C-DM), the uncontrolled DM (U-DM) and the DM with glucose fluctuation (GF-DM) groups were found to be 84.46 ± 5.75, 61.89 ± 10.20 and 14.77 ± 5.90, respectively (P < .05), while the current densities of the BK channels in the three groups were 43.09 ± 4.35 pA/pF, 34.23 ± 6.07 pA/pF and 17.87 ± 4.33 pA/pF, respectively (P < .05). The Δ tensions (% Max) of rat coronary arteries after applying IBTX in the GF-DM rats injected with 0.9% sodium chloride (NaCl) (GF-DM + NaCl) and the GF-DM rats injected with N-acetyl-L-cysteine (NAC) (GF-DM + NAC) groups were found to be 8.86 ± 1.09 and 48.90 ± 10.85, respectively (P < .05). Excessive oxidative stress and the activation of protein kinase C (PKC) α and nuclear factor (NF)-κB induced by glucose fluctuations promoted the decrease of BK-β1 expression, while the inhibition of reactive oxygen species (ROS), PKCα, NF-κB and muscle ring finger protein 1 (MuRF1) reversed this effect. Glucose fluctuations aggravate BK channel dysfunction via the ROS overproduction and the PKCα/NF-κB/MuRF1 signaling pathway.
Collapse
|
7
|
Chakraborti S, Sarkar J, Chakraborti T. Role of PLD-PKCζ signaling axis in p47phox phosphorylation for activation of NADPH oxidase by angiotensin II in pulmonary artery smooth muscle cells. Cell Biol Int 2019; 43:678-694. [PMID: 30977575 DOI: 10.1002/cbin.11145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/07/2019] [Indexed: 12/12/2022]
Abstract
We sought to determine the mechanism by which angiotensin II (ANGII) stimulates NADPH oxidase-mediated superoxide (O2 .- ) production in bovine pulmonary artery smooth muscle cells (BPASMCs). ANGII-induced increase in phospholipase D (PLD) and NADPH oxidase activities were inhibited upon pretreatment of the cells with chemical and genetic inhibitors of PLD2, but not PLD1. Immunoblot study revealed that ANGII treatment of the cells markedly increases protein kinase C-α (PKC-α), -δ, -ε, and -ζ levels in the cell membrane. Pretreatment of the cells with chemical and genetic inhibitors of PKC-ζ, but not PKC-α, -δ, and -ε, attenuated ANGII-induced increase in NADPH oxidase activity without a discernible change in PLD activity. Transfection of the cells with p47phox small interfering RNA inhibited ANGII-induced increase in NADPH oxidase activity without a significant change in PLD activity. Pretreatment of the cells with the chemical and genetic inhibitors of PLD2 and PKC-ζ inhibited ANGII-induced p47phox phosphorylation and subsequently translocation from cytosol to the cell membrane, and also inhibited its association with p22phox (a component of membrane-associated NADPH oxidase). Overall, PLD-PKCζ-p47phox signaling axis plays a crucial role in ANGII-induced increase in NADPH oxidase-mediated O2 .- production in the cells.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal 741235, India
| |
Collapse
|
8
|
Hsu HT, Tseng YT, Wong WJ, Liu CM, Lo YC. Resveratrol prevents nanoparticles-induced inflammation and oxidative stress via downregulation of PKC-α and NADPH oxidase in lung epithelial A549 cells. Altern Ther Health Med 2018; 18:211. [PMID: 29986680 PMCID: PMC6038342 DOI: 10.1186/s12906-018-2278-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/02/2018] [Indexed: 11/25/2022]
Abstract
Background Exposure to carbon black nanoparticles (CBNPs), a well-known industrial production, promotes pulmonary toxicity through inflammation and oxidative stress. Recent studies show that some polyphenols exert their antioxidant properties through regulation of protein kinase C-α (PKC-α) and NADPH oxidase (Nox) signaling. Resveratrol, a dietary polyphenol in fruits, possesses various health beneficial effects including anti-inflammatory and antioxidative properties. In this study, we aimed to elucidate the involvement of PKC-α and Nox in CBNPs-induced inflammation and oxidative stress, and to investigate the protective effects of resveratrol on CBNP-induced inflammation and oxidative stress in human lung epithelial A549 cells. Methods The production of reactive oxygen species (ROS) and the change of mitochondrial membrane potential (ΔΨm) were measured by flow cytometry. Nitric oxide (NO) was measured using the Griess reagent, and prostaglandin E2 (PGE2) production was detected by ELISA, while protein expressions were measured by Western blotting analysis. Results In lung epithelial A549 cells, CBNPs significantly enhanced oxidative stress by upregulation of Nox2 and membrane expression of p67phox accompanied with increase of ROS production. CBNPs also increased inflammatory factors, including iNOS, COX-2, NO and PGE2. However, resveratrol attenuated the above effects induced by CBNPs in A549 cells; additionally, CBNPs-induced activation of PKC-α was observed. We found that PKC-α inhibitor (Gö6976) could attenuate CBNPs-induced inflammation by down-regulation of ROS, NO and PGE2 production in A549 cells, suggesting PKC-α might be involved in CBNPs-induced oxidative stress and inflammation. Our results also found resveratrol was able to inhibit protein expression of PKC-α induced by CBNPs. Moreover, ROS scavenger (NAC) and Nox inhibitor (DPI) attenuated CBNPs-induced expressions of iNOS and COX-2. DPI could also attenuate CBNPs-induced ROS, NO and PGE2 production. Conclusions Resveratrol attenuated CBNPs-induced oxidative and inflammatory factors in lung epithelial A549 cells, at least in part via inhibiting PKC-α- and Nox-related signaling.
Collapse
|
9
|
Paloschi MV, Boeno CN, Lopes JA, Eduardo Dos Santos da Rosa A, Pires WL, Pontes AS, da Silva Setúbal S, Soares AM, Zuliani JP. Role of l-amino acid oxidase isolated from Calloselasma rhodostoma venom on neutrophil NADPH oxidase complex activation. Toxicon 2018; 145:48-55. [PMID: 29499246 DOI: 10.1016/j.toxicon.2018.02.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/01/2018] [Accepted: 02/26/2018] [Indexed: 01/02/2023]
Abstract
The action of Cr-LAAO, an l-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, on NADPH oxidase activation in isolated human neutrophil function was investigated. This enzyme has an intrinsic activity of hydrogen peroxide production. Cr-LAAO, in its native form, induces the ROS production in neutrophil and migration of cytosolic NADPH oxidase components p40phox, p47phox and p67phox to the membrane, and Rac, a GTPase protein member, with the involvement of intracellular signaling mediated by phospho PKC-α. In its inactive form, iCr-LAAO does not induce NADPH oxidase activation in neutrophil showing that the intrinsic enzymatic activity does not have a role in this process, suggesting that its primary structure is essential for the cell's stimulation. Accordingly, the data showed for the first time that the Cr-LAAO has a role in NADPH oxidase complex activation triggering relevant proinflammatory events in human neutrophils.
Collapse
Affiliation(s)
- Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Jéssica Amaral Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Weverson Luciano Pires
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Adriana Silva Pontes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
10
|
MacKay CE, Shaifta Y, Snetkov VV, Francois AA, Ward JPT, Knock GA. ROS-dependent activation of RhoA/Rho-kinase in pulmonary artery: Role of Src-family kinases and ARHGEF1. Free Radic Biol Med 2017; 110:316-331. [PMID: 28673614 PMCID: PMC5542024 DOI: 10.1016/j.freeradbiomed.2017.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/12/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
The role of reactive oxygen species (ROS) in smooth muscle contraction is poorly understood. We hypothesised that G-protein coupled receptor (GPCR) activation and hypoxia induce Rho-kinase activity and contraction in rat intra-pulmonary artery (IPA) via stimulation of ROS production and subsequent Src-family kinase (SrcFK) activation. The T-type prostanoid receptor agonist U46619 induced ROS production in pulmonary artery smooth muscle cells (PASMC). U46619 also induced c-Src cysteine oxidation, SrcFK auto-phosphorylation, MYPT-1 and MLC20 phosphorylation and contraction in IPA, and all these responses were inhibited by antioxidants (ebselen, Tempol). Contraction and SrcFK/MYPT-1/MLC20 phosphorylations were also inhibited by combined superoxide dismutase and catalase, or by the SrcFK antagonist PP2, while contraction and MYPT-1/MLC20 phosphorylations were inhibited by the Rho guanine nucleotide exchange factor (RhoGEF) inhibitor Y16. H2O2 and the superoxide-generating quinoledione LY83583 both induced c-Src oxidation, SrcFK auto-phosphorylation and contraction in IPA. LY83583 and H2O2-induced contractions were inhibited by PP2, while LY83583-induced contraction was also inhibited by antioxidants and Y16. SrcFK auto-phosphorylation and MYPT-1/MLC20 phosphorylation was also induced by hypoxia in IPA and this was blocked by mitochondrial inhibitors rotenone and myxothiazol. In live PASMC, sub-cellular translocation of RhoA and the RhoGEF ARHGEF1 was triggered by both U46619 and LY83583 and this translocation was blocked by antioxidants and PP2. RhoA translocation was also inhibited by an ARHGEF1 siRNA. U46619 enhanced ROS-dependent co-immunoprecipitation of ARHGEF1 with c-Src. Our results demonstrate a link between GPCR-induced cytosolic ROS or hypoxia-induced mitochondrial ROS and SrcFK activity, Rho-kinase activity and contraction. ROS and SrcFK activate RhoA via ARHGEF1.
Collapse
Affiliation(s)
- Charles E MacKay
- Asthma, Allergy & Lung Biology, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Yasin Shaifta
- Asthma, Allergy & Lung Biology, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Vladimir V Snetkov
- Asthma, Allergy & Lung Biology, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Asvi A Francois
- Cardiovascular Division, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Jeremy P T Ward
- Asthma, Allergy & Lung Biology, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Greg A Knock
- Asthma, Allergy & Lung Biology, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
11
|
Chakraborti S, Sarkar J, Chowdhury A, Chakraborti T. Role of ADP ribosylation factor6- Cytohesin1-PhospholipaseD signaling axis in U46619 induced activation of NADPH oxidase in pulmonary artery smooth muscle cell membrane. Arch Biochem Biophys 2017; 633:1-14. [PMID: 28822840 DOI: 10.1016/j.abb.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Abstract
Treatment of human pulmonary artery smooth muscle cells (HPASMCs) with the thromboxane A2 receptor antagonist, SQ29548 inhibited U46619 stimulation of phospholipase D (PLD) and NADPH oxidase activities in the cell membrane. Pretreatment with apocynin inhibited U46619 induced increase in NADPH oxidase activity. The cell membrane contains predominantly PLD2 along with PLD1 isoforms of PLD. Pretreatment with pharmacological and genetic inhibitors of PLD2, but not PLD1, attenuated U46619 stimulation of NADPH oxidase activity. U46619 stimulation of PLD and NADPH oxidase activities were insensitive to BFA and Clostridium botulinum C3 toxin; however, pretreatment with secinH3 inhibited U46619 induced increase in PLD and NADPH oxidase activities suggesting a major role of cytohesin in U46619-induced increase in PLD and NADPH oxidase activities. Arf-1, Arf-6, cytohesin-1 and cytohesin-2 were observed in the cytosolic fraction, but only Arf-6 and cytohesin-1 were translocated to the cell membrane upon treatment with U46619. Coimmunoprecipitation study showed association of Arf-6 with cytohesin-1 in the cell membrane fraction. In vitro binding of GTPγS with Arf-6 required the presence of cytohesin-1 and that occurs in BFA insensitive manner. Overall, BFA insensitive Arf6-cytohesin1 signaling axis plays a pivotal role in U46619-mediated activation of PLD leading to stimulation of NADPH oxidase activity in HPASMCs.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
12
|
Chakraborti S, Sarkar J, Bhuyan R, Chakraborti T. Role of curcumin in PLD activation by Arf6-cytohesin1 signaling axis in U46619-stimulated pulmonary artery smooth muscle cells. Mol Cell Biochem 2017; 438:97-109. [PMID: 28780751 DOI: 10.1007/s11010-017-3117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/15/2017] [Indexed: 01/01/2023]
Abstract
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to produce phosphatidic acid (PA) which in some cell types play a pivotal role in agonist-induced increase in NADPH oxidase-derived [Formula: see text]production. Involvement of ADP ribosylation factor (Arf) in agonist-induced activation of PLD is known for smooth muscle cells of systemic arteries, but not in pulmonary artery smooth muscle cells (PASMCs). Additionally, role of cytohesin in this scenario is unknown in PASMCs. We, therefore, determined the involvement of Arf and cytohesin in U46619-induced stimulation of PLD in PASMCs, and the probable mechanism by which curcumin, a natural phenolic compound, inhibits the U46619 response. Treatment of PASMCs with U46619 stimulated PLD activity in the cell membrane, which was inhibited upon pretreatment with SQ29548 (Tp receptor antagonist), FIPI (PLD inhibitor), SecinH3 (inhibitor of cytohesins), and curcumin. Transfection of the cells with Tp, Arf-6, and cytohesin-1 siRNA inhibited U46619-induced activation of PLD. Upon treatment of the cells with U46619, Arf-6 and cytohesin-1 were translocated and associated in the cell membrane, which were not inhibited upon pretreatment of the cells with curcumin. Cytohesin-1 appeared to be necessary for in vitro binding of GTPγS with Arf-6; however, addition of curcumin inhibited binding of GTPγS with Arf-6 even in the presence of cytohesin-1. Our computational study suggests that although curcumin to some extent binds with Tp receptor, yet the inhibition of Arf6GDP to Arf6GTP conversion appeared to be an important mechanism by which curcumin inhibits U46619-induced increase in PLD activity in PASMCs.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India.
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Rajabrata Bhuyan
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| |
Collapse
|
13
|
Abstract
Proteases play an important role in health and disease of the lung. In the normal lungs, proteases maintain their homeostatic functions that regulate processes like its regeneration and repair. Dysregulation of proteases–antiproteases balance is crucial in the manifestation of different types of lung diseases. Chronic inflammatory lung pathologies are associated with a marked increase in protease activities. Thus, in addition to protease activities, inhibition of anti-proteolytic control mechanisms are also important for effective microbial infection and inflammation in the lung. Herein, we briefly summarize the role of different proteases and to some extent antiproteases in regulating a variety of lung diseases.
Collapse
|
14
|
Apaya MK, Lin CY, Chiou CY, Yang CC, Ting CY, Shyur LF. Simvastatin and a Plant Galactolipid Protect Animals from Septic Shock by Regulating Oxylipin Mediator Dynamics through the MAPK-cPLA 2 Signaling Pathway. Mol Med 2016; 21:988-1001. [PMID: 26701313 DOI: 10.2119/molmed.2015.00082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 12/12/2015] [Indexed: 02/02/2023] Open
Abstract
Sepsis remains a major medical issue despite decades of research. Identification of important inflammatory cascades and key molecular mediators are crucial for developing intervention and prevention strategies. In this study, we conducted a comparative oxylipin metabolomics study to gain a comprehensive picture of lipid mediator dynamics during the initial hyperinflammatory phase of sepsis, and demonstrated, in parallel, the efficacy of simvastatin and plant galactolipid, 1,2-di-O-α-linolenoyl-3-O-β-galactopyranosyl-sn-glycerol (dLGG) in the homeostatic regulation of the oxylipin metabolome using a lipopolysaccharide (LPS)-induced sepsis C57BL/6J mouse model. LPS increased the systemic and organ levels of proinflammatory metabolites of linoleic acid including leukotoxin diols (9-,10-DHOME, 12-,13-DHOME) and octadecadienoic acids (9-HODE and 13-HODE) and arachidonic acid-derived prostanoid, PGE2, and hydroxyeicosatetraenoic acids (8-, 12- and 15-HETE). Treatment with either compound decreased the levels of proinflammatory metabolites and elevated proresolution lipoxin A4, 5(6)-EET, 11(12)-EET and 15-deoxy-PGJ2. dLGG and simvastatin ameliorated the effects of LPS-induced mitogen-activated protein kinase (MAPK)-dependent activation of cPLA2, cyclooxygenase-2, lipoxygenase, cytochrome P450 and/or epoxide hydrolase lowered systemic TNF-α and IL-6 levels and aminotransferase activities and decreased organ-specific infiltration of inflammatory leukocytes and macrophages, and septic shock-induced multiple organ damage. Furthermore, both dLGG and simvastatin increased the survival rates in the cecal ligation and puncture (CLP) sepsis model. This study provides new insights into the role of oxylipins in sepsis pathogenesis and highlights the potential of simvastatin and dLGG in sepsis therapy and prevention.
Collapse
Affiliation(s)
- Maria Karmella Apaya
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Yi Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Chih Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yun Ting
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Lie-Fen Shyur
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.,Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
15
|
Sarkar J, Chowdhury A, Chakraborti T, Chakraborti S. Cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells. Mol Cell Biochem 2016; 415:13-28. [PMID: 26910780 DOI: 10.1007/s11010-016-2673-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/17/2016] [Indexed: 12/27/2022]
Abstract
Treatment of bovine pulmonary artery smooth muscle cells with endothelin-1 (ET-1) caused an increase in the expression and activation of proMMP-2 in the cells. The present study was undertaken to determine the underlying mechanisms involved in this scenario. We demonstrated that (i) pretreatment with NADPH oxidase inhibitor, apocynin; PKC-α inhibitor, Go6976; p(38)MAPK inhibitor SB203580 and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by ET-1; (ii) ET-1 treatment to the cells stimulated NADPH oxidase and PKCα activity, p(38)MAPK phosphorylation as well as NF-κB activation by translocation of NF-κBp65 subunit from cytosol to the nucleus, and subsequently by increasing its DNA-binding activity; (iii) ET-1 increases MT1-MMP expression, which was inhibited upon pretreatment with apocynin, Go6976, SB293580, and Bay 11-7082; (iv) ET-1 treatment to the cells downregulated TIMP-2 level. Although apocynin and Go6976 pretreatment reversed ET-1 effect on TIMP-2 level, yet pretreatment of the cells with SB203580 and Bay 11-7082 did not show any discernible change in TIMP-2 level by ET-1. Overall, our results suggest that ET-1-induced activation of proMMP-2 is mediated via cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NFκB-MT1MMP signaling pathways along with a marked decrease in TIMP-2 expression in the cells.
Collapse
Affiliation(s)
- Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
16
|
El-Yazbi AF, Abd-Elrahman KS, Moreno-Dominguez A. PKC-mediated cerebral vasoconstriction: Role of myosin light chain phosphorylation versus actin cytoskeleton reorganization. Biochem Pharmacol 2015; 95:263-78. [DOI: 10.1016/j.bcp.2015.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
|
17
|
MacKay CE, Knock GA. Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease. J Physiol 2014; 593:3815-28. [PMID: 25384773 DOI: 10.1113/jphysiol.2014.285304] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are now recognised as second messenger molecules that regulate cellular function by reversibly oxidising specific amino acid residues of key target proteins. Amongst these are the Src-family kinases (SrcFKs), a multi-functional group of non-receptor tyrosine kinases highly expressed in vascular smooth muscle (VSM). In this review we examine the evidence supporting a role for ROS-induced SrcFK activity in normal VSM contractile function and in vascular remodelling in cardiovascular disease. VSM contractile responses to G-protein-coupled receptor stimulation, as well as hypoxia in pulmonary artery, are shown to be dependent on both ROS and SrcFK activity. Specific phosphorylation targets are identified amongst those that alter intracellular Ca(2+) concentration, including transient receptor potential channels, voltage-gated Ca(2+) channels and various types of K(+) channels, as well as amongst those that regulate actin cytoskeleton dynamics and myosin phosphatase activity, including focal adhesion kinase, protein tyrosine kinase-2, Janus kinase, other focal adhesion-associated proteins, and Rho guanine nucleotide exchange factors. We also examine a growing weight of evidence in favour of a key role for SrcFKs in multiple pro-proliferative and anti-apoptotic signalling pathways relating to oxidative stress and vascular remodelling, with a particular focus on pulmonary hypertension, including growth-factor receptor transactivation and downstream signalling, hypoxia-inducible factors, positive feedback between SrcFK and STAT3 signalling and positive feedback between SrcFK and NADPH oxidase dependent ROS production. We also discuss evidence for and against the potential therapeutic targeting of SrcFKs in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Charles E MacKay
- Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Greg A Knock
- Asthma, Allergy and Lung Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
18
|
Cross-talk between p(38)MAPK and G iα in regulating cPLA 2 activity by ET-1 in pulmonary smooth muscle cells. Mol Cell Biochem 2014; 400:107-23. [PMID: 25399298 DOI: 10.1007/s11010-014-2267-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Endothelin-1 (ET-1) is known as the most potent vasoconstrictor yet described. Infusion of ET-1 into isolated rabbit lung has been shown to cause pulmonary vasoconstriction with the involvement of arachidonic acid metabolites. Given the potency of arachidonic acid metabolites, the activity of phospholipase A2 must be tightly regulated. Herein, we determined the mechanisms by which ET-1 stimulates cPLA2 activity during ET-1 stimulation of bovine pulmonary artery smooth muscle cells. We demonstrated that (i) treatment of bovine pulmonary artery smooth muscle cells with ET-1 stimulates cPLA2 activity in the cell membrane; (ii) ET-1 caused increase in O 2 (·-) production occurs via NADPH oxidase-dependent mechanism; (iii) ET-1-stimulated NADPH oxidase activity is markedly prevented upon pretreatment with PKC-ζ inhibitor, indicating that PKC-ζ plays a prominent role in this scenario; (iv) ET-1-induced NADPH oxidase-derived O 2 (·-) stimulates an aprotinin sensitive protease activity due to prominent increase in [Ca(2+)]i; (v) the aprotinin sensitive protease plays a pivotal role in activating PKC-α, which in turn phosphorylates p(38)MAPK and subsequently Giα leading to the activation of cPLA2. Taken together, we suggest that cross-talk between p(38)MAPK and Giα with the involvement of PKC-ζ, NADPH oxidase-derived O 2 (·-) , [Ca(2+)]i, aprotinin-sensitive protease and PKC-α play a pivotal role for full activation of cPLA2 during ET-1 stimulation of pulmonary artery smooth muscle cells.
Collapse
|
19
|
Chakraborti S, Roy S, Mandal A, Chowdhury A, Chakraborti T. Role of PKC-ζ in NADPH oxidase-PKCα-Giα axis dependent inhibition of β-adrenergic response by U46619 in pulmonary artery smooth muscle cells. Arch Biochem Biophys 2013; 540:133-44. [PMID: 24184446 DOI: 10.1016/j.abb.2013.10.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/02/2013] [Accepted: 10/23/2013] [Indexed: 02/04/2023]
Abstract
Treatment of bovine pulmonary artery smooth muscle cells (BPASMCs) with U46619 attenuated isoproterenol caused stimulation of adenyl cyclase activity and cAMP production. Pretreatment with SQ29548 (Tp receptor antagonist), apocynin (NADPH oxidase inhibitor) and Go6976 (PKC-α inhibitor) eliminated U46619 caused attenuation of isoproterenol stimulated adenyl cyclase activity. Pretreatment with SQ29548 and apocynin prevented U46619 induced increase in NADPH oxidase activity, PKC-α activity and Giα phosphorylation. However, pretreatment with CZI, a PKC-ζ inhibitor, markedly, but not completely, inhibited U46619 induced increase in NADPH oxidase activity, PKC-α activity, Giα phosphorylation and also significantly eliminated U46619 caused attenuation of isoproterenol stimulated adenyl cyclase activity. Pretreatment with Go6976 inhibited U46619 induced increase in Giα phosphorylation, but not PKC-ζ activity and NADPH oxidase activity. Pretreatment with pertussis toxin eliminated U46619 caused attenuation of isoproterenol stimulated adenyl cyclase activity without any discernible change in PKC-ζ, NADPH oxidase and PKC-α activities. Transfection of the cells with Tp, PKC-ζ and PKC-α siRNA duplexes corroborate the findings observed with their respective pharmacological inhibitors on the responses produced by U46619. Taken together, we suggest involvement of PKC-ζ in U46619 caused attenuation of isoproterenol stimulated β-adrenergic response, which is regulated by NADPH oxidase-PKCα-Giα axis in pulmonary artery smooth muscle cells.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Nadia 741235, West Bengal, India.
| | | | | | | | | |
Collapse
|
20
|
Role of PKCα-p38 MAPK-Giα axis in peroxynitrite-mediated inhibition of β-adrenergic response in pulmonary artery smooth muscle cells. Cell Signal 2012; 25:512-26. [PMID: 23159577 DOI: 10.1016/j.cellsig.2012.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/09/2012] [Accepted: 11/09/2012] [Indexed: 11/21/2022]
Abstract
In the context of cross-talk between transmembrane signaling pathways, we studied the loci within the β-adrenergic receptor/G protein/adenyl cyclase system at which PKC exerts regulatory effects of peroxynitrite (ONOO(-)) on isoproterenol stimulated adenyl cyclase activity in pulmonary artery smooth muscle cells. Treatment of the cells with ONOO(-) stimulated PKC-α activity and that subsequently increased p(38)MAPK phosphorylation. Pretreatment with Go6976 (PKC-α inhibitor) and SB203580 (p(38)MAPK inhibitor) eliminated ONOO(-) caused inhibition on isoproterenol stimulated adenyl cyclase activity. Pretreatment with Go6976, but not SB203580, prevented ONOO(-) induced increase in PKC-α activity. Studies using genetic inhibitors of PKC-α (PKC-α siRNA) and p(38)MAPK (p(38)MAPK siRNA) also corroborated the findings obtained with their pharmacological inhibitors in eliminating the attenuation of ONOO(-) effect on isoproterenol stimulated adenyl cyclase activity. This inhibitory effect of ONOO(-) was found to be eliminated upon pretreatment of the cells with pertussis toxin thereby pointing to a G(i) dependent mechanism. This hypothesis was reinforced by G(i)α phosphorylation as well as by the observation of the loss of the ability of Gpp(NH)p (a measure of G(i) mediated response) to stimulate adenyl cyclase activity upon ONOO(-) treatment to the cells. We suggest the existence of a pertussis toxin sensitive G protein (G(i))-mediated mechanism in isoproterenol stimulated adenyl cyclase activity, which is regulated by PKCα-p(38)MAPK axis dependent phosphorylation of its α-subunit (G(i)α) in the pulmonary artery smooth muscle cells.
Collapse
|